
Canad. Math. Bull. Vol. 18 (4), 1975 

EXTENSION FUNCTION AND SUBCATEGORIES 
OF HAUS 

BY 

JACK R. PORTER1 

ABSTRACT. For each Hausdorff space X, let FX be an Haus-
dorff extension of X. The existence of the largest subcategory of 
HAUS on which Fis a functor and an epi-reflection is investigated. 

Let HAUS denote the category of all Hausdorff spaces and continuous functions 
and HC the full subcategory of /f-closed spaces of HAUS. One of the well-known 
extension functions from obj(HAUS) to obj(HC) is the correspondence that 
assigns to a Hausdorff space X its Katëtov //-closed extension rX (rX is denoted 
as KX in [PT, PV2, PV3] in honor of Katëtov). Herrlich and Strecker [HS1] 
have shown that K is not a functor from HAUS to HC. Harris [HI, H2] found, 
as others have, a subcategory of HAUS on which K is a functor, but surprisingly, 
Harris proved that his subcategory is the largest on which K is a functor. 

In this note, we have shown in a rather general setting the existence of "largest" 
subcategories on which an extension function is a functor and, under additional 
hypothesis, the existence of "largest" subcategories on which an extension function 
is an epi-reflection. This last result is of some importance in categorical topology 
since one of the main thrusts in categorical topology is identifying the epi-reflective 
subcategories of a fixed category whereas this result fixes a category and seeks 
categories of which the fixed category is an epi-reflective subcategory. Also, the 
results in this paper partially solve a problem by H. L. Bentley proposed in [Hu]. 
The author acknowledges and appreciate his useful conversations about this topic 
with F. Delahan and G. Strecker and thanks the referee for his suggestions. 

We use the usual notation of D^ E to denote that a category D is a subcategory 
of a category £. Let B^ HAUS and A be a full subcategory of HAUS. Let F be 
an extension function from B to A, i.e., for each object Xin B, FXis an object of 
A and FXis a topological extension of X. Let / denote the function whose domain 
is obj(i?) such that for each Xeob](B), ix is the inclusion function from X to 
FX. We say that A is F-invariant if A^B and for each X e oty(A), FX=X. 
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THEOREM. There is a largest subcategory C^B for which there exists a functor 
G:C->A whose object function is F and which satisfies this condition: for each 
fe MC(X, 7) , the diagram 

X ^ >FX 

f\ \Gf 

Y Y 

Y Î >FY 

commutes. The subcategory C has these properties. 
(a) Obj(C)=obj(5). 
(b) If A is F-invariant, then A^C and C is the largest subcategory of B on which 

i is an A-epi-reflection. 

Proof. Construct C by letting obj(C)=obj(i?) and for Z, Feobj(C), let 
MC(X, Y)={fe MB(X, Y): /has a continuous extension from FX to FY}. Since 
A9B^HAUS, then e a c h / e M c ( Z , Y) has a unique extension, denoted as Ff 
from FX to FY. First, we prove that C is a category. Since, for Zeobj (C) , 
\ x e MB(X, X) is extended by lFX, then lx e MC(X, Z). If fe MC(X, Y) and 
geMc(Y,Z), then Fg o Ff extends g of implying g ofeMc(X,Z); also, the 
uniqueness property of the extension yields that F(g °f)=Fg ° Ff. This completes 
the proof that C is a category and also proves that there is a functor from C to A 
whose object function is F; this functor from C to A is also denoted as F. From 
our construction of C, it immediately follows that C is the largest subcategory of 
B on which there is a functor whose object function is F and for which the above 
diagram commutes. Suppose A is F-invariant. For Z, 7eobj(.4), each fe 
MA(X, Y) is its own extension from FX= X to FY= Y; hence, A c C. In particular, 
for Z, 7eobjC4), we have MA(X, Y)=MC(X, Y)=MB(X, Y)=MUAVS(X9 Y) 
by the "fullness" of A is HAUS. Let ZGobj(C), Feob j (^ ) , a n d / e Ma(X9 Y). 
Then FY=Y, and since FX, 7 e o b j ( ^ ) , then FfeMA(FX, Y). This shows that 
i is an ^4-epi-reflection of C. Suppose i is an ^4-epi-reflection of a subcategory D 
of B. Then by the definition of ^-reflection (see [HS2]), A^D. Since obj(D)ç 
obj(J5)=obj(C), then to show that D ^ C , it suffices to show for Z, Feobj (D) , 
MD{X, Y)^MC(X, Y). Let feMD(X, Y). By the definition of ^-reflection, 
iYeMD(Y,FY). Hence, iYofeMD(X,FY). Again, by the definition of A-
reflection, there is a continuous function g:FX->FY such that go ix~iT of 
So , /has a continuous extension from FX to FY implying t h a t / e M 0 (Z , Y). 

