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1. Introduction

Let X be a smooth projective variety and D = D1+ · · ·+Dn a simple normal crossing

divisor with nef components Di. We study the relationship between the genus 0 local
Gromov–Witten theory of⊕n

i=1OX(−Di) and the genus 0 orbifold Gromov–Witten theory

of the multiroot stack XD,�r. Our main result is a positive answer to [27, Conjecture 1.8]:

Theorem A ((Theorem 2.1).). Let β be a curve class on X with di := Di · β > 0 for

i ∈ {1, . . . ,n}. For ri pairwise coprime and sufficiently large, the following identity holds

on the moduli space K0,m(X,β) of stable maps to X:

ρ�

[
Kmax
0,(I1,...,Im) (XD,�r,β)

]virt
=

(
Πn

i=1(−1)di−1
)(

∪m
j=1 ev

�
j

(
∪i∈IjDi

))
∩ [K0,m (⊕n

i=1OX(−Di),β)]
virt

,

where Ij ⊆ {1, . . . ,n} records the set of divisors which the marking xj is tangent to (see

§2.1 for details), and ρ is the morphism forgetting the orbifold structures.

This generalizes the smooth divisor local-logarithmic correspondence [29] to the simple

normal crossing setting, by interpreting the orbifold theory of the multiroot stack as an

alternative to the logarithmic theory [26].

When D is smooth, Theorem A follows from previous results equating both local and
orbifold invariants with relative invariants [1, 29, 28]. For general D, the key observation is

that both the local and orbifold theories satisfy a product formula over the space of stable

maps to X. Theorem A follows immediately, by bootstrapping from the smooth divisor
case. This is another manifestation of the ‘rank reduction’ technique in Gromov–Witten

theory [2, 22].

1.1. Logarithmic Gromov–Witten theory

Unlike the local and orbifold theories, the logarithmic theory does not satisfy a naive

product formula over the space of stable maps to X. This observation was used in [22] to
produce counterexamples to the local-logarithmic conjecture. The same reasoning shows

that the orbifold invariants also differ from the logarithmic invariants (and it is easy to

find counterexamples beyond the maximal contact setting). In fact, Corollary 3.4 equates
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the orbifold invariants with the so-called naive invariants, introduced in [21, §3] and
studied in [22]:

Theorem B ((Corollary 3.4).). The orbifold invariants of the multiroot stack coincide

with the naive invariants, and hence differ from the logarithmic invariants. This holds

for arbitrary choices of contact orders.

In summary, there are four genus 0 maximal contact theories associated to a simple

normal crossings pair: logarithmic, orbifold, naive, and local. They are related as follows:

Logarithmic Naive

Orbifold Local

[22, Theorem 3.4]

[22, Lemma 3.1]
Th

eor
em

B

Theorem A

The orbifold, local, and naive theories all coincide up to combinatorial factors. The

logarithmic theory differs in a more essential way, though there is an in-principle

procedure which relates it to the other three.
Despite the failure of the cycle-level local-logarithmic correspondence, there are many

choices of targets and insertions for which the correspondence does hold on the numerical

level. This occurs when the insertions kill the correction terms described in [22, Theorem
3.4]. In [7, 8, 9], numerous instances of the numerical local-logarithmic correspondence

are established: for toric varieties, log Calabi–Yau surfaces and orbifold log Calabi–Yau

surfaces; in [22, §5], the numerical correspondence is established for product geometries.

As a corollary of Theorem A, all of these logarithmic invariants coincide with the
corresponding orbifold invariants.

These different theories are approached using very different techniques. Torus localiza-

tion, in various guises, has been applied to compute both orbifold and local invariants [18,
11, 12]; logarithmic invariants, on the other hand, are typically calculated using tropical

correspondence theorems and scattering diagrams [23, 15]. Depending on the context,

one technique may be more effective than another. These correspondences provide bridges
between different techniques, thus increasing the roster of tools available for computations

in Gromov–Witten theory as a whole.

