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Abstract
In this paper, we show that, with probability 1, a random Beltrami field exhibits chaotic regions that coexist with
invariant tori of complicated topologies. The motivation to consider this question, which arises in the study of
stationary Euler flows in dimension 3, is V.I. Arnold’s 1965 speculation that a typical Beltrami field exhibits the
same complexity as the restriction to an energy hypersurface of a generic Hamiltonian system with two degrees
of freedom. The proof hinges on the obtention of asymptotic bounds for the number of horseshoes, zeros and
knotted invariant tori and periodic trajectories that a Gaussian random Beltrami field exhibits, which we obtain
through a nontrivial extension of the Nazarov–Sodin theory for Gaussian random monochromatic waves and the
application of different tools from the theory of dynamical systems, including Kolmogorov–Arnold–Moser (KAM)
theory, Melnikov analysis and hyperbolicity. Our results hold both in the case of Beltrami fields on R3 and of
high-frequency Beltrami fields on the 3-torus.
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1. Introduction

Beltrami fields, that is, eigenfunctions of the curl operator satisfying

curl 𝑢 = 𝜆𝑢 (1.1)

on R3 or on the flat torus T3 for some nonzero constant 𝜆, are a classical family of stationary solutions
to the Euler equation in three dimensions. However, the significance of Beltrami fields in the context of
ideal fluids in equilibrium was only unveiled by V.I. Arnold in his influential work on stationary Euler
flows. Indeed, Arnold’s structure theorem [1, 2] ensures that, under suitable technical assumptions, a
smooth stationary solution to the three-dimensional Euler equation is either integrable or a Beltrami field.
In the language of fluid mechanics, an integrable flow is usually called laminar, so complex dynamics
(as expected in Lagrangian turbulence) can only appear in a fluid in equilibrium through Beltrami
fields. This connection between Lagrangian turbulence and Beltrami fields is so direct that physicists
have even coined the term ‘Beltramization’ to describe the experimentally observed phenomenon
that the velocity field and its curl (i.e., the vorticity) tend to align in turbulent regions (see, e.g.,
[17, 28]).

Motivated by Hénon’s numerical studies of Arnold–Beltrami–Childress (ABC) flows [23], which are
the easiest examples of Beltrami fields, Arnold suggested [1, 2] that Beltrami fields exhibit the same
complexity as the restriction to an energy level of a typical mechanical system with two degrees of
freedom. To put it differently, a typical Beltrami field should then exhibit chaotic regions coexisting
with a positive measure set of invariant tori of complicated topology.

Although specific instances of chaotic ABC flows in the nearly integrable regime have been known
for a long time [35], Arnold’s speculation has been wide open up until recently. A major step towards
the proof of this claim was the construction of Beltrami fields on R3 with periodic orbits and invariant
tori (possibly with homoclinic intersections [11] inside) of arbitrary knotted topology [13, 14]. In fluid
mechanics, these periodic orbits and invariant tori are usually called vortex lines and vortex tubes,
respectively, and in fact the existence of vortex lines of any topology had also been suggested by Arnold
in the same papers. These results also hold [16] in the case of Beltrami fields on T3, which, contrary to
what happens in the case of R3, have finite energy; this is important for applications because R3 and T3

are the two main settings in which mathematical fluid mechanics is studied. The main drawback of the
approach we developed to prove these results is that, while we managed to construct structurally stable
Beltrami fields exhibiting complex behavior, the method of proof provides no information whatsoever
about to what extent complex behavior is typical for Beltrami fields.

Our objective in this paper is to establish a probabilistic version of Arnold’s view of complexity in
Beltrami fields. To do so, the key new tool is a theory of random Beltrami fields, which we develop
here in order to estimate the probability that a Beltrami field exhibits certain complex dynamics. The
blueprint for this is the Nazarov–Sodin theory for Gaussian random monochromatic waves, which
yields asymptotic laws for the number of connected nodal components of the wave. Heuristically,
the basic idea is that a Beltrami field satisfying equation (1.1) can be thought of as a vector-valued
monochromatic wave; however, the vector-valued nature of the solutions and the fact that we aim to
control much more sophisticated geometric objects introduces essential new difficulties from the very
beginning.
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1.1. Overview of the Nazarov–Sodin theory for Gaussian random monochromatic waves

The Nazarov–Sodin theory [30], whose original motivation was to understand the nodal set of random
spherical harmonics of large order [29], provides a very efficient tool to derive asymptotic laws for the
distribution of the zero set of smooth Gaussian functions of several variables. The primary examples
are various Gaussian ensembles of large-degree polynomials on the sphere or on the torus and the
restriction to large balls of translation-invariant Gaussian functions on R𝑑 . Most useful for our purposes
are their asymptotic results for Gaussian random monochromatic waves, which are random solutions to
the Helmholtz equation

Δ𝐹 + 𝐹 = 0 (1.2)

on R𝑑 . We will henceforth restrict ourselves to the case 𝑑 = 3 for the sake of concreteness.
As the Fourier transform of a solution to the Helmholtz equation (1.2) must be supported on the

sphere of radius 1, the way one constructs random monochromatic waves is the following [8]. One
starts with a real-valued orthonormal basis of the space of square-integrable functions on the unit two-
dimensional sphere S. Although the choice of basis is immaterial, for concreteness we can think of the
basis of spherical harmonics, which we denote by 𝑌𝑙𝑚. Hence, 𝑌𝑙𝑚 is an eigenfunction of the spherical
Laplacian with eigenvalue 𝑙 (𝑙 + 1), the index l is a nonnegative integer and m ranges from −𝑙 to l. The
degeneracy of the eigenvalue 𝑙 (𝑙 +1) is therefore 2𝑙 +1. To consider a Gaussian random monochromatic
wave, one now sets

𝜑(𝜉) �
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑖𝑙 𝑎𝑙𝑚𝑌𝑙𝑚 (𝜉) (1.3a)

on the unit sphere |𝜉 | = 1, 𝜉 ∈ R3, where 𝑎𝑙𝑚 are independent standard Gaussian random variables. One
then defines F as the Fourier transform of the measure 𝜑 𝑑𝜎, where 𝑑𝜎 is the area measure of the unit
sphere. This is tantamount to setting

𝐹 (𝑥) � (2𝜋)
3
2

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝑌𝑙𝑚

(
𝑥

|𝑥 |

) 𝐽𝑙+ 1
2
(|𝑥 |)

|𝑥 | 1
2

. (1.3b)

The central known result concerning the asymptotic distribution of the nodal components of Gaussian
random monochromatic waves is that, almost surely, the number of connected components of the nodal
set that are contained in a large ball (and even those of any fixed compact topology) grows asymptotically
like the volume of the ball. More precisely, let us denote by 𝑁𝐹 (𝑅) (respectively, 𝑁𝐹 (𝑅; [Σ])) the
number of connected components of the nodal set 𝐹−1 (0) that are contained in the ball centered at the
origin of radius R (respectively, and diffeomorphic to Σ). Here, Σ is any smooth, closed, orientable
surface Σ ⊂ R3. It is obvious from the definition that 𝑁𝐹 (𝑅; [Σ]) only depends on the diffeomorphism
class of the surface, [Σ]. The main result of the theory—which is due to Nazarov and Sodin [30] in
the case of nodal sets of any topology, and to Sarnak and Wigman when the topology of the nodal sets

is controlled [32]— can then be stated as follows. Here and in what follows, the symbol 𝐿1

−−→
a.s.

will be
used to denote that a certain sequence of random variables converges both almost surely and in mean.
Morally speaking, this is a law of large numbers for the number of connected components associated
with the Gaussian field F.

Theorem 1.1. Let F be a monochromatic random wave. Then there are positive constants 𝜈, 𝜈([Σ])
such that, as 𝑅 → ∞,

𝑁𝐹 (𝑅)
|𝐵𝑅 |

𝐿1

−−→
a.s.

𝜈 ,
𝑁𝐹 (𝑅; [Σ])

|𝐵𝑅 |
𝐿1

−−→
a.s.

𝜈([Σ]) .

Here, Σ ⊂ R3 is any compact surface as above.
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1.2. Gaussian random Beltrami fields on R3

Our goal is then to obtain an extension of the Nazarov–Sodin theory that applies to random Beltrami
fields. As we will discuss later in the introduction, this is far from trivial because there are essential new
difficulties that make the analysis of the problem rather involved.

The origin of many of these difficulties is strongly geometric. In contrast to the case of random
monochromatic waves (or any other scalar Gaussian field), where the main geometric objects of interest
are the components of its nodal set, in the study of random vector fields we aim to understand structures
of a much subtler geometric nature. Among these structures, and in increasing order of complexity, one
should certainly consider the following:

(i) Zeros, that is, points where the vector field vanishes.
(ii) Periodic orbits, which can be knotted in complicated ways.

(iii) Invariant tori, that is, surfaces diffeomorphic to a 2-torus that are invariant under the flow of the
field. They can be knotted too.

(iv) Compact chaotic invariant sets, which exhibit horseshoe-type dynamics and have, in particular,
positive topological entropy.

Recall that a horseshoe is defined as a compact hyperbolic invariant set with a Cantor transverse
section on which the time-T flow of u is topologically conjugate to a Bernoulli shift [22], for some T.
Consequently, let us define the following quantities:

(i) 𝑁z
𝑢 (𝑅) denotes the number of zeros of u contained in the ball 𝐵𝑅.

