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A PRESENTATION OF PGL(2,p) WITH THREE DEFINING
RELATIONS

by E. F. ROBERTSON and P. D. WILLIAMS

(Received 13th June 1983)

Let p be an odd prime and let GL(2, p) denote the general linear group of invertible
2x2 matrices with entries in the field of p elements. The group PGL(2, p) is the factor of
GL(2,p) by its centre and has derived group PSL(2,p) with derived factor C2, the cyclic
group of order 2.

For any group G let G' and Z(G) denote the derived group and the centre of G
respectively. We shall let Gab denote G/G' and M(G) denote the Schur multiplier of G. It
is well known that M(PGL(2, p)) = C2 and this imposes a bound on the minimum
number of relations required to define PGL(2, p). We show that this bound is attained
and so PGU2, p) is efficient in the following sense. A finite group G is called efficient, see
[2] or [6], if it has a presentation with d generators and r relations while M(G) requires
r — d generators.

A group C is called a covering group of the finite group G if M(G) = A^Z(C)nC
with C/A = G. We find the minimum number of relations required for a covering group
of PGL(2, p) and show that this covering group has a deficiency zero presentation, that
is a presentation with an equal number of generators and relations. See [4] for a survey
of finite groups of deficiency zero.

We shall prove the following results:

Theorem A. If p is an odd prime

Theorem B. If p is an odd prime

is a covering group of PGU2, p).

We introduce the class of groups

f = \, cbc~1=bq}

where p is an odd prime and 1 < q < p. Now q — 1 must be coprime to p so, abelianising
the relations of G(p,q), we have G(p,qYb^C2.
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Lemma 1. Suppose p is an odd prime and l<q<p. Then

G'(p, q) = < w, y, z\y2 = (yz)2 = w" = (wy)3 = (wqzy)3 = 1, zwz ~' = w«2>.

Proof. We show that K = (b,ac,c2y = G\p,q) and find a presentation for K. It is
clear that K ^ G'(p, q). Defining cosets 1 and 2 of K in G(p, q) by 1 = K, 2 = Kc we see,
using the Todd Coxeter coset enumeration algorithm, that the generators a,b,c of
G(p,q) act as the permutations (12), (1), (12), respectively, on the cosets so K has index 2
in G(p,q). Let x = b, y = ac, z = c2 and choose the transversal T = {l,c} of K in G(p,q).
Then rewriting the Schreier generators sUg, teT, ge{a,b,c} in terms of x,y,z gives:

and the following presentation for K on the generators x, y, z is obtained by the method
described in [5]

1=xq2y. (1)

Now letting w = xr, where rq=l(modp), (1) may be transformed to

<w,y,z\y2=(yz)2 = w" = (wqzy)3 =(wq2zyz-1)3 = 1, zwqz~ 1 = w«3>.

Clearly we may replace the relation zwqz~1 =wql by zwz'1 =w"2 and, substituting for
wql, the relation (wq2zyz~i)3 = 1 simplifies to (w_y)3= 1. This completes the proof.

Lemma 2. When q = 2, or # = (/?+1)/2, or q is a primitive element of GF(p), then
G'{p,q)^PSL{2,p).

Proof. Let rq = 1 (mod p) and consider the presentation for G'(p, q) given in
Lemma 1. Now if s is a non-negative integer zsw = wq"zs while z~sw=wr'z~s. Using these
results together with z"y = yz~" for any integer n we obtain from the relation zs(wy)3 = zs

•y „ ~2s -2s n2s //«\

z2s = wq ywr ywq y. (2)

Similarly from zs(wqzy)3 = zs we obtain

zis^l= wq yW ywq y. (3)

From (2) and (3) we deduce

z* = wq* ywr'ywq* y. (4)

Suppose t is such that g '= + l(modp). Then from (4) we obtain z'=\. Putting S = w,
T = y, V = z~l we now have

G'(p,q) = <S, T, V\S" =V' = T2 =(ST)3 =(TV)2 =(SqTV)3 = 1, V-lSV = Sq2>.
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If q is primitive and t = (p—1)/2 this is Frasch's presentation for PSL{2,p), see [3].
The cases q = (p +1)/2 and q = 2 proceed by eliminating z from the presentation of

Lemma 1 using (4) with s= l . Further Tietze transformations then reduce the
presentation to the Behr-Mennicke presentation for PSL(2,p), see [1]. Details may be
found in [7].