1.2. Relation to previous work

The smooth divisor case of Theorem A follows by combining the orbifold-logarithmic cor-

respondence [1, 28] with the strong form [13, 27] of the local-logarithmic correspondence

[29]. Some cases of Theorem A for normal crossing divisors were numerically verified in
[27, §5.2], by computing the J -functions of both sides.

1.3. User’s guide

We provide two approaches to rank reduction. The first (§2) uses the iterative construction
of root stacks and the projection formula, and relies on a local-orbifold correspondence
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for certain smooth orbifold pairs (Theorem 2.2). The second (§3) uses a product formula

for orbifold invariants over the space of stable maps to the coarse moduli space (Theorem

3.1). This holds for arbitrary tangency orders but requires a positivity assumption.
The identification of orbifold and naive invariants (Corollary 3.4) is an immediate

consequence.

2. Rank reduction I: Projection formula

2.1. Geometric setup

Fix a smooth projective variety X and a simple normal crossing divisor D =D1+ · · ·+
Dn ⊆X. For a tuple of pairwise coprime and sufficiently large integers �r= (r1, . . . ,rn), we

form the associated multiroot stack

X =XD,�r.

Considerm marked points x1, . . . ,xm and fix an ordered partition of the index set {1, . . . ,n}
into disjoint subsets I1, . . . ,Im such that ∩i∈IjDi is nonempty for each j ∈ {1, . . . ,m}. Fix
a curve class β ∈H+

2 (X) such that di :=Di ·β > 0 for all i.

We consider a moduli problem of genus 0 stable maps relative to (X,D), such that the

marking xj has maximal contact order di to each divisor Di with i∈ Ij . Notice that some
of the Ij may be empty, corresponding to markings with no tangency conditions. Some

markings may have positive contact orders along several divisors simultaneously, which

implies in particular that they should be mapped to the intersection.
This moduli problem determines associated discrete data for a moduli problem of

orbifold stable maps to the multiroot stack X , by taking each marking xj to have

twisting index

sj =
∏
i∈Ij

ri.

The twisted sector insertion in

μsj =
∏
i∈Ij

μri

coincides with the tuple of tangency orders, since the twisting indices on source and target

are the same [10, §2.1]. We denote the associated moduli space by

Kmax
0,(I1,...,Im)(X ,β)

and let ρ denote the morphism which forgets the orbifold structures:

ρ : Kmax
0,(I1,...,Im)(X ,β)→ K0,m(X,β).

2.2. Local-orbifold correspondence

Our main result is a cycle-level correspondence between the multiroot orbifold theory and

the local theory of the associated split vector bundle, proving [27, Conjecture 1.8]:
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Theorem 2.1. For ri sufficiently large, we have

ρ�

[
Kmax
0,(I1,...,Im)(X ,β)

]virt
=

(
Πn

i=1(−1)di−1
)(

∪m
j=1 ev

�
j

(
∪i∈IjDi

))
∩ [K0,m (⊕n

i=1OX(−Di),β)]
virt

.

The case n = 1 follows by combining the smooth divisor local-logarithmic correspon-

dence [29] in its strong form (see [13, Introduction] or [27, equation (2)]), together with

the smooth divisor logarithmic-orbifold correspondence [1, 28].

Proof. We proceed by induction on n. The base case n = 1 was already discussed. For
the induction step, consider the root stack

Z =X(D1,...,Dn−1),(r1,...,rn−1).

Letting p : Z → X be the morphism to the coarse moduli space and Dn = p−1Dn, we

have

X = ZDn,rn .

The ordered partition (I1, . . . ,Im) of {1, . . . ,n} induces a partition (J1, . . . ,Jm) of

{1, . . . ,n−1} by setting Jj = Ij \{n}. Consider the tower of moduli spaces

Kmax
0,(I1,...,Im)(X ,β) Kmax

0,(J1,...,Jm)(Z,β) K0,m(X,β).
ψ

ρ

ϕ

The induction hypothesis gives

ϕ�

[
Kmax
0,(J1,...,Jm)(Z,β)