(ii) Given a (possibly knotted) closed curve 𝛾 ⊂ R3, 𝑁o
𝑢 (𝑅; [𝛾]) denotes the number of periodic orbits

of u contained in 𝐵𝑅 that are isotopic to 𝛾.
(iii) Given a (possibly knotted) torus T ⊂ R3, 𝑉 t

𝑢 (𝑅; [T ]) is the volume (understood as the inner
measure) of the set of ergodic invariant tori of u that are contained in 𝐵𝑅 and are isotopic to T .
Ergodic means that we consider invariant tori on which the orbits of u are dense.

(iv) 𝑁h
𝑢 (𝑅) denotes the number of horseshoes of u contained in the ball 𝐵𝑅.

Clearly, these quantities only depend on the isotopy class of 𝛾 and T .
It is not hard to believe that these geometric subtleties give rise to a number of analytic difficulties.

One should mention, however, that there also appear other unexpected analytic difficulties whose origin
is less obvious. They are related to the fact that it is not clear how to define a random Beltrami field
through an analog of equation (1.3b). This is because the characterization of a monochromatic wave
as the Fourier transform of a distribution supported on a sphere is the conceptual base of the simple
definition (1.3a), which underlies the equivalent but considerably more awkward expression (1.3b).
Heuristically, analytic difficulties stem from the fact that there is not such a clean formula in Fourier
space for a general Beltrami field. This is because the three components of the Beltrami field (which are
monochromatic waves) are not independent, so the reduction to a Fourier formulation with independent
variables is not trivial. We refer the reader to Section 3, where we explain in detail how to define
Gaussian random Beltrami fields in a way that is strongly reminiscent of equation (1.3b). Later in
this introduction, we shall also informally discuss the aforementioned difficulties and discuss how we
manage to circumvent them using a combination of ideas from partial differential equations, dynamical
systems and probability.

We can now state our main result for Gaussian random Beltrami fields on R3, as defined in Section 3.
Let us emphasize that the picture that emerges from this theorem is fully consistent with Arnold’s view
of complexity in Beltrami fields; with probability 1, we show that a random Beltrami field is ‘partially
integrable’ in that there is a large volume of invariant tori, and simultaneously features many compact
chaotic invariant sets and periodic orbits of arbitrarily complex topologies. This coexistence of chaos and
order is indeed the essential feature of the restriction to an energy hypersurface of a generic Hamiltonian
system with two degrees of freedom, as Arnold put it. In this direction, Corollary 1.3 below is quite
illustrative.
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Theorem 1.2. Let u be a Gaussian random Beltrami field. Then:

(i) The topological entropy of u is positive almost surely. In fact, with probability 1,

lim inf
𝑅→∞

𝑁h
𝑢 (𝑅)
|𝐵𝑅 |

> 𝜈h .

(ii) With probability 1, the volume of ergodic invariant tori of u isotopic to a given embedded torus
T ⊂ R3 and the number of periodic orbits of u isotopic to a given closed curve 𝛾 ⊂ R3 satisfy the
volumetric growth estimate

lim inf
𝑅→∞

𝑉 t
𝑢 (𝑅; [T ])
|𝐵𝑅 |

> 𝜈t ([T ]) , lim inf
𝑅→∞

𝑁o
𝑢 (𝑅; [𝛾])
|𝐵𝑅 |

> 𝜈o([𝛾]) .

The constants 𝜈h, 𝜈t ([T ]) and 𝜈o([𝛾]) above are all positive, for any choice of the curve 𝛾 and the
torus T .

Corollary 1.3. With probability 1, a Gaussian random Beltrami field on R3 exhibits infinitely many
horseshoes coexisting with an infinite volume of ergodic invariant tori of each isotopy type. Moreover,
the set of periodic orbits contains all knot types.

Remark 1.4. The result we prove (see Theorem 6.2) is in fact considerably stronger: We do not only
prescribe the topology of the periodic orbits and the invariant tori we count but also other important
dynamical quantities. Specifically, in the case of periodic orbits we have control over the periods (which
we can pick in a certain interval (𝑇1, 𝑇2)) and the maximal Lyapunov exponents (which we can also
pick in an interval (Λ1,Λ2)). In the case of the ergodic invariant tori, we can control the associated
arithmetic and nondegeneracy conditions. Details are provided in Section 6.

Unlike the case of nodal set components considered in the context of the Nazarov–Sodin theory for
Gaussian random monochromatic waves, we do not prove exact asymptotics for the quantities we study
but only nontrivial lower bounds that hold almost surely. Without getting technicalities at this stage,
let us point out that this is related to analytic difficulties arising from the fact that we are dealing with
quantities that are rather geometrically nontrivial. If one considers a simpler quantity such as the number
of zeros of a Gaussian random Beltrami field, one can obtain an asymptotic distribution law similar
to that of the nodal components of a random monochromatic wave, whose corresponding asymptotic
constant can even be computed explicitly.

Theorem 1.5. With probability 1, the number of zeros of a Gaussian random Beltrami field satisfies

𝑁z
𝑢 (𝑅)
|𝐵𝑅 |

𝐿1

−−→
a.s.

𝜈z

as 𝑅 → ∞. The constant is explicitly given by

𝜈z := 𝑐z
∫
R5

|𝑄(𝑧) | 𝑒−𝑄 (𝑧)) 𝑑𝑧 = 0.00872538 . . . , (1.4)

where 𝑐z := 215/2/[143
√

5 𝜋4], and 𝑄,𝑄 are the following homogeneous polynomials in five variables:

𝑄(𝑧) := 𝑧1𝑧
2
2 + 𝑧3

2 − 𝑧2
1𝑧4 − 𝑧1𝑧2𝑧4 − 𝑧2

3𝑧4 + 2𝑧2𝑧3𝑧5 − 𝑧1𝑧
2
5 , (1.5)

𝑄(𝑧) :=
189
65

𝑧2
1 +

42
11

(𝑧2
2 + 𝑧2

3) +
42
13

(𝑧2
4 + 𝑧1𝑧4 + 𝑧2

5) . (1.6)
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1.3. Random Beltrami fields on the torus

A Beltrami field on the flat 3-torus T3 := (R/2𝜋Z)3 (or, equivalently, on the cube of R3 of side length
2𝜋 with periodic boundary conditions) is a vector field on T3 satisfying the eigenvalue equation

curl 𝑣 = 𝜆𝑣

for some real number 𝜆 ≠ 0. It is well known (see, e.g., [10]) that the spectrum of the curl operator
on the 3-torus consists of the numbers of the form 𝜆 = ±|𝑘 | for some vector with integer coefficients
𝑘 ∈ Z3. Restricting our attention to the case of positive eigenvalues for the sake of concreteness, one
can therefore label the eigenvalue by a positive integer L such that 𝜆𝐿 = 𝐿1/2. The multiplicity of the
eigenvalue is given by the cardinality of the corresponding set of spatial frequencies,

Z𝐿 := {𝑘 ∈ Z3 : |𝑘 |2 = 𝐿} .

By Legendre’s three-square theorem, Z𝐿 is nonempty (and therefore 𝜆𝐿 is an eigenvalue of the curl
operator) if and only if L is not of the form 4𝑎 (8𝑏 + 7) for nonnegative integers a and b.

The Beltrami fields corresponding to the eigenvalue 𝜆𝐿 must obviously be of the form

𝑢𝐿 =
∑

𝑘∈Z𝐿

𝑉𝐿
𝑘 𝑒𝑖𝑘 ·𝑥 ,

for some vectors𝑉𝐿
𝑘 ∈ C3, where𝑉𝐿

𝑘 = 𝑉𝐿
−𝑘 to ensure that the Beltrami field is real-valued. Starting from

this formula, in Section 7 we define the Gaussian ensemble of random Beltrami fields 𝑢𝐿 of frequency
𝜆𝐿 , which we parametrize by L. The natural length scale of the problem is 𝐿1/2.

Our objective is to study to what extent the appearance of the various dynamical objects described
above (i.e., horseshoes, zeros and periodic orbits and ergodic invariant tori of prescribed topology) is
typical in high-frequency Beltrami fields, which corresponds to the limit 𝐿 → ∞. When taking this limit,
we shall always assume that the integer L is admissible, by which we mean that it is congruent with 1, 2,
3, 5 or 6 modulo 8. We will see in Section 7 (see also [31]) that this number-theoretic condition ensures
that the dimension of the space of Beltrami fields with eigenvalue 𝜆𝐿 tends to infinity as 𝐿 → ∞.

To state our main result about high-frequency random Beltrami fields in the torus, we need to introduce
some notation. In parallel with the previous subsection, for any closed curve 𝛾 and any embedded torus
T , let us respectively denote by 𝑁z

𝑢𝐿 , 𝑁h
𝑢𝐿 , 𝑁o

𝑢𝐿 ([𝛾]) and 𝑁 t
𝑢𝐿 ([T ]) the number of zeros, horseshoes,

periodic orbits isotopic to 𝛾 and ergodic invariant tori isotopic to T of the field 𝑢𝐿 , as well as the volume
(i.e., inner measure) of these tori, which we denote by 𝑉 t

𝑢𝐿 ([T ]). To further control the distribution of
these objects, let us define the number of approximately equidistributed ergodic invariant tori, 𝑁 t,e

𝑢𝐿 ([T ]),
as the largest integer m for which 𝑢𝐿 has m ergodic invariant tori isotopic to T that are at a distance
greater than 𝑚−1/3 apart from one another. The number of approximately equidistributed horseshoes
𝑁h,e

𝑢𝐿 , periodic orbits isotopic to a curve 𝑁o,e
𝑢𝐿 ([𝛾]) and zeros 𝑁z,e

𝑢𝐿 are defined analogously. Note that,
again, the asymptotic information that we obtain is perfectly aligned with Arnold’s view of complex
behavior in typical Beltrami fields.

