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Abstract

We investigate the large values of the derivatives of the Riemann zeta function ζ(s) on the 1-line. We give
a larger lower bound for maxt∈[T ,2T] |ζ(�)(1 + it)|, which improves the previous result established by Yang
[‘Extreme values of derivatives of the Riemann zeta function’, Mathematika 68 (2022), 486–510].
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1. Introduction

The study of the extreme values of the Riemann zeta function has a long history.
Extreme values on the critical line σ = 1/2 were first considered by Titchmarsh [7],
who showed that there exist arbitrarily large t such that for any α < 1/2, we have
|ζ(1/2 + it)| � exp((log t)α). For the critical strip 1/2 < σ < 1, it was also Titchmarsh
[6] who first showed that for any ε > 0 and fixed σ ∈ (1/2, 1), there exist arbitrarily
large t such that |ζ(σ + it)| � exp{(log t)1−σ−ε}. The study of the values on the 1-line
dates back to 1925 when Littlewood [4] showed that there exist arbitrarily large t for
which

|ζ(1 + it)| � {1 + o(1)}eγ log2 t. (1.1)

Here and throughout, we denote by logj the jth iterated logarithm and by γ the Euler
constant. We refer to [2] for a detailed account of the historical developments.

We may also consider the extreme values of the derivatives of the Riemann zeta
function. For any fixed � ∈ N, denote

Z(�)(T) := max
t∈[T ,2T]

|ζ(�)(1 + it)|.

In addition to other results, Yang [8] recently proved that if T is sufficiently large, then
uniformly for � � (log T)/(log2 T),
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Z(�)(T) �
eγ��

(� + 1)�+1 {log2 T − log3 T + O(1)}�+1. (1.2)

In this note, we aim to improve the constant ��/(� + 1)�+1 in (1.2). We prove the
following theorem.

THEOREM 1.1. For T → ∞ and � � (log T)/(log2 T),

Z(�)(T) �
eγ

� + 1
(log2 T)�+1{1 + o(1)}.

REMARK 1.2. Compared with (1.2), we improve the lower bound by a factor
(1 + 1/�)�, which tends to e as � → ∞. Further, in [2], we recently used the ‘long
resonance’ method to show that

max
t∈[
√

T ,T]
|ζ(1 + it)| � eγ(log2 T + log3 T + c),

where c is a computable constant. Granville and Soundararajan [3] predicted that this
is still true for maxt∈[T ,2T] |ζ(1 + it)|. These results seems stronger than Theorem 1.1
with � = 0. The reason is that after taking derivatives of the Riemann zeta function,
we are no longer able to make use of the multiplicativity of its Dirichlet coefficients.
Nevertheless, Theorem 1.1 remains a generalisation of Littlewood’s initial bound (1.1).

Both Yang’s proof and ours employ the resonance method used by Bondarenko and
Seip [1]. For a large x and a positive integer b, we take

P :=
∏
p�x

pb−1 and M := {n ∈ N : n | P}. (1.3)

The key ingredient of the proof is a weighted reciprocal sum of the form

S(x; �) :=
∑
m∈M

∑
k|m

(log k)�

k
,

where � � 0 is an integer. In [8], Yang divided M as well as P into two subsets,
according to whether p � x�/(�+1) or not. Our choice is to give a finer division.
Specifically, let J � 1 be a positive integer. For 0 � j � J, denote

M j :=
{
m ∈ N : m |

∏
p�xj/J

pb−1
}
. (1.4)

Thus, we divide the setM into J subsets:

M =
J⊔

j=1

(M j \M j−1).

By this trick, we are able to enlarge the estimate of S(x; �) with a factor (1 + 1/�)�. We
summarise it in the following proposition.
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PROPOSITION 1.3. With the previous notation,

1
|M|S(x; �) �

eγ

� + 1

{
1 + O

(1
J
+

J log2 x
b

+
J2

log x

)}
(log x)�+1

uniformly for x � 3, b � 1, J � 1, � � 0, where the implied constant is absolute.