]virt
=

(
Πn−1

i=1 (−1)di−1
)(

∪m
j=1 ev

�
j

(
∪i∈Jj

Di

))
∩

[
K0,m

(
⊕n−1

i=1 OX(−Di),β
)]virt

, (1)

and Theorem 2.2 establishes a local-orbifold correspondence for the smooth orbifold pair

(Z,Dn), giving

ψ�

[
Kmax
0,(I1,...,Im)(X ,β)

]virt
= (−1)dn−1 ev�jn Dn∩

[
Kmax
0,(J1,...,Jm)(OZ(−Dn),β)

]virt
= (−1)dn−1 ev�jn Dn · e

(
R1π�f

�OZ(−Dn)
)
∩

[
Kmax
0,(J1,...,Jm)(Z,β)

]virt
, (2)

where jn ∈ {1, . . . ,m} is the unique index such that n ∈ Ijn . Since Dn = p�Dn is pulled

back from X, we have

ev�jn Dn = ϕ� ev�jn Dn

e
(
R1π�f

�OZ(−Dn)
)
= ϕ�e

(
R1π�f

�OX(−Dn)
)
.

The latter equation follows from the projection formula and the following fact. The

pullback ϕ�C of the universal curve on K0,m(X,β) coincides with the coarsening of the

universal curve

C → Kmax
0,(J1,...,Jm)(Z,β),
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which makes the composite universal map C → Z → X representable. Therefore the
structure sheaves of the universal curves are preserved by push-forward [4, Theorem

3.1]. The result then follows from equations (1) and (2), the projection formula for ϕ, and

the splitting of the obstruction bundle for the local theory of ⊕n
i=1OX(−Di).

2.3. Local-orbifold correspondence for smooth orbifold pairs

It remains to establish the local-orbifold correspondence for the smooth orbifold pair

(Z,Dn), used in the preceding proof.

Theorem 2.2. With notation as in the proof of Theorem 2.1, we have

ψ�

[
Kmax
0,(I1,...,Im)(X ,β)

]virt
= (−1)dn−1 ev�jn Dn∩

[
Kmax
0,(J1,...,Jm)(OZ(−Dn),β)

]virt
.

We establish this result only in the setting we require, namely when Z is a multiroot

stack and Dn is a divisor pulled back from the coarse moduli space. The proof adapts
the arguments of [29], but subtleties arise due to the twisted sectors of Z, which encode

tangencies with respect to the divisorsD1, . . . ,Dn−1. These complicate a crucial dimension

count in the proof (§2.3.3) and also affect the final multiplicity calculation (§2.3.4).

Remark 2.3. It is unclear whether the correspondence holds in greater generality. If

the divisor has generic stabilizer, then the dimension count (§2.3.3) can fail, so at best

the result must be established via other methods. Moreover, in this case the multiplicity
arising from the contribution of the special graph (§2.3.4) is different, hinting that any

generalization of the correspondence will in fact require a new formulation.

2.3.1. Setting up the degeneration formula. Let X be the degeneration to the
normal cone of Dn ⊆Z, and let M be the degeneration to the normal cone of Dn ⊆X.

Lemma 2.4. X is the root stack of M along the strict (equivalently, total) transforms of
the divisors Di×A1 for i ∈ {1, . . . ,n−1}.

Proof. The divisors Di×A1 intersect the blowup center Dn×{0} transversely, hence the

strict and total transforms coincide. Denote these by Ti ⊆M . Each Ti admits a root on X,
namely the pullback of the rooted divisor Di ⊆Z along the composition X→Z×A1 →Z.

By the universal property of the root stack, we obtain a morphism

X→M(T1,...,Tn−1),(r1,...,rn−1),

and a local calculation shows that this is an isomorphism.

The general fiber of the family X→ A1 is

Z =X(D1,...,Dn−1),(r1,...,rn−1).