Theorem 1.6. Let us denote by (𝑢𝐿) the parametric Gaussian ensemble of random Beltrami fields on
T

3, where L ranges over the set of admissible integers. Consider any contractible closed curve 𝛾 and
any contractible embedded torus T in T3. Then:

(i) With a probability tending to 1 as 𝐿 → ∞, the field 𝑢𝐿 exhibits an arbitrarily large number of
approximately equidistributed horseshoes, zeros, periodic orbits isotopic to 𝛾 and ergodic invariant
tori isotopic to T . More precisely, for any integer m,

lim
𝐿→∞

P

{
min

{
𝑁h,e

𝑢𝐿 , 𝑁
t,e
𝑢𝐿 ([T ]), 𝑁o,e

𝑢𝐿 ([𝛾]), 𝑁z,e
𝑢𝐿

}
> 𝑚

}
= 1 .
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Furthermore, the probability that the topological entropy of the field grows at least as 𝐿1/2 and that
there are infinitely many ergodic invariant tori of 𝑢𝐿 isotopic to T also tends to 1:

lim
𝐿→∞

P
{
𝑁 t

𝑢𝐿 ([T ]) = ∞ and ℎtop (𝑢𝐿) > 𝜈h
∗𝐿

1/2} = 1 .

(ii) The expected volume of the ergodic invariant tori of 𝑢𝐿 isotopic to T is uniformly bounded from
below, and the expected number of horseshoes and periodic orbits isotopic to 𝛾 is at least of order
𝐿3/2:

lim inf
𝐿→∞

min

{
E𝑁h

𝑢𝐿

𝐿3/2 ,
E𝑁o

𝑢𝐿 ([𝛾])
𝐿3/2 ,E𝑉 t

𝑢𝐿 ([T ])
}
> 𝜈∗([𝛾], [T ]) .

In the case of zeros, the asymptotic expectation is explicit, with 𝜈z given by (1.4):

lim
𝐿→∞

E𝑁z
𝑢𝐿

𝐿3/2 = (2𝜋)3𝜈z .

Here, 𝜈h
∗ and 𝜈∗([𝛾], [T ]) are positive constants.

Remark 1.7. As in the case of R3, the result we prove in Section 7 is actually stronger in the sense that
we have control over important dynamical quantities (which now depend strongly on L) describing the
flow near the above invariant tori and periodic orbits.

1.4. Some technical remarks

In a way, the cornerstone of the Nazarov–Sodin theory is their very clever (and non-probabilistic)
‘sandwich estimate’, which relates the number 𝑁𝐹 (𝑅) of connected components of the nodal set of the
Gaussian random field F that are contained in an arbitrarily large ball 𝐵𝑅 with ergodic averages of the
same quantity involving the number of components contained in balls of fixed radius. Two ingredients
are key to effectively apply this sandwich estimate. On the one hand, each nodal component cannot be
too small by the Faber–Krahn inequality, which ensures, in dimension 3, that its volume is at least 𝑐𝜆−3

if Δ𝐹 + 𝜆2𝐹 = 0. On the other hand, to control the connected components that intersect a large ball but
are not contained in it, it suffices to employ the Kac–Rice formula to derive bounds for the number of
critical points of a certain family of Gaussian random functions.

In the setting of random Beltrami fields, the need for new ideas becomes apparent the moment one
realizes that there are no reasonable substitutes for these two key ingredients. That is, the frequency𝜆 does
not provide bounds for the size of the more sophisticated geometric objects considered in this context
(i.e., periodic orbits, invariant tori or horseshoes), and one cannot estimate the objects that intersect a
ball but are not contained in it using a Kac–Rice formula. As a matter of fact, we have not managed to
obtain any useful bounds for these quantities, and, while we do use a sandwich inequality of sorts (or at
least lower bounds that can be regarded as a weaker substitute thereof), even the measurability of the
various objects of interest becomes a nontrivial issue due to their complicated geometric properties.

To circumvent these problems, we employ different kinds of techniques. Firstly, ideas from the theory
of dynamical systems play a substantial role in our proofs. On the one hand, KAM theory and hyperbolic
dynamics are important to prove that certain carefully chosen functionals are lower semicontinuous,
which is key to solve measurability issues that would be very hard to deal with otherwise. Furthermore,
to prove that Beltrami fields exhibit chaotic behavior almost surely, it is essential to have at least one
example of a Beltrami field that features a horseshoe, and even that was not known. Indeed, the available
examples of nonintegrable ABC flows are known to be chaotic on T3 due to the noncontractibility of
the domain but not on R3. This technical point is fundamental and makes them unsuitable for the study
of random Beltrami fields. Therefore, an important step in our proof is to construct, using Melnikov
theory, a Beltrami field onR3 that has a horseshoe. Techniques from Fourier analysis and from the global
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approximation theory for Beltrami fields are also necessary to handle the inherent difficulties that stem
from the fact that the equation under consideration is more complicated than that of a monochromatic
wave. As an aside, the only point of the paper where we use the Kac–Rice formula is to compute the
constant 𝜈z in closed form.

In the case of Beltrami fields on the torus, the results we prove concern not only the expected values
of the quantities of interest but also the probability of events. In the case of random monochromatic
waves on the torus, Nazarov and Sodin [30] had proved results for the expectation (which apply to
very general parametric scalar Gaussian ensembles), and Rozenshein [31] had derived very precise
exponential bounds for the probability akin to those established by Nazarov and Sodin [29] for random
spherical harmonics. However, both results use in a crucial way that the size of nodal components can be
effectively estimated in terms of the frequency: The Faber–Krahn inequality provides a lower bound for
the volume and large diameter components can be ruled out using a Crofton-type formula and Bézout’s
theorem. No such bounds hold in the case of Beltrami fields, so the way we pass from the information
that the rescaled covariant kernel of 𝑢𝐿 tends to that of u to asymptotics for the distribution of invariant
tori, horseshoes or periodic orbits is completely different. Specifically, we rely on a direct argument
ensuring the weak convergence of sequences of probability measures, on spaces of smooth functions,
provided that suitable tightness conditions are satisfied.

1.5. Outline of the paper

In Section 2, we start by describing Beltrami fields in R3 from the point of view of Fourier analysis and
provide some results about global approximation. Gaussian random Beltrami fields onR3 are introduced
in Section 3, where we also establish several results about the structure of the corresponding covariance
matrix and about the induced probability measure on the space of smooth vector fields. In Section 4,
we recall, in a form that will be useful in later sections, several previous results about ergodic invariant
tori and periodic orbits arising in Beltrami fields. Section 5 is devoted to constructing a Beltrami field
on R3 that is stably chaotic. Finally, in Sections 6 and 7, we complete the proofs of our main results in
the case of R3 and T3, respectively. The paper concludes with an appendix where we provide a fairly
complete Fourier-theoretic characterization of Beltrami fields.

2. Fourier analysis and approximation of Beltrami fields

In what follows, we will say that a vector field u on R3 is a Beltrami field if

curl 𝑢 = 𝑢 .

Taking the curl of this equation and using that necessarily div 𝑢 = 0, it is easy to see that u must also
satisfy the Helmholtz equation:

Δ𝑢 + 𝑢 = 0 .

To put it differently, the components of this vector field are monochromatic waves. An immediate
consequence of this is that the Fourier transform 𝑢̂ of a polynomially bounded Beltrami field is a
(vector-valued) distribution supported on the unit sphere

S := {𝜉 ∈ R3 : |𝜉 | = 1} .

Since u is real-valued, 𝑢̂ must be Hermitian, that is, 𝑢̂(𝜉) = 𝑢̂(−𝜉). Furthermore, a classical result due
to Herglotz [26, Theorem 7.1.28] ensures that if u is a Beltrami field with the sharp fall off at infinity,
then there is a Hermitian vector-valued function 𝑓 ∈ 𝐿2 (S,C3) such that 𝑢̂ = 𝑓 𝑑𝜎; for the benefit of
the reader, details on this and other related matters are summarized in Appendix A. For short, we shall
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simply write this relation as 𝑢 = 𝑈 𝑓 , with

𝑈 𝑓 (𝑥) :=
∫
S

𝑓 (𝜉) 𝑒𝑖 𝜉 ·𝑥 𝑑𝜎(𝜉) . (2.1)

Obviously, 𝑈 𝑓 is a Beltrami field if and only if f is Hermitian (which makes 𝑈 𝑓 real-valued) and if it
satisfies the distributional equation on the sphere

𝑖𝜉 × 𝑓 (𝜉) = 𝑓 (𝜉) . (2.2)

In this paper, we are particularly interested in Beltrami fields of the form 𝑢 = 𝑈 𝑓 , where now f
is a general Hermitian vector-valued distribution on the sphere. The corresponding integral, which is
convergent if f is integrable, must be understood in the sense of distributions for less regular f (that is
to say, for f in the scale of Sobolev spaces 𝐻𝑠 (S,C3) with 𝑠 < 0). We recall, in particular, that for any
integer 𝑘 � 0 the field 𝑈 𝑓 is bounded as [15, Appendix A]

sup
𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈 𝑓 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥 � 𝐶‖ 𝑓 ‖𝐻−𝑘 (S,C3) . (2.3)