It is worth noting that one cannot choose an extremely large J, since there are
terms of the form (J log2 x)/b and J2/log x. In fact, we will take J to be the order
of approximately log2 x, which seems to be the limit of this approach.

2. Proof of Proposition 1.3

The following asymptotic formula plays a key role in the proof of Proposition 1.3.

LEMMA 2.1. We have

∏
p�x

b−1∑
ν=0

(
1 − ν

b

) 1
pν
=

{
1 + O

( log2 x
b
+

1
log x

)}
eγ log x

uniformly for x � 3 and b � 1, where the implied constants are absolute.

PROOF. See also [8, (15)] and [1, page 129]. For a fixed prime p,

b−1∑
ν=0

(
1 − ν

b

) 1
pν
=

(∑
ν�0

−
∑
ν�b

)(
1 − ν

b

) 1
pν

=

(
1 − 1

b(p − 1)

)(
1 − 1

p

)−1
+ O
( 1

pb

)
.

Therefore,

∏
p�x

b−1∑
ν=0

(
1 − ν

b

) 1
pν
=

{
1 + O

(1
b

∑
p�x

1
p − 1

)}∏
p�x

(
1 − 1

p

)−1
.

The lemma follows from Mertens’ formula∏
p�x

(
1 − 1

p

)−1
=

{
1 + O

( 1
log x

)}
eγ log x,

and the fact that
∑

p�x 1/(p − 1) � log2 x. �

PROOF OF PROPOSITION 1.3. By the construction, the setM is divisor-closed which
means k | m, m ∈ M implies k ∈ M. By the definition ofM j in (1.4),

∑
m∈M

∑
k|m

(log k)�

k
=

J∑
j=1

∑
k∈M j\M j−1

(log k)�

k

∑
m∈M
k|m

1.
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Note that k ∈ M j \M j−1 implies k � x( j−1)/J . Therefore,

∑
m∈M

∑
k|m

(log k)�

k
� (log x)�

J∑
j=1

( j − 1
J

)� ∑
k∈M j\M j−1

1
k

∑
m∈M
k|m

1. (2.1)

For each i with 0 � i � J, we rewrite uniquely m = m1m2 where P+(m1) � xi/J and
P−(m2) > xi/J . Here, P+(·) and P−(·) denote the largest and smallest prime factors
separately, with P+(1) = P−(1) = ∞ for convenience. Then,∑

k∈Mi

1
k

∑
m∈M
k|m

1 =
∑

m1∈Mi

∑
k|m1

1
k

∑
m2∈M

P−(m2)>xi/J

1.

For the sum over m1,

∑
m1∈Mi

∑
k|m1

1
k
=
∏
p∈Mi

∑
m1 |pb−1

k|m1

1
k
=
∏

p�xi/J

b−1∑
ν=0

b − ν
pν

.

For the sum over m2, ∑
m2∈M\Mi

1 =
∏

xi/J<p�x

b.

Therefore, we deduce that

∑
k∈Mi

1
k

∑
m∈M
k|m

1 = bπ(x)
∏

p�xi/J

b−1∑
ν=0

1
pν

(
1 − ν

b

)
.

Note that bπ(x) = |M|. By Lemma 2.1,∑
k∈Mi

1
k

∑
m∈M
k|m

1 =
i
J
|M|
{
1 + O

( log2 x
b
+

J
log x

)}
eγ log x. (2.2)

In view of (2.2), by taking the difference ofM j−1 andM j, we obtain

∑
k∈M j\M j−1

1
k

∑
m∈M
k|m

1 =
|M|
J

{
1 + O

(J log2 x
b

+
J2

log x

)}
eγ log x.