The central fiber consists of two components Z and Y meeting along Dn. Here Y is

obtained by rooting the bundle Y = PDn

(
NDn|X ⊕ODn

)
along the divisors π−1(Di∩Dn)
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for i ∈ {1, . . . ,n−1}. There is a Cartesian square

Y Y

Dn Dn,

π � π

where we note that Dn is itself a multiroot stack along a simple normal crossing divisor

Dn = (Dn)(E1,...,En−1),(r1,...,rn−1),

where Ei =Di∩Dn ⊆Dn. We let Ei = Ei/ri ⊆Dn be the corresponding gerby divisor.
Each connected component of the rigidified inertia stack I(Dn) is a rigidification of

a closed stratum
⋂

i∈I Ei of the divisor E1+ · · ·+ En−1 ⊆ Dn (including the stratum Dn

corresponding to the empty intersection). This rigidification is obtained from
⋂

i∈I Ei by

rooting along the intersection with Ej for all j /∈ I. This description of the twisted sectors
is crucial for understanding the structure of the degeneration formula later.

Finally, D0 ⊆Y will denote the section of the bundle consisting of its intersection with

Z, and D∞ ⊆ Y will denote the intersection of the central fiber of X with the strict
transform D of Dn×A1.

Consider L = TotOX(−D). This forms a family of (nonproper) targets over A1. The

general fiber is TotOZ(−Dn) and the central fiber is a union of Z×A1 and TotOY(−D∞).
We apply the degeneration formula [3] to L. The components of the central fiber are

indexed by bipartite graphs Γ. The vertices v ∈ Γ are partitioned into Z-vertices and

Y-vertices, and the associated moduli spaces Kv are spaces of maps to expansions of the

rooted pairs (
Z×A1,Dn×A1

)
and

(
OY(−D∞),D0×A1

)
,

respectively, as defined in [3, §3]. Working with expansions is inconsequential, since the

push-forward of the virtual class matches that of the space of maps to the corresponding

root stack without expansions [1, Theorem 2.2]. We denote the twisting index by rn. In
the original formulation [3, §3.4], rn is required to be divisible by all contact orders at the

gluing nodes, but by [28] this condition can be removed without affecting the invariants.

We assume therefore that rn is large and coprime to each of r1, . . . ,rn−1.
The component KΓ associated to Γ maps to the fiber product

KΓ FΓ

∏
vKv

∏
eI

(
Dn×A1

) ∏
eI

(
Dn×A1

)2
Φ

�
Δ

(3)

with respect to the evaluation maps to the rigidified inertia stack of the join divisor.

The virtual class of KΓ pushes forward to a multiple of the virtual class with which FΓ is
endowed by virtue of this diagram; the virtual degree of the morphism Φ is well understood

[3, Proposition 5.9.1]. Each space Kv decomposes as a disjoint union of substacks obtained

as preimages of connected components of the inertia stack.
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After pushing forward to the space of stable maps to Z, the degeneration formula gives
an equality of classes[

Kmax
0,(J1,...,Jm)(OZ(−Dn),β)

]virt
=

∑
Γ

1

|E(Γ)|! ·Ψ�[KΓ]
virt, (4)

where Ψ is the composition

KΓ → K(L0)→ K(Z).

Let j = jn be the index of the marking at which we wish to impose tangency to Dn (as in

the proof of Theorem 2.1), and cap both sides of equation (4) with ev�j D. The left-hand
side gives the local invariants of OZ(−Dn) capped with ev�j Dn. Our aim is to show that

all but one of the terms on the right-hand side vanish.

2.3.2. First vanishing: Z-vertices. Suppose first that there is a Z-vertex v ∈ Γ with

k > 1 adjacent edges. For each adjacent edge e, the corresponding evaluation map factors
(locally) through a specific component of the rigidified inertia stack. Such a component

is obtained by rigidifying a (possibly empty) intersection of the divisors Ei in Dn. We

denote this by Ee. The product of evaluation maps thus takes the form

Kv →
∏
e

(
Ee×A1

)
.

However, since the source curve is proper, the map to affine space is constant. This

ensures that all the point evaluations agree – that is, the map factors through the closed
substack (∏

e

Ee

)
×A1 ↪→

∏
e

(
Ee×A1

)
.