We recall that, for any real s, the 𝐻𝑠 (S) norm of a function f can be computed as

‖ 𝑓 ‖2
𝐻 𝑠 (S) =

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

(𝑙 + 1)2𝑠 | 𝑓𝑙𝑚 |2 ,

where 𝑓𝑙𝑚 are the coefficients of the spherical harmonics expansion of f.
With 𝑞(𝑡) := 1

8 (
15
𝜋 )

1/2(1 +
√

7𝑖 𝑡), let us consider the vector-valued polynomial

𝑝(𝜉) := 𝑞(𝜉1) (𝜉2
1 − 1, 𝜉1𝜉2 − 𝑖𝜉3, 𝜉1𝜉3 + 𝑖𝜉2) , (2.4)

which we will regard as a Hermitian function 𝑝 : R3 → C3. Note that the restriction of p to the sphere
vanishes exactly at the poles 𝜉± := (±1, 0, 0). The inessential nonvanishing normalization factor 𝑞(𝜉1)
has been introduced for later convenience: When we define random Beltrami fields via the function p
in Section 3, this choice of p will ensure that the associated covariance matrix is the identity on the
diagonal (see Corollary 3.6).

We next show that, away from the poles, the density f of a Beltrami field 𝑈 𝑓 must point in the same
direction as p.

Proposition 2.1. The following statements hold:

(i) If the vector field 𝑈 𝑓 is a Beltrami field, then 𝑝 × 𝑓 = 0 as a distribution on S. Furthermore, if 𝜒 is
a smooth real-valued function on the sphere supported in S\{𝜉+, 𝜉−} and 𝑓 ∈ 𝐻𝑠 (S,C3) for some
real s, then there is a Hermitian scalar function 𝜑 ∈ 𝐻𝑠 (S) such that 𝜒 𝑓 = 𝜑 𝑝.

(ii) Conversely, for any Hermitian 𝜑 ∈ 𝐻𝑠 (S), the associated field 𝑈𝜑𝑝 is a Beltrami field.

Proof. In view of equation (2.2), for each vector 𝜉 ∈ S, consider the linear map 𝑀𝜉 on C3 defined as

𝑀𝜉𝑉 := 𝑉 − 𝑖𝜉 ×𝑉 .

More explicitly, 𝑀𝜉 is the matrix

𝑀𝜉 =
���
−1 −𝑖𝜉3 𝑖𝜉2
𝑖𝜉3 −1 −𝑖𝜉1
−𝑖𝜉2 𝑖𝜉1 −1

��� .
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The determinant of this matrix is det 𝑀𝜉 = 𝜉2
1 + 𝜉2

2 + 𝜉2
3 − 1, and in fact it is easy to see that 𝑀𝜉

has rank 2 for any unit vector 𝜉. Since 𝑀𝜉 𝑝(𝜉) = 0 for all 𝜉 ∈ S and 𝑝(𝜉) only vanishes if 𝜉 = 𝜉±,
we then obtain that the kernel of 𝑀𝜉 is spanned by the vector 𝑝(𝜉) whenever 𝜉 is not one of the
poles 𝜉±. In a neighborhood of the poles, the kernel of 𝑀𝜉 can be described as the linear span of
𝑝(𝜉) := 𝑞(𝜉2) (𝜉1𝜉2 + 𝑖𝜉3, 𝜉

2
2 − 1, 𝜉2𝜉3 − 𝑖𝜉1).

Since 𝑀𝜉 𝑓 (𝜉) = 0 in the sense of distributions by equation (2.2), it stems from the above analysis
that one can write

𝑓 (𝜉) = 𝛼(𝜉) 𝑝(𝜉)

for 𝜉 away from the poles, and

𝑓 (𝜉) = 𝛽(𝜉) 𝑝(𝜉)

in a neighborhood of the poles; here, 𝛼 and 𝛽 are complex-valued scalars. As 𝑝(𝜉) × 𝑝(𝜉) = 0 for all
𝜉 ∈ S, we immediately infer that

𝑝 × 𝑓 = 0 .

Also, as the support of a function is a closed set, p is bounded away from zero on the support of 𝜒, so
we have that

𝜑 := 𝜒
𝑓 · 𝑝
|𝑝 |2

∈ 𝐻𝑠 (S) .

As f is Hermitian, this proves the first part of the proposition. The second statement follows immediately
from the fact that

𝑀𝜉 [𝜑(𝜉)𝑝(𝜉)] = 𝜑(𝜉) 𝑀𝜉 𝑝(𝜉) = 0 .

�

Remark 2.2. A Beltrami field of the form 𝑈𝜑𝑝 can be written in terms of the scalar function 𝜓(𝑥) :=
−

∫
S
𝑒𝑖 𝜉 ·𝑥𝑞(𝜉1) 𝜑(𝜉) 𝑑𝜎(𝜉) (which satisfies the equation Δ𝜓 + 𝜓 = 0) as

𝑈𝜑𝑝 = (curl curl+ curl) (𝜓, 0, 0) .

When 𝜑 is smooth, the Beltrami field has the sharp decay bound

|𝑈𝜑𝑝 (𝑥) | �
𝐶‖𝜑‖𝐿2 (S)

1 + |𝑥 | .

Remark 2.3. Not any Beltrami field of the form 𝑈 𝑓 can be written as 𝑈𝜑𝑝 for some scalar function 𝜑:
An obvious counterexample is given by

𝑓 (𝜉) := (0, 1, 𝑖) 𝛿𝜉+ (𝜉) + (0, 1,−𝑖) 𝛿𝜉− (𝜉) , (2.5)

where 𝛿𝜉± is the Dirac measure supported on the pole 𝜉± = (±1, 0, 0). The reason for which we cannot
hope to describe all Beltrami fields using just scalar multiples of a fixed complex-valued continuous
vector field 𝑝′ is topological. Indeed, as u is divergence-free, we have that 𝜉 · 𝑝′(𝜉) = 0, so 𝑝′ must
be a tangent complex-valued vector field on S. By the hairy ball theorem, the real part of 𝑝′ must then
have at least one zero 𝜉∗. The equation 𝑖𝜉 × 𝑝′(𝜉) = 𝑝′(𝜉) implies that the imaginary part of 𝑝′ also
vanishes at 𝜉∗, so in fact 𝑝′(𝜉∗) = 0. This means that densities f such as equation (2.5), where we can
take 𝜉∗ := 𝜉+ without any loss of generality, cannot be written in the form 𝜑𝑝′.
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Intuitively speaking, Proposition 2.1 means that any Beltrami field 𝑈 𝑓 whose density f is not too
concentrated on 𝜉± can be approximated globally by a field of the form 𝑈𝜑𝑝 . More precisely, one can
prove the following.

Proposition 2.4. Consider a Hermitian vector-valued distribution f on S that satisfies the distributional
equation (2.2), and define

𝜀 𝑓 ,𝑘 := inf
{
‖Θ 𝑓 ‖𝐻−𝑘 (S) : Θ ∈ 𝐶∞(S), Θ(𝜉+) = Θ(𝜉−) = 1

}
.

If 𝜀 𝑓 ,𝑘 is finite and 𝜀 > 𝜀 𝑓 ,𝑘 , one can then take a Hermitian scalar distribution on the sphere 𝜑, which
is in fact a finite linear combination of spherical harmonics if 𝑓 ∈ 𝐻−𝑘 (S,C3), such that

sup
𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈 𝑓 (𝑥) −𝑈𝜑𝑝 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥 < 𝐶𝜀 .

Furthermore, 𝜀 𝑓 ,0 = 0 if 𝑓 ∈ 𝐿2 (S,C3).

Proof. The first assertion is a straightforward consequence of the first part of Proposition 2.1 and of the
estimate (2.3). Indeed, since f is a compactly supported distribution, then 𝑓 ∈ 𝐻𝑠 (S,C3) for some s.
Take any 𝜀′ ∈ (𝜀 𝑓 ,𝑘 , 𝜀), and let us consider a function Θ as above such that ‖Θ 𝑓 ‖𝐻−𝑘 (S) < 𝜀′. Since
𝜀′ > 𝜀 𝑓 ,𝑘 , it is obvious that we can assume that Θ = 1 in a small neighborhood of the poles 𝜉±. Applying
Proposition 2.1, we infer that 𝜒 𝑓 = 𝜑𝑝 with 𝜒 := 1−Θ and some Hermitian scalar function 𝜑 ∈ 𝐻𝑠 (S).
In view of the fact that the map 𝑓 ↦→ 𝑈 𝑓 is linear and of the bound (2.3), we then have

sup
𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈 𝑓 (𝑥) −𝑈𝜑𝑝 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥 = sup

𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈Θ 𝑓 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥 � 𝐶‖Θ 𝑓 ‖𝐻−𝑘 (S,C3) < 𝐶𝜀′ .