The results of Lemma 2 may fail for other values of q. For example in [7] it is shown
that G'(29,12)£PSL(2,29) and G'(89,34) £ PSU2,89).

Lemma 3. When q = 2, or q = (p+1)/2, or q is a primitive element of GF(p), then
G(p,q) = PGL(2,p).

Proof. Using Lemma 2 together with G(p, q)ah = C2 we see that

\G{p,q)\ = \PGL{2,p)\.

However PGL(2, p) is easily seen to be a homomorphic image of G(p, q) using the map
induced by

0 -r\ (\ A (q 0

where rq = 1 (mod p).

Theorem 4. PGL{2, p) may be presented by

where r = 2, or r = (p+1)/2, or r is a primitive element of GF(p).

Proof. Let rq = I (mod p). Then notice that the conditions given on r imply that q
satisfies the conditions in Lemma 3 so G(p,q)^PGU2,p). We show that c is a
redundant generator of G(p,q) as follows. The relation (abc)3 = l becomes, on putting ca

bac~lbcaba = c

that is

c = bab'aba. (5)

Using (5) to eliminate c the presentation for G(p, q) becomes

ia,b\a1 = bp = {ab1abr)2 = (b2abrabf=\, abrababab-1ab~ra = bqy. (6)

Now it is easy to see that the relation (b2abrab)3 = 1 simplifies to (ababr)3 — 1 on
substituting b2abra = ab~rab~2. Further the final relation in the presentation (6) is
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redundant since it may be deduced from the first four relations as follows:

ab'ababab -1ab~ra = (abrababrab ~ lab ~ ra)q

= (b-1ab-rab-2ab-ra)q

=(b-1ab-ra.abrab2)q

= />«.

We restate Theorem 4 in the case r = 2.

Corollary 5. PGL(2,p) = <a,fc|a2 = b"= {ab2)*= {abab2f = 1>.

It may be of interest to note that this presentation may be rewritten, on the same
generators a and b, as

PGL(2,p) = (a,b\a2 = bp = {ab2)A = {ababA)2 = \y.

We now prove Theorem A. Let G be the group with presentation

<a, b\a2bp = (ab2)4 = (abab2)3bp = 1 >.

Clearly, in view of Corollary 5, it suffices to prove that b" = l in G. Certainly bpeZ(G)
since b" — a'2. Now(ab2)4=l gives

and substituting this into (abab2)3bp = 1, using the fact that a2eZ(G), gives

2 ) = b1-pa-2 = b. (7)

Raising (7) to the power p and using the fact that b"eZ(G) gives b2p = b" so b" = l as
required.

Finally we give a proof of Theorem B. Let G denote the group with presentation
given in the theorem. Notice that the relations of G can be written as

Now <ab,ab2y = G since b = (ab)~1ab2, a = ab{ab2)-lab. Let H = <{ab2)4}. Now
bpeZ(G), since bp = a~2, so abab2 commutes with b"{abab2)3 and so commutes with
(ah2)*. Therefore (afc2)4eZ(G). Now in Gab we have a2 = b=\ so (oi2) 4e5 ' . Hence
H^Z(G) n G' and G/H^PGL(2,p) by Theorem A.

Now G cannot be PGL(2,p) since G, having deficiency zero, must have trivial Schur
multiplier. Therefore G is a covering group of PGL(2,p) and the proof is complete.
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