We now follow the argument of [29, Lemma 3.1]. There is a Cartesian diagram

FΓ Kv ×
∏

v′ Kv′

(
∏

e Ee)×A1×
∏

e′ I
(
Dn×A1

) (
(
∏

e Ee)×A1
)2×∏

e′ I
(
Dn×A1

)2
∏

e

(
Ee×A1

)
×

∏
e′ I

(
Dn×A1

) ∏
e

(
Ee×A1

)2×∏
e′ I

(
Dn×A1

)2
.

�
˜Δ

ι � ι′

Δ

The excess intersection formula [14, Theorem 6.3] gives

Δ! = ck−1(E)∩ Δ̃!,

where E is the excess bundle, which in this case [14, Example 6.3.2] is equal to

E = Δ̃�Nι′/Nι,

which is clearly trivial if k > 1. It follows that Δ! = 0 and so the contribution of Γ
vanishes.
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2.3.3. Second vanishing: Y-vertices. We conclude that the only graphs which can
contribute are those with a single Y-vertex. Let v ∈ Γ be such a vertex. This corresponds

to a space of expanded maps to the rooted pair
(
OY(−D∞),D0×A1

)
. Recall that Y is a

projective bundle over the divisor Dn. Suppose that in the discrete data for Kv, either

• the curve class is not a multiple of the fiber class or
• there are at least three special points.

This ensures that the corresponding moduli space of stable maps Kv(Dn) to the base of

the bundle is well defined. There is a projection

Kv → Kv(Dn), (5)

and we claim that the virtual class pushes forward to zero along this morphism. Since

there is a natural bijection between the twisted sectors in Y and the twisted sectors in

Dn, the age contributions to the virtual dimensions coincide. From this, one deduces

vdimKv = vdimKv(Dn)+2,

and so the claim holds if we show that formula (5) satisfies the virtual push-forward

property [20, Definition 3.1] (we note that this dimension count can fail if Dn is allowed

to have generic stabilizer). By [1, Theorem 2.2], it is equivalent to show that

Kv (YD0,rn)→ Kv(Dn)

satisfies the virtual push-forward property. For this we adapt the arguments of [29, §4].
Let

s=Πn
i=1ri, t=Πn−1

i=1 ri = s/rn.

By representability, the stabilizer groups of the source curve of any stable map to YD0,rn

(resp., Dn) must have order dividing s (resp., t). We denote the monoids of effective curve

classes by

A=H+
2 (YD0,rn), B =H+

2 (Dn).

Now consider the following diagram, involving moduli stacks of prestable twisted curves

with homology weights:

Kv (YD0,rn) G Kv(Dn)

M
s−tw
A M

t−tw
B ,

υ

�
ν

(6)

in which the morphism ν contracts unstable curve components with vertical homology

class and coarsens the rn–twisting (this morphism is the composition of an étale cover
followed by a root construction).

From the short exact sequence of relative tangent bundles associated to the smooth

projection YD0,rn → Dn, we obtain a compatible triple for the triangle in diagram (6).
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We note that unlike when the target is a variety, we may have

H1
(
C,f�TYD0,rn

/Dn

)
�= 0

if components of C are mapped into the rooted divisor. Thus the morphism υ is not

typically smooth, but it is always virtually smooth, which is sufficient. The arguments
given in [29, Lemma 5.1 and Proposition 5.3] then apply verbatim, showing that the

virtual push-forward property holds and the contribution of Γ vanishes.

2.3.4. Contribution of the special graph. We conclude that the only graphs Γ

which contribute are those with a single Y-vertex v1 with at most two special points and
curve class a multiple of the fiber class F. Since v1 must contain at least one node as well

as the marking xj , we are left with a single graph Γ, consisting of

• a Z-vertex v0 supporting all the markings except xj and with curve class β0 = β;
and

• a Y-vertex v1 supporting the marking xj and with curve class β1 = dn ·F for
dn =Dn ·β.

These are connected along a single edge e, and diagram (3) reduces to the following:

KΓ FΓ Kv0
×Kv1

I
(
Dn×A1

)
I

(
Dn×A1

)2
.

�

Recall that the component KΓ of the central fiber is virtually finite over the fiber product

FΓ. Let

Jj ⊆ {1, . . . ,n−1}

be the subset recording those divisors amongD1, . . . ,Dn−1 which the marking xj is tangent

to. This tangency is encoded in twisted sector insertions which are imposed on both the

general and central fibers. In Kv1
these correspond to age constraints with respect to the

bundles

OY
(
π−1Ei

)
= π�ODn

(Ei).

Since the curve class is a multiple of a fiber, these bundles have zero degree when pulled

back to the source curve. It follows from parity considerations that Kv1
is empty unless

the nodal marking q corresponding to the edge e also carries twisted sector insertions,
which are opposite to those at xj . This means we must have

ageq π
�ODn

(Ei) = 1−agexj
π�ODn

(Ei)

for all i ∈ Jj . By the inversion of the band in the evaluation maps, we then have the

opposite ages for the nodal marking q on Kv0
. It follows that the vertex v0 contributes the

orbifold invariants of the root stack ZDn,rn = X with twisted sector insertions imposing

maximal tangency of a single marking q with respect to all divisorsDi for i∈ Ij = Jj∪{n},
as required.
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For the contribution of v1, notice that evq takes values in a component of I(Dn) which
is naturally isomorphic to the rigidification of⋂

i∈Jj

Ei.

We denote this rigidification by EJj
. A direct calculation shows that

vdimKv1
= dimEJj

+1.

There is a divisorial insertion ev�j D∞ on Kv1
, and the contribution of v1 can be expressed

as the unique m ∈Q such that

(evq)�

(
ev�j D∞∩ [Kv1

]
virt

)
=m ·

[
EJj

]
.

This can be computed by restricting to the fiber of a general point in EJj
. Working locally

around this point, the gerbes Ei become trivial, so that we obtain a space of maps to

P(rn,1)×
∏
i∈Jj

Bμri .

The maps to the Bμri are uniquely determined, and each has an automorphism factor of
1/ri. This cancels with the automorphism factor arising from the Chen–Ruan intersection

pairing on the inertia stack of the join divisor [3, §5.2.3].
We are left with a computation on P(rn,1). The contribution is a local invariant capped

with an insertion of ev�j (∞). The latter insertion can be factored out via the divisor

axiom; the obstruction bundle of the local theory is pulled back along the map forgetting a

marking, since the structure sheaves of the universal curves are preserved by push-forward
along stabilization. The remaining local invariant can be computed by localization. The

end result [17, (21)] is

(dn)

(
(−1)dn−1

d2n

)
=

(−1)dn−1

dn
,

which combines with the gluing factor dn appearing in the degeneration formula to

complete the proof of Theorem 2.2. �

3. Rank reduction II: Relative product formula

Having established the main Theorem 2.1, we now present an alternative approach, also

based on the rank-reduction philosophy. While this approach is less general, requiring a

positivity assumption, we have chosen to include it because the ‘relative product formula’
it uses provides valuable insight into the geometry of maps to the multiroot stack, and

clarifies the relationship to logarithmic invariants. Moreover, the main result does not

require the maximal contact assumption.
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3.1. Convex embeddings

As before, fix a smooth projective variety X and a simple normal crossing divisor D =

D1+ · · ·+Dn ⊆X. To ease notation, we will assume from now on that n=2; the extension

to the general case follows by induction.

We will assume throughout this section that there exist a simple normal crossing pair
(P,H =H1+H2) with P convex and a closed embedding X ↪→ P such that Di =X ∩Hi

for each i. In this situation we call (X,D) a convex embedding. Two important cases

encompassed by this definition are

(1) X convex and Di arbitrary;

(2) X arbitrary and Di very ample.

All definitions and proofs will be given first in the case, where X itself is convex, and
then extended to convex embeddings via virtual pullback.

3.2. Relative product formula for root stacks

As in §2, we fix discrete data for a moduli problem of genus 0 relative stable maps to

(X,D): a curve class β ∈H+
2 (X), a number of marked points m, and specified tangency

orders to D1 and D2 at the marked points. Note that we do not require the contact orders
to be maximal at this point.

Choose large coprime integers r1 and r2 and consider the root stacks

X1 =XD1,r1, X2 =XD2,r2 .

These both have X as their coarse moduli space. For each Xi we can set up data for a

moduli space of orbifold stable maps, by taking every marking to have twisting index ri.

The twisted sector insertion in μri coincides with the tangency order, since the twisting
indices on source and target are the same [10, §2.1]. Consider now the multiroot stack

X = X1×X X2.

Just as before, we may construct discrete data for a space of orbifold stable maps to X .
Markings tangent to both D1 and D2 will have twisting index r1r2, and the twisted sector

insertion is the unique element of μr1r2 which maps to the correct pair of tangencies

under the canonical isomorphism μr1r2 = μr1 ×μr2 . From now on the discrete data will
be suppressed from the notation.

In this section we show that the theory of orbifold stable maps satisfies a relative

product formula over the space of maps to the coarse moduli space. To be more precise,
we have the following:

Theorem 3.1. There exists a diagram

K(X ) P K(X1)×K(X2)

K(X) K(X)×K(X)

ν

ρ � ρ1×ρ2

ΔK(X)

(7)
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such that, when X is convex, we have

ν∗[K(X )]virt =Δ!
K(X)

(
[K(X1)]

virt× [K(X2)]
virt

)
. (8)

Proof. The morphism ν : K(X )→P is obtained by taking relative coarse moduli spaces

(see [5, §9] and [4, Theorem 3.1]). For each i, the partial coarsening C →Ci is initial among
maps C → Y through which the map C → Xi factors and is representable.

We call a twisted curve an r-curve (for some positive integer r) if the order of every

stabilizer group divides r. Since a stable map Ci →Xi must be representable, it follows
that Ci is an ri-curve.

A point of the fiber product P consists of the data of two stable maps C1 → X1 and

C2 →X2 which induce the same underlying map C →X on coarse moduli.

Lemma 3.2. Suppose that r1 and r2 are coprime, and let C1,C2 be r1-,r2-curves with the
same coarse curve C. Then the normalisation

C = (C1×C C2)∼ (9)

is a twisted curve.

Proof. If p ∈ C is a marking on the coarse curve with local equation z, then the local

model for each Ci is given by

Ci = [(xri
i = z)/μri ] .

The fiber product is therefore [(xr1
1 = xr2

2 )/μr1r2 ]. Note that this is not a twisted curve

(unless r1 =1 or r2 =1). On the other hand, since r1 and r2 are coprime, the normalization

of the fiber product is given by [
A1

y/μr1r2

]
,

where yr1 = x2,y
r2 = x1. The computation around a node is entirely analogous except

that the base must also be normalized, around the divisor where the node persists.

Remark 3.3. This phenomenon is related to the issue of saturation in logarithmic

geometry, via the correspondence between twisted curves and extensions of logarithmic
structures [24]. Indeed, the monoid Ne1⊕r1,N,r2 Ne2 is not saturated: in the groupification

Z2/(r1,− r2)∼= Z, the image of the generator e1 is divisible by r2:

e1 = (a1r1+a2r2)e1 = a1r2e2+a2r2e1 = r2(a1e2+a2e1),

where a1,a2 ∈ Z are such that a1r1+a2r2 = 1. Similarly the image of e2 is divisible by r1.

The twisted curve C carries a natural map to X which is clearly representable. We thus
have a Cartesian diagram

K(X ) P

Mr1r2−tw Mr1−tw×MMr2−tw,

ν

ϕ � ψ (10)
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where the bottom morphism is the normalization. The morphism ϕ carries a natural
perfect obstruction theory. We will now construct a compatible perfect obstruction theory

for ψ. The diagram

P K(X1)×MK(X2)

K(X) K(X)×MK(X)

�
Δ

is Cartesian. Using the convexity assumption, there is a perfect obstruction theory for Δ

given by

(π0�f
�
0TX)

∨
[1], (11)

where π0 is the universal coarse curve. This pulls back to a perfect obstruction theory
for P → K(X1)×M K(X2). The latter space carries a perfect obstruction theory over

Mr1−tw×MMr2−tw given by

(π1�f
�
1TX1

⊕π2�f
�
2TX2

)
∨
. (12)

We thus have a triangle with perfect obstruction theories

P K(X1)×MK(X2) Mr1−tw×MMr2−tw,
(11)

ψ

(12)

and wish to build an obstruction theory for ψ giving a compatible triple. There are natural
morphisms TXi

→ p�iTX on Xi. We therefore obtain

π1�f
�
1TX1

⊕π2�f
�
2TX2

→ π0�f
�
0TX .