As finite linear combinations of spherical harmonics are dense in𝐻𝑠 (S), if 𝑠 = −𝑘 we can approximate
𝜑 in the 𝐻−𝑘 (S) norm by a Hermitian function 𝜑′ of this form; then

sup
𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈 𝑓 (𝑥) −𝑈𝜑′𝑝 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥

� sup
𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈 𝑓 (𝑥) −𝑈𝜑𝑝 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥 + sup

𝑅>0

1
𝑅

∫
𝐵𝑅

|𝑈(𝜑′−𝜑) 𝑝 (𝑥) |2

1 + |𝑥 |2𝑘
𝑑𝑥 < 𝐶𝜀

provided that ‖𝜑 − 𝜑′‖𝐻−𝑘 (S) < 𝜀 − 𝜀′.
Finally, to see that 𝜀 𝑓 ,0 = 0 if 𝑓 ∈ 𝐿2 (S,C3), let us take a smooth functionΘ : R3 → [0, 1] supported

in the unit ball and such that Θ(0) = 1. Setting

Θ𝑛 (𝜉) := Θ(𝑛𝜉 − 𝑛𝜉+) + Θ(𝑛𝜉 − 𝑛𝜉−) ,

we trivially get that ‖Θ𝑛 𝑓 ‖𝐿2 (S) � ‖ 𝑓 ‖𝐿2 (S) for all 𝑛 � 2 and that Θ𝑛 𝑓 tends to zero almost everywhere
in S as 𝑛 → ∞. The dominated convergence theorem then shows that ‖Θ𝑛 𝑓 ‖𝐿2 (S) → 0 as 𝑛 → ∞, thus
proving the claim. �

Another, rather different in spirit, formulation of the principle that densities of the form 𝜑𝑝 can
approximate general Beltrami fields is presented in the following theorem. Unlike the previous corollary,
the approximation is considered only locally in space, and in this direction, one shows that even
considering smooth functions 𝜑 is enough to obtain a subset of Beltrami fields that is dense in the 𝐶𝑘

compact-open topology:

Proposition 2.5. Fix any positive reals 𝜀 and k and a compact set 𝐾 ⊂ R3 such that R3\𝐾 is connected.
Then, given any vector field v satisfying the equation curl 𝑣 = 𝑣 in an open neighborhood of K, there
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exists a Hermitian finite linear combination of spherical harmonics 𝜑 such that the Beltrami field 𝑈𝜑𝑝

approximates v in the set K as

‖𝑈𝜑𝑝 − 𝑣‖𝐶𝑘 (𝐾 ) < 𝜀 .

Proof. Let us fix an open set 𝑉 ⊃ 𝐾 whose closure is contained in the open neighborhood where v is
defined, and a large ball 𝐵𝑅 ⊃ 𝑉 . Since R3\𝐾 is connected, it is obvious that we can take V so that
R

3\𝑉 is connected as well. By the approximation theorem with decay for Beltrami fields [14, Theorem
8.3], there is a Beltrami field w that approximates v as

‖𝑤 − 𝑣‖𝐶𝑘 (𝑉 ) < 𝜀

and is bounded as |𝑤(𝑥) | < 𝐶/|𝑥 |. As the Fourier transform of w is supported on S, Herglotz’s
theorem [26, Theorem 7.1.28] shows that one can write 𝑤 = 𝑈 𝑓 for some vector-valued Hermitian field
𝑓 ∈ 𝐿2 (S,C3) that satisfies the distributional equation (2.2). Proposition 2.4 then shows that there exists
some Hermitian scalar function 𝜑 ∈ 𝐶∞(S) such that

‖𝑈 𝑓 −𝑈𝜑𝑝 ‖𝐿2 (𝐵𝑅) < 𝐶𝜀

so that ‖𝑣 −𝑈𝜑𝑝 ‖𝐿2 (𝑉 ) < 𝐶𝜀. As the difference 𝑣 −𝑈𝜑𝑝 satisfies the Helmholtz equation

Δ (𝑣 −𝑈𝜑𝑝) + 𝑣 −𝑈𝜑𝑝 = 0

in V, and 𝐾 ⊂⊂ 𝑉 , standard elliptic estimates then allow us to promote this bound to

‖𝑣 −𝑈𝜑𝑝 ‖𝐶𝑘 (𝐾 ) < 𝐶𝜀 ,

as we wished to prove. �

3. Gaussian random Beltrami fields

The Fourier-theoretical characterization of Beltrami fields presented in the previous section paves the
way to the definition of random Beltrami fields.

In parallel with equation (1.3a) (see Appendix A for further heuristics), let us start by setting

𝜑(𝜉) :=
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑖𝑙 𝑎𝑙𝑚𝑌𝑙𝑚 (𝜉) ,

where 𝑎𝑙𝑚 are normally distributed independent standard Gaussian random variables and 𝑌𝑙𝑚 is an
orthonormal basis of (real-valued) spherical harmonics on S. Note that 𝜑 is Hermitian because of the
identity 𝑌𝑙𝑚 (−𝜉) = (−1)𝑙𝑌𝑙𝑚 (𝜉). We now define a Gaussian random Beltrami field as

𝑢 := 𝑈𝜑𝑝 ,

where we recall that 𝑈 𝑓 and p were respectively defined in equations (2.1) and (2.4).

Remark 3.1. As discussed in Proposition 2.1, the role of the vector field p is to ensure that the density
𝑓 := 𝜑𝑝 satisfies the Beltrami equation in Fourier space, 𝑖𝜉 × 𝑓 (𝜉) = 𝑓 (𝜉). Hence, one could replace
𝑝(𝜉) by any nonvanishing multiple of it, that is, by 𝑝(𝜉) := Λ(𝜉) 𝑝(𝜉), where Λ : R3 → C is a smooth
scalar Hermitian function that does not vanish on S. All the results of the paper about random Beltrami
fields remain valid if one defines a Gaussian random Beltrami field as 𝑢 := 𝑈𝜑𝑝 with 𝜑 as above,
provided that one replaces p by 𝑝 in the formulas. Also, the results do not change if one replaces the
basis of spherical harmonics by any other orthonormal basis of 𝐿2 (S), but this choice leads to slightly
more explicit formulas for certain intermediate objects that appear in the proofs.
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In what follows, we will use the notation 𝐷 := −𝑖∇. An important role will be played by the vector-
valued differential operator with real coefficients 𝑝(𝐷), whose expression in Fourier space is�𝑝(𝐷)𝜓(𝜉) = 𝑝(𝜉) 𝜓(𝜉) ,

for any scalar function 𝜓 in R3. Equivalently, by Remark 2.2, the operator 𝑝(𝐷) reads, in physical space,
as

𝑝(𝐷)𝜓 = −(curl curl+ curl) (𝑞(𝐷1)𝜓, 0, 0) ,

where 𝐷1 := −𝑖𝜕𝑥1 .
The first result of this section shows that a Gaussian random Beltrami field is a well-defined object

both in Fourier and physical spaces.

Proposition 3.2. With probability 1, the function 𝜑 is in 𝐻−1−𝛿 (S)\𝐿2 (S) for any 𝛿 > 0. In particular,
almost surely, u is a 𝐶∞ vector field and can be written as

𝑢(𝑥) = (2𝜋)
3
2

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚 𝑝(𝐷)
[
𝑌𝑙𝑚

(
𝑥

|𝑥 |

) 𝐽𝑙+ 1
2
(|𝑥 |)

|𝑥 |1/2

]
. (3.1)

The series converges in 𝐶𝑘 uniformly on compact sets almost surely, for any k.

Proof. For 𝑙 � 0 and −𝑙 � 𝑚 � 𝑙, 𝑎2
𝑙𝑚 are independent, identically distributed random variables with

expected value 1. As the number of these variables with 𝑙 � 𝑛 is

𝑛∑
𝑙=0

𝑙∑
𝑚=−𝑙

1 = (𝑛 + 1)2 ,

the strong law of large numbers ensures that the sample average, that is, the random variable

𝑋𝑛 :=
1

(𝑛 + 1)2

𝑛∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎2
𝑙𝑚 ,

converges to 1 almost surely as 𝑛 → ∞. Now, consider the truncation

𝜑𝑛 (𝜉) :=
𝑛∑

𝑙=0

𝑙∑
𝑚=−𝑙

𝑖𝑙 𝑎𝑙𝑚𝑌𝑙𝑚 (𝜉) .

As the spherical harmonics 𝑌𝑙𝑚 are orthonormal, the 𝐿2 norm of 𝜑𝑛 is

‖𝜑𝑛‖2
𝐿2 (S) =

𝑛∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎2
𝑙𝑚 = (𝑛 + 1)2𝑋𝑛 ,

and ‖𝜑𝑛‖2
𝐿2 (S) tends to ‖𝜑‖2

𝐿2 (S) (which may be infinite) as 𝑛 → ∞. Since 𝑋𝑛 → 1 almost surely, we
obtain from the above formula that (𝑛 + 1)−2‖𝜑𝑛‖2

𝐿2 (S) tends to 1 almost surely. Therefore, 𝜑 is not in
𝐿2 (S) with probability 1.

On the other hand, since

‖𝜑‖2
𝐻−𝑠 (S) =

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎2
𝑙𝑚

(𝑙 + 1)2𝑠
,
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it is straightforward to see that the expected value

E‖𝜑‖2
𝐻−1−𝛿 (S) =

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

E𝑎2
𝑙𝑚

(𝑙 + 1)2+2𝛿
=

∞∑
𝑙=0

2𝑙 + 1
(𝑙 + 1)2+2𝛿

is finite for all 𝛿 > 0. Hence, 𝜑 ∈ 𝐻−1−𝛿 (S) almost surely, so 𝑢 := 𝑈𝜑𝑝 is well-defined with probability 1.
To prove the representation formula for u and its convergence, let us begin by noting that

𝑈𝑖𝑙𝑌𝑙𝑚 𝑝 (𝑥) =
∫
S

𝑖𝑙 𝑝(𝜉)𝑌𝑙𝑚 (𝜉) 𝑒𝑖 𝜉 ·𝑥 𝑑𝜎(𝜉)

= 𝑝(𝐷)
∫
S

𝑖𝑙𝑌𝑙𝑚 (𝜉) 𝑒𝑖 𝜉 ·𝑥 𝑑𝜎(𝜉) .