Inserting this into (2.1),

∑
m∈M

∑
k|m

(log k)�

k
�
|M|
J

J∑
j=1

( j − 1
J

)�{
1 + O

(J log2 x
b

+
J2

log x

)}
eγ(log x)�+1,

where the implied constant is absolute.
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Now Proposition 1.3 follows given that

1
J

J∑
j=1

( j − 1
J

)�
=

1
� + 1

+ O
(1
J

)
,

which is an easy consequence of the inequalities

1
J

J∑
j=1

( j − 1
J

)�
�
∫ 1

0
u� du �

1
J

J∑
j=1

( j − 1
J

)�
+

1
J

. �

3. Proof of Theorem 1.1

We start with the following lemma, which helps approximate the derivatives of the
Riemann zeta function by Dirichlet polynomials.

LEMMA 3.1. For T → ∞, T � t � 2T and � � (log T)/(log2 T),

(−1)�ζ(�)(1 + it) =
∑
n�T

(log n)�

n1+it + O((log2 T)�),

where the implied constant is absolute.

PROOF. This is [8, Lemma 1], where we have taken σ = 1 and ε = (log2 T)−1 as Yang
did. See also [7, Theorem 4.11]. �

PROOF OF THEOREM 1.1. To employ the resonance method, we choose the same
weight function φ(·) as that used by Soundararajan [5, page 471]. Thus, let φ(t) be
a smooth function compactly supported in [1, 2], such that 0 � φ(t) � 1 always and
φ(t) = 1 for t ∈ (5/4, 7/4). Then the Fourier transform of φ satisfies φ̂(u) �α |u|−α for
any integer α � 1.

For sufficiently large T, we set

x =
log T

3 log2 T
and b = �log2 T�.

Furthermore, we take P and M as in (1.3). Note that P �
√

T by the prime number
theorem. Then we define the resonator

R(t) :=
∑
m∈M

mit.

Denote

M1(R, T) :=
∫
R

|R(t)|2φ
( t
T

)
dt,

M2(R, T) :=
∫
R

(−1)�ζ(�)(1 + it)|R(t)|2φ
( t
T

)
dt.
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Since supp(φ) ⊂ [1, 2],

Z(�)(T) �
|M2(R, T)|
M1(R, T)

. (3.1)

For M1(R, T),

M1(R, T) =
∑

m,n∈M

∫
R

(m
n

)it
φ
( t
T

)
dt = T

∑
m,n∈M

φ̂(T log(n/m)).

When m � n, the choice of P guarantees that | log(n/m)| 
 1/
√

T , and consequently

φ̂(T log(n/m)) � 1
T2 . (3.2)

Thus, the off-diagonal terms contribute

T
∑

m,n∈M
m�n

φ̂(T log(n/m)) � 1
T
|M|2.

Therefore,

M1(R, T) = Tφ̂(0)|M| + O
( 1
T
|M|2
)
. (3.3)

For M2(R, T), by Lemma 3.1,

M2(R, T) =
∫
R

(∑
k�T

(log k)�

k1+it

)
|R(t)|2φ

( t
T

)
dt + O((log2 T)�M1(R, T))

= T
∑
k�T

(log k)�

k

∑
m,n∈M

φ̂(T log(kn/m)) + O((log2 T)�M1(R, T)). (3.4)

Similar to (3.2), for kn � m,

φ̂(T log(kn/m)) � 1
T2 .

Consequently, ∑
k�T

(log k)�

k

∑
m,n∈M
kn�m

φ̂(T log(kn/m)) � (log T)�+1

T2 |M|2.

Inserting this into (3.4),

M2(R, T) = Tφ̂(0)
∑
m∈M

∑
k|m

(log k)�

k
+ O
( (log T)�+1

T
|M|2
)
+ O((log2 T)�M1(R, T)).

Combining this with (3.1) and (3.3),

Z(�)(T) �
1
|M|
∑
m∈M

∑
k|m

(log k)�

k
+ O((log2 T)�).
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By taking J = � 1
2 log3 T� in Proposition 1.3, we deduce that

1
|M|
∑
m∈M

∑
k|m

(log k)�

k
�

eγ

� + 1
{1 + o(1)}(log x)�+1.

The theorem follows by recalling that x = (log T)/(3 log2 T). �
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