(As in the proof of Theorem 2.1, this follows from the projection formula and the fact

that the structure sheaves of the various universal curves are preserved by push-forwards

along coarsening maps; see [4, Theorem 3.1].) Dualizing, shifting, and taking the cone,

we obtain

(π1�f
�
1TX1

⊕π2�f
�
2TX2

)
∨ →Eψ → (π0�f

�
0TX)

∨
[1]

[1]−→ .

Several applications of the Four Lemma then show that Eψ is a relative perfect obstruction

theory for ψ.

Finally, we wish to compare the obstruction theories of ψ and ϕ in diagram (10). For
any root stack Y = YD,r with gerby divisor D, a local computation gives the following

exact sequence:

0→ TY → p�TY →O(r−1)D(rD)→ 0.
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From this we obtain a morphism of short exact sequences

0 TX p�TX

⊕2
i=1O(ri−1)Di

(riDi) 0

0 p�1TX1
⊕p�2TX2

p�TX ⊕p�TX

⊕2
i=1O(ri−1)Di

(riDi) 0,

and an application of the snake lemma produces the following exact sequence on X :

0→ TX → p�1TX1
⊕p�2TX2

→ p�TX → 0. (13)

Applying π�f
�, we see that the pullback of the perfect obstruction theory for ψ coincides

with the perfect obstruction theory for ϕ in diagram (10). The theorem then follows
by the commutativity of virtual pullback and push-forward [19, Theorem 4.1], since the

bottom horizontal arrow in diagram (10) is proper of degree 1.

3.3. Local-orbifold correspondence

With the relative product formula established, we can now give a straightforward proof

of Theorem 2.1 in the convex setting.

Proof of Theorem 2.1 for convex targets. Consider again diagram (7). Theorem 3.1
gives the following relation in K(X):

(ρ◦ν)�[K(X )]virt = (ρ1)�[K(X1)]
virt · (ρ2)�[K(X2)]

virt.

Specializing to the maximal contact setting, the result immediately follows from the local-
orbifold correspondence for smooth divisors and the splitting of the obstruction bundle

for the local theory of OX(−D1)⊕OX(−D2). �

This result can be generalized to convex embeddings via virtual pullback methods.

This is a fairly routine affair: see for instance [6, Appendix A]. Since the arguments in §2
already establish the result in full generality, we omit the details here.

3.4. Comparison with naive invariants

Recall from [21, 22] that for a simple normal crossing pair (X,D) with X convex, the

naive virtual class is defined (in genus 0) as the product of logarithmic virtual classes

[N(X |D)]virt :=

n∏
i=1

(ρi)�[K(X |Di)]
virt

inside K(X). We also obtain a refined class on the fiber product N(X | D), but we
are mostly interested in its push-forward to K(X). This definition extends to arbitrary

convex embeddings via virtual pullback. An immediate consequence of Theorem 3.1 is an

identification of orbifold and naive invariants.
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Corollary 3.4. For (X,D) a convex embedding, the relation

ρ� [K(XD,�r)]
virt

= [N(X |D)]virt

holds inside K(X) (for compatible choices of contact orders).

Given this, the (counter)examples presented in [22, §1] and [21, §3.4] show that the

orbifold invariants and logarithmic invariants differ in general, and that this defect is not
restricted to the maximal contact setting.

The naive spaces provide an alternative perspective for probing the geography and

invariants of the multiroot spaces. The iterated blowup construction of [22] gives a method

for comparing the logarithmic invariants to the naive/orbifold invariants; see also [25, 16]
for treatments of related ideas.
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