Using either the theory of point pair invariants and zonal spherical functions [8, Proposition 4] or special
function identities [15, Proposition 2.1], the Fourier transform of 𝑌𝑙𝑚 𝑑𝜎 has been shown to be∫

S

𝑖𝑙𝑌𝑙𝑚 (𝜉) 𝑒𝑖 𝜉 ·𝑥 𝑑𝜎(𝜉) = (2𝜋)
3
2𝑌𝑙𝑚

(
𝑥

|𝑥 |

) 𝐽𝑙+ 1
2
(|𝑥 |)

|𝑥 |1/2 .

This permits to formally write u as equation (3.1). To show that this series converges in 𝐶𝑘 on compact
sets, for any large n, any 𝑁 > 𝑛 and any fixed positive integer k consider the quantity

𝑞𝑛,𝑁 (𝑥) :=
∑
|𝛼 |�𝑘

����� 𝑁∑
𝑙=𝑛

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝐷𝛼𝑝(𝐷)
[
𝑌𝑙𝑚

(
𝑥

|𝑥 |

) 𝐽𝑙+ 1
2
(|𝑥 |)

|𝑥 |1/2

] ����� ,
where we are using the standard multi-index notation. Since 𝑝(𝐷) is a third-order operator, for all
|𝑥 | < 𝑅 we obviously have

𝑞𝑛,𝑁 (𝑥) � 𝐶𝑘

𝑁∑
𝑙=𝑛

𝑙∑
𝑚=−𝑙

|𝑎𝑙𝑚 |‖𝑌𝑙𝑚‖𝐶𝑘+3 (S)

����� 𝐽𝑙+ 1
2
(𝑟)

𝑟1/2

�����
𝐶𝑘+3 ( (0,𝑅))

� 𝐶𝑘

(
𝑁∑

𝑙=𝑛

𝑙∑
𝑚=−𝑙

𝑎2
𝑙𝑚

(𝑙 + 1)2+2𝛿

) 1
2 ���

𝑁∑
𝑙=𝑛

𝑙∑
𝑚=−𝑙

(𝑙 + 1)2+2𝛿 ‖𝑌𝑙𝑚‖2
𝐶𝑘+3 (S)

����� 𝐽𝑙+ 1
2
(𝑟)

𝑟1/2

�����2

𝐶𝑘+3 ( (0,𝑅))

���
1
2

,

where here 𝑟 := |𝑥 | and we have used the Cauchy–Schwartz inequality to pass to the second line. The
Sobolev inequality immediately gives

‖𝑌𝑙𝑚‖𝐶𝑘+3 (S) � 𝐶‖𝑌𝑙𝑚‖𝐻 𝑘+5 (S) � 𝐶 (𝑙 + 1)𝑘+5 .

To estimate the Bessel function, recall the large-degree asymptotics

𝐽𝜈 (𝑟) ∼ (2𝜋𝜈)−
1
2

( 𝑒𝑟
2𝜈

)𝜈
,

which holds as 𝜈 → ∞ for uniformly bounded r. As the derivative of a Bessel function can be written
in terms of Bessel functions via the recurrence relation

𝑑

𝑑𝑟
𝐽𝜈 (𝑟) = −𝐽𝜈+1(𝑟) +

𝜈

𝑟
𝐽𝜈 (𝑟) ,
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it follows that the 𝐶𝑘+3 norm of 𝐽𝑙+ 1
2
(𝑟)/𝑟1/2 tends to 0 exponentially as 𝑙 → ∞ on compact sets:����� 𝐽𝑙+ 1

2
(𝑟)

𝑟1/2

�����
𝐶𝑘+3 ( (0,𝑅))

�
(
𝐶𝑅

𝑙

) 𝑙−𝑘−3
.

Since we have proven that

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎2
𝑙𝑚

(𝑙 + 1)2+2𝛿
< ∞

almost surely, now one only has to put together the estimates above to see that, almost surely, 𝑞𝑛,𝑁 (𝑥)
tends to 0 as 𝑛 → ∞ uniformly for all 𝑁 > 𝑛 and for all x in a compact subset of R3. This establishes
the convergence of the series and completes the proof of the proposition. �

Remark 3.3. Note that each summand 𝑈𝑖𝑙𝑌𝑙𝑚 𝑝 = (2𝜋)3/2𝑝(𝐷) [𝑌𝑙𝑚 ( 𝑥
|𝑥 | ) |𝑥 |

−1/2𝐽𝑙+ 1
2
(|𝑥 |)] of the series

(3.1) is a Beltrami field.

Since 𝑎𝑙𝑚 are standard Gaussian variables, it is obvious that the vector-valued Gaussian field u
has zero mean. Our next goal is to compute its covariance kernel, 𝜅, which maps each pair of points
(𝑥, 𝑦) ∈ R3 × R3 to the symmetric 3 × 3 matrix

𝜅(𝑥, 𝑦) := E[𝑢(𝑥) ⊗ 𝑢(𝑦)] . (3.2)

In particular, we show that this kernel is translationally invariant, meaning that it only depends on the
difference:

𝜅(𝑥, 𝑦) = 𝜘(𝑥 − 𝑦) .

We recall that, by Bochner’s theorem, there exists a nonnegative-definite matrix-valued measure 𝜌 such
that 𝜘 is the Fourier transform of 𝜌: This is the spectral measure of the Gaussian random field u. In the
statement, 𝑝 𝑗 is the 𝑗 th component of the vector field p.

Proposition 3.4. The components of the covariance kernel of the Gaussian random field u are

𝜅 𝑗𝑘 (𝑥, 𝑦) = 𝜘 𝑗𝑘 (𝑥 − 𝑦)

with

𝜘 𝑗𝑘 (𝑥) := (2𝜋)
3
2 𝑝 𝑗 (𝐷)𝑝𝑘 (−𝐷)

𝐽1/2(|𝑥 |)
|𝑥 |1/2 .

The spectral measure is 𝑑𝜌(𝜉) = 𝑝(𝜉) ⊗ 𝑝(𝜉) 𝑑𝜎(𝜉).

Proof. As 𝑎𝑙𝑚 are independent standard Gaussian variables, E(𝑎𝑙𝑚𝑎𝑙′𝑚′ ) = 𝛿𝑙𝑙′𝛿𝑚𝑚′ , so the covariance
matrix is

𝜅 𝑗𝑘 (𝑥, 𝑦) = E[𝑢 𝑗 (𝑥)𝑢𝑘 (𝑦)] = E[𝑢 𝑗 (𝑥)𝑢𝑘 (𝑦)]

=
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

∞∑
𝑙′=0

𝑙′∑
𝑚=−𝑙′

𝑖𝑙−𝑙′
E(𝑎𝑙𝑚𝑎𝑙′𝑚′ )

∫
S

∫
S

𝑒𝑖𝑥 ·𝜉−𝑖𝑦 ·𝜂 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜂)𝑌𝑙𝑚 (𝜉)𝑌𝑙′𝑚′ (𝜂) 𝑑𝜎(𝜉) 𝑑𝜎(𝜂)

=
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

∫
S

∫
S

𝑒𝑖𝑥 ·𝜉−𝑖𝑦 ·𝜂 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜂)𝑌𝑙𝑚 (𝜉)𝑌𝑙𝑚 (𝜂) 𝑑𝜎(𝜉) 𝑑𝜎(𝜂) .
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Here, we have used that u and the spherical harmonics 𝑌𝑙𝑚 are real-valued. Since 𝑌𝑙𝑚 is an orthonormal
basis, one has that

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

∫
S

∫
S

𝜓(𝜉) 𝜙(𝜂)𝑌𝑙𝑚 (𝜉)𝑌𝑙𝑚 (𝜂) 𝑑𝜎(𝜉) 𝑑𝜎(𝜂) =
∫
S

𝜓(𝜉) 𝜙(𝜉) 𝑑𝜎(𝜉)

for any functions 𝜓, 𝜙 ∈ 𝐿2 (S). Hence, we can get rid of the sums in the above formula and write

𝜅 𝑗𝑘 (𝑥, 𝑦) =
∫
S

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑑𝜎(𝜉) , (3.3)

which yields the formula for the spectral measure of u. Using now that p is Hermitian (i.e., 𝑝(𝜉) =
𝑝(−𝜉)) and a well-known representation formula for the Bessel function 𝐽1/2, the above integral can be
equivalently written as∫

S

𝑒𝑖𝑥 ·𝜉 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑑𝜎(𝜉) = 𝑝 𝑗 (𝐷) 𝑝𝑘 (−𝐷)
∫
S

𝑒𝑖𝑥 ·𝜉 𝑑𝜎(𝜉)

= (2𝜋)
3
2 𝑝 𝑗 (𝐷) 𝑝𝑘 (−𝐷)

𝐽1/2 (|𝑥 |)
|𝑥 |1/2 .

The proposition then follows. �

Remark 3.5. A random vector field is called isotropic if its covariance kernel is invariant under rotations,
that is, for any Euclidean rotation R we have

E(𝑅∗𝑢(𝑥) ⊗ 𝑅∗𝑢(𝑦)) = E(𝑢(𝑥) ⊗ 𝑢(𝑦)) ,

where 𝑅∗ denotes the push-forward of u under the action of R. It is well known that the most general
form of a symmetric 3 × 3 matrix function in R3 that is invariant under spherical rotations is

𝑓1 (|𝑥 |)𝐼 + 𝑓2(|𝑥 |)𝑥 ⊗ 𝑥 ,

where 𝑓1 and 𝑓2 are arbitrary functions of |𝑥 |. From equation (3.3), we see that our random Beltrami
field is not isotropic because 𝑝(𝜉) ⊗ 𝑝(𝜉) is not of the form 𝑎𝐼 + 𝑏𝜉 ⊗ 𝜉 for some constants 𝑎, 𝑏 on
S. This property is not an issue of our construction and cannot be fixed by changing the vector field
𝑝(𝜉). This is in strong contrast with the random vector field 𝑢̂ � ∇𝐹, where F is the Gaussian random
monochromatic wave defined in (1.3b). It is not difficult to show that

E
(
𝑢̂ 𝑗 (𝑥)𝑢̂𝑘 (𝑦)

)
=

∫
S

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑑𝜎(𝜉) ,

where now 𝑝 𝑗 (𝜉) := 𝑖𝜉 𝑗 , and hence 𝑢̂ is an isotropic field. However, it is worth noting that, in both cases,
the random vector field is constructed from an isotropic scalar field, and the spectral measure of the
vector field is the spectral measure of the isotropic scalar field times a tensor product of polynomials.
In the case of the gradient, the matrix covariance kernel is the Hessian of the scalar covariance kernel,
so it is isotropic. In contrast, in the case of the Beltrami field, the derivatives are more involved because
of the differential equation the field must satisfy.

A straightforward corollary is that the Gaussian random Beltrami field u is normalized so that its
covariance matrix is the identity on the diagonal.

Corollary 3.6. For any 𝑥 ∈ R3, 𝜅(𝑥, 𝑥) = 𝐼.
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Proof. The formula for the spectral measure computed in Proposition 3.4 implies that

𝜅 𝑗𝑘 (𝑥, 𝑥) =
∫
S

𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑑𝜎(𝜉) .

As p is a polynomial, the computation then boils down to evaluating integrals of the form
∫
S
𝜉𝛼 𝑑𝜎(𝜉),

where 𝛼 = (𝛼1, 𝛼2, 𝛼3) is a multi-index and 𝜉𝛼 := 𝜉𝛼1
1 𝜉𝛼2

2 𝜉𝛼3
3 . These integrals can be computed in

closed form [18]:∫
S

𝜉𝛼 𝑑𝜎(𝜉) =
{

2
[ ∏3

𝑗=1 Γ(
𝛼𝑗+1

2 )
]
/Γ( |𝛼 |+3

2 ) if 𝛼1, 𝛼2, 𝛼3 are even,

0 otherwise.
(3.4)

Here, Γ denotes the gamma function.
Armed with this formula and taking into account the explicit expression of the polynomial 𝑝(𝜉) (cf.

equation (2.4)), a tedious but straightforward computation shows∫
S

𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑑𝜎(𝜉) = 𝛿 𝑗𝑘 .

The result then follows. �

Remark 3.7. The probability density function of the Gaussian random vector 𝑢(𝑥) is therefore 𝜌(𝑦) :=
(2𝜋)− 3

2 𝑒−
1
2 |𝑦 |

2 . That is, P{𝑢(𝑥) ∈ Ω} =
∫
Ω
𝜌(𝑦) 𝑑𝑦 for any 𝑥 ∈ R3 and any Borel subset Ω ⊂ R3.

Since the Gaussian field u is of class 𝐶∞ with probability 1 by Proposition 3.2, it is standard that it
defines a Gaussian probability measure, which we henceforth denote by 𝜇𝑢 , on the space of 𝐶𝑘 vector
fields on R3, where k is any fixed positive integer. This space is endowed with its usual Borel 𝜎-algebra
𝔖, which is the minimal 𝜎-algebra containing the ‘squares’

𝐼 (𝑥, 𝑎, 𝑏) := {𝑤 ∈ 𝐶𝑘 (R3,R3) : 𝑤(𝑥) ∈ [𝑎1, 𝑏1) × [𝑎2, 𝑏2) × [𝑎3, 𝑏3)}

for all 𝑥, 𝑎, 𝑏, ∈ R3. To spell out the details, let us denote by Ω the sample space of the random variables
𝑎𝑙𝑚 and show that the random field u is a measurable map from Ω to 𝐶𝑘 (R3,R3). Since the 𝜎-algebra
of 𝐶𝑘 (R3,R3) is generated by point evaluations, it suffices to show that

𝑢(𝑥) =
∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚 𝑈𝑖𝑙𝑌𝑙𝑚 𝑝 (𝑥)

is a measurable function Ω → R
3 for each 𝑥 ∈ R3. But this is obvious because 𝑢(𝑥) is the limit of

finite linear combinations (with coefficients in R3) of the random variables 𝑎𝑙𝑚, which are of course
measurable. In what follows, we will not mention the 𝜎-algebra explicitly to keep the notation simple.
Also, in view of the later applications to invariant tori, we will henceforth assume that 𝑘 � 4. Obviously,
the Gaussian probability measure 𝜇𝑢 is regular because the space of 𝐶𝑘 vector fields is metrizable (with
the compact-open 𝐶𝑘 -topology).

Following Nazarov and Sodin [30], the next proposition shows two useful properties of our Gaussian
probability measure that will be extensively employed in the rest of the paper. They easily follow from
the facts that the covariance kernel 𝜅(𝑥, 𝑦) only depends on 𝑥 − 𝑦 and that the spectral measure has no
atoms. Before stating the result, let us recall that the probability measure 𝜇𝑢 is said to be translationally
invariant if 𝜇𝑢 (𝜏𝑦A) = 𝜇𝑢 (A) for all A ⊂ 𝔖 and all 𝑦 ∈ R3. Here, 𝜏𝑦 denotes the translation operator
on 𝐶𝑘 fields, defined as 𝜏𝑦𝑤(𝑥) := 𝑤(𝑥 + 𝑦).

https://doi.org/10.1017/fms.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.52


18 A. Enciso et al.

Proposition 3.8. The probability measure 𝜇𝑢 is translationally invariant. Furthermore, if Φ is an 𝐿1

random variable on the probability space (𝐶𝑘 (R3,R3),𝔖, 𝜇𝑢), then

lim
𝑅→∞

−
∫
𝐵𝑅

Φ ◦ 𝜏𝑦 𝑑𝑦 = EΦ

both 𝜇𝑢-almost surely and in 𝐿1 (𝐶𝑘 (R3,R3), 𝜇𝑢).

Proof. Since the covariance kernel 𝜅(𝑥, 𝑦) only depends on 𝑥 − 𝑦, the probability measure 𝜇𝑢 is
translationally invariant. Also, note that (𝑦, 𝑤) ↦→ 𝜏𝑦𝑤 defines a continuous map

R
3 × 𝐶𝑘 (R3,R3) → 𝐶𝑘 (R3,R3) ,

so the map (𝑦, 𝑤) ↦→ Φ(𝜏𝑦𝑤) is measurable on the product space R3 × 𝐶𝑘 (R3,R3). Wiener’s ergodic
theorem [30, 5] then ensures that, for Φ as in the statement, there is a random variable Φ∗ ∈ 𝐿1 (𝐶𝑘 (R3×
R

3), 𝜇𝑢) such that

−
∫
𝐵𝑅

Φ ◦ 𝜏𝑦 𝑑𝑦
𝐿1

−−→
a.s.

Φ∗

as 𝑅 → ∞. Furthermore, Φ∗ is translationally invariant (i.e., Φ∗ ◦ 𝜏𝑦 = Φ∗ for all 𝑦 ∈ R3 almost surely)
and EΦ∗ = EΦ.

Also, as the spectral measure (computed in Proposition 3.4 above) has no atoms, a theorem of
Grenander, Fomin and Maruyama (see, e.g., [30, Appendix B] or [21] and note that the proof carries
over to the multivariate and vector-valued case) ensures that the action of the translations {𝜏𝑦 : 𝑦 ∈ R3}
on the probability space (𝐶𝑘 (R3,R3),𝔖, 𝜇𝑢) is ergodic. As the measurable functionΦ∗ is translationally
invariant, one then infers that Φ∗ is constant 𝜇𝑢-almost surely. As Φ and Φ∗ have the same expectation,
then Φ∗ = EΦ almost surely. The proposition then follows. �

It is clear that the support of the probability measure 𝜇𝑢 must be contained in the space of Beltrami
fields. In the last result of this section, we show that the support is in fact the whole space. This property
will be key in the following sections.

Proposition 3.9. The support of the Gaussian probability measure 𝜇𝑢 is the space of Beltrami fields.
More precisely, let v be a Beltrami field. For any compact set 𝐾 ⊂ R3 and each 𝜀 > 0,

𝜇𝑢
({
𝑤 ∈ 𝐶𝑘 (R3,R3) : ‖𝑣 − 𝑤‖𝐶𝑘 (𝐾 ) < 𝜀

})
> 0 .

Proof. By Proposition 2.5, there exists a Hermitian finite linear combination of spherical harmonics,

𝜑 =
𝑛∑

𝑙=0

𝑙∑
𝑚=−𝑙

𝑖𝑙𝛼𝑙𝑚𝑌𝑙𝑚 ,

where 𝛼𝑙𝑚 are real numbers (not random variables), such that ‖𝑣 −𝑈𝜑𝑝 ‖𝐶𝑘 (𝐾 ) < 𝜀/4. Hence

𝜇𝑢
({
𝑤 ∈ 𝐶𝑘 (R3,R3) : ‖𝑤 − 𝑣‖𝐶𝑘 (𝐾 ) < 𝜀

})
� P

({
‖𝑢 −𝑈𝜑𝑝 ‖𝐶𝑘 (𝐾 ) <

𝜀

4

})
,

where P denotes the natural Gaussian probability measure on the space of sequences (𝑎𝑙𝑚).
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Proposition 3.2 shows that the series

∞∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝑈𝑖𝑙𝑌𝑙𝑚 𝑝

converges in 𝐶𝑘 (𝐾) almost surely, so for any fixed 𝛿 > 0 there exists some number N (which one can
assume larger than n) such that

P

({���� ∞∑
𝑙=𝑁+1

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝑈𝑖𝑙𝑌𝑙𝑚 𝑝

����
𝐶𝑘 (𝐾 )

<
𝜀

8

})
> 1 − 𝛿 .

With the convention that 𝛼𝑙𝑚 := 0 for 𝑙 > 𝑛, note that

‖𝑢 −𝑈𝜑𝑝 ‖𝐶𝑘 (𝐾 ) �
𝑁∑
𝑙=0

𝑙∑
𝑚=−𝑙

|𝑎𝑙𝑚 − 𝛼𝑙𝑚 |‖𝑈𝑖𝑙𝑌𝑙𝑚 𝑝 ‖𝐶𝑘 (𝐾 ) +

����� ∞∑
𝑙=𝑁+1

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝑈𝑖𝑙𝑌𝑙𝑚 𝑝

�����
𝐶𝑘 (𝐾 )

.

Therefore, if we set 𝑀 := 8(𝑁 + 1)2 max𝑙�𝑁 max−𝑙�𝑚�𝑙 ‖𝑈𝑖𝑙𝑌𝑙𝑚 𝑝 ‖𝐶𝑘 (𝐾 ) , it follows that

P

({
‖𝑢 −𝑈𝜑𝑝 ‖𝐶𝑘 (𝐾 ) <

𝜀

4

})
� P

({���� ∞∑
𝑙=𝑁+1

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚𝑈𝑖𝑙𝑌𝑙𝑚 𝑝

����
𝐶𝑘 (𝐾 )

<
𝜀

8

}) 𝑁∏
𝑙=0

𝑙∏
𝑚=−𝑙

P

({
|𝑎𝑙𝑚 − 𝛼𝑙𝑚 | < 𝜀

𝑀

})
,

which is strictly positive. The proposition then follows. �

4. Preliminaries about hyperbolic periodic orbits and invariant tori

In this section, we construct Beltrami fields that exhibit hyperbolic periodic orbits or a positive measure
set of ergodic invariant tori of arbitrary topology. Our constructions are robust in the sense that these
properties hold for any other divergence-free field that is 𝐶4-close to the Beltrami field. Additionally,
we recall some basic notions and results about periodic orbits and invariant tori that will be useful in
the following sections.

4.1. Hyperbolic periodic orbits

We recall that a periodic integral curve, or periodic orbit, 𝛾 of a vector field u is hyperbolic if all the
(possibly complex) eigenvalues 𝜆 𝑗 of the monodromy matrix of u at 𝛾 have modulus |𝜆 𝑗 | ≠ 1. Since
we are interested in divergence-free vector fields in dimension 3, in this case the eigenvalues are of the
form 𝜆, 𝜆−1 for some real 𝜆 > 1. The maximal Lyapunov exponent of the periodic orbit 𝛾 is defined as
Λ := log 𝜆

𝑇 > 0, where T is the period of 𝛾.
Given a closed curve 𝛾0 smoothly embedded in R3, we say that 𝛾 has the knot type [𝛾0] if 𝛾 is

isotopic to 𝛾0. It is well known that the number of knot types is countable. Given a set of four positive
numbers I = (𝑇1, 𝑇2,Λ1,Λ2), with 0 < 𝑇1 < 𝑇2 and 0 < Λ1 < Λ2, we denote by 𝑁o

𝑢 (𝑅; [𝛾], I) the
number of hyperbolic periodic orbits of a vector field u contained in the ball 𝐵𝑅, of knot type [𝛾], whose
periods and maximal Lyapunov exponents are in the intervals (𝑇1, 𝑇2) and (Λ1,Λ2), respectively. Since
we have fixed the intervals of the periods and Lyapunov exponents, there is a neighborhood of thickness
𝜂0 of each periodic orbit (𝜂0 independent of the orbit) such that no other periodic orbit of this type
intersects it. The compactness of 𝐵𝑅 then immediately implies that 𝑁o

𝑢 (𝑅, [𝛾], I) is finite, although the
total number of hyperbolic periodic orbits in 𝐵𝑅 may be countable.
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An easy application of the hyperbolic permanence theorem [24, Theorem 1.1] implies that the above
periodic orbits are robust under 𝐶1-small perturbations so that

𝑁o
𝑣 (𝑅; [𝛾], I) � 𝑁o

𝑢 (𝑅; [𝛾], I)

for any vector field v that is close enough to u in the 𝐶1 norm. Indeed, if ‖𝑢 − 𝑣‖𝐶1 (𝐵𝑅) < 𝛿, then v
has a periodic orbit 𝛾𝛿 that is isotopic to, and contained in a tubular neighborhood of width 𝐶𝛿 of,
each periodic orbit 𝛾 of u that has the aforementioned properties. Moreover, the period and maximal
Lyapunov exponent of 𝛾𝛿 is also 𝛿-close to that of 𝛾, so choosing 𝛿 small enough they still lie in the
intervals (𝑇1, 𝑇2) and (Λ1,Λ2), respectively. Thus, we have proved the following.

Proposition 4.1. The functional 𝑢 ↦→ 𝑁o
𝑢 (𝑅; [𝛾], I) is lower semicontinuous in the 𝐶𝑘 compact open

topology for vector fields, for any 𝑘 � 1. Furthermore, 𝑁o
𝑢 (𝑅; [𝛾], I) < ∞ for any 𝐶1 vector field u.

The following result ensures that, for any fixed knot type [𝛾] and any quadruple I, there is a Beltrami
field u for which 𝑁o

𝑢 (𝑅; [𝛾], I) � 1. This result is a consequence of [13, Theorem 1.1], so we just give
a short sketch of the proof.

Proposition 4.2. Given a closed curve 𝛾0 ⊂ R3 and a set of numbers I as above, there exists a
Hermitian finite linear combination of spherical harmonics 𝜑 such that the Beltrami field 𝑢0 := 𝑈𝜑𝑝

has a hyperbolic periodic orbit 𝛾 isotopic to 𝛾0, whose period and maximal Lyapunov exponent lie in
the intervals (𝑇1, 𝑇2) and (Λ1,Λ2), respectively.

Proof. Proceeding as in [13, Section 3, Step 2], after perturbing slightly the curve 𝛾0 to make it real
analytic (let us also call 𝛾0 the new curve), we construct a narrow strip Σ that contains the curve 𝛾0.
Using the same coordinates (𝑧, 𝜃) as introduced in [13, Section 5], we define an analytic vector field

𝑤 :=
|𝛾0 |
𝑇

∇𝜃 − Λ 𝑧∇𝑧 ,

where |𝛾0 | is the length of 𝛾0 and 𝑇 ∈ (𝑇1, 𝑇2), Λ ∈ (Λ1,Λ2). Using the Cauchy–Kovalevskaya theorem
for Beltrami fields [13, Theorem 3.1], we obtain a Beltrami field v on a neighborhood of 𝛾0 such that
𝑣 |Σ = 𝑤. A straightforward computation shows that 𝛾0 is a hyperbolic periodic orbit of v of period T
and maximal Lyapunov exponent Λ. The result immediately follows by applying Proposition 2.5. �

Corollary 4.3. There exists 𝑅0 > 0 and 𝛿 > 0 such that 𝑁o
𝑤 (𝑅0; [𝛾], I) � 1 for any vector field w such

that ‖𝑤 − 𝑢0‖𝐶𝑘 (𝐵𝑅0 )
< 𝛿, provided that 𝑘 � 1.

Proof. Taking 𝑅0 large enough so that the periodic orbit 𝛾 is contained in 𝐵𝑅0 , the result is a straight-
forward consequence of the lower semicontinuity of 𝑁o

𝑢 (𝑅; [𝛾], I), cf. Proposition 4.1. �

4.2. Nondegenerate invariant tori

We recall that an invariant torus T of a vector field u is a compact surface diffeomorphic to the 2-torus,
smoothly embedded in R3, and such that, the field u is tangent to T and does not vanish on T . In other
words, T is invariant under the flow of u. Given an embedded torus T0, we say that T has the knot type
[T0] if T is isotopic to T0. It is well known that the number of knot types of embedded tori is countable.

To study the robustness of the