In the case that A=B=HAUS, i is a natural transformation from the identity 
functor from C to HAUS to the functor F. Here are a few examples of extension 
functions that satisfy the hypothesis of the Theorem. 

1. The Theorem applies to any of the if-closed extension functions from HAUS 
to HC, e.g., the Fomin i7-closed extension function cr[Fo, F, PT, PV3], the 
//"-closed extension functions T and a', defined by Katëtov [Kl, K2], and the 
Wallman //-closed extension function co defined by Wenjen [W]. It should be 
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noted that the largest subcategory, denoted as T9 of HAUS on which or is a functor 
is a subcategory of, but not equal to, the largest subcategory, denoted as S, of 
HAUS on which K is a functor. To prove this fact, let feMT(X, 7) where 
X, 7eobj(jT)=obj(HAUS) and g:aX-+oY the continuous extension of / . To 
show feMs(X9 7), it suffices, by Theorem A in [H2], to show that if s/ is a 
p-cover (an open cover with the property that the union of some finite subfamily 
is dense) of 7, then {f'\V):U e s/} is a/?-cover of X. By Theorem 7.3 in [PV3], 
se extends to an open cover séa of a Y. Now, {g_1(K): F e j / f f } is an open cover 
of aX, and there is a finite subfamily 38<^da such that yJ{g~\V): Ve 38} is 
dense in aX. Since tf={V n Y: Ve a) is a finite subfamily of sf and for Veal, 
X n g~1(V)=f-1(V n 7), then V{f~\W):W e<#} is dense in X implying that 
{ /^ ( [ / j i î /G j /} is a/?-cover. To show that MT(X, Y)^MS{X, 7), in general, 
let X be a countable infinite discrete space and F be Urysohn's well-known example 
[Ex. 3.14, BPS] of a minimal HausdorfF (and, hence, inclosed) space that is not 
compact. Since Y has a countable infinite discrete dense subspace, there is a dense 
embedding map/ :X->7 . Since F i s //-closed, then K 7 = 7 = or 7 is an //-closed 
extension of f(X), and by Theorem 4.4 in [PT], / has a continuous extension 
g:KX-+KY=Y. Hence,/eM8(X, 7). By Theorem 10 in [K2], px=aX. So, if 
there is a continuous extension h:aX-+aY= 7, then7 would be compact; hence, 
f$MT(X, Y)mdMs(X, Y)^MT(X, 7). 

2. Two more extension functions from HAUS that satisfy the hypothesis of the 
Theorem are the Liu a-closure function [L], from HAUS to the full subcategory 
of a-spaces and the Liu-Stecker almost real compactification [LS] function from 
HAUS to its full subcategory of almost real compact spaces. The morphisms of 
these largest subcategories have recently been characterized by Hunsaker and 
Naimpally in [HN]. 

3. The Theorem applies to the Banaschewski minimal Hausdorff extension 
[B, PT, PV2, HI] function from the category of semi-regular Hausdorff spaces and 
all continuous functions to its full subcategory of minimal Hausdorif spaces. 

4. Another applicable situation is the extension function w, defined by Porter 
and Votaw in [PV1], from the category REG of regular Hausdorff spaces and all 
continuous functions to its full subcategory of OCE-regular spaces. 

5. The first part of the Theorem applies to the extension function a defined by 
AlexandrofF in [A], from REG to HAUS. A regular Hausdorff space X is known 
[T] that has the property that aX is not regular. 

We conclude this note by formalizing the problem touched upon and motivated 
by part (b) of the Theorem. 

PROBLEM. If A and B are categories (not necessarily subcategories of HAUS) 
and A^B, then identify those subcategories C^B such that A is reflective (epi-
reflective, coreflective, e tc . . . . ) in C. 

It is interesting to observe that if A^D^C, A is reflective in C with r as the 
reflector (resp. A is coreflective in C with c as the coreflector), and rx e MD(X9AX) 
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(resp. cx e MD(AX, X)) for every X e obj(D), then A is reflective (resp. coreflective) 
in D. In particular, in the setting of part (b) of the Theorem, once the largest 
subcategory C of B has been identified, then A is reflective in a subcategory D 
of B if and only if A Ç DC C and for each X e oty(D) ix e MD(X, FX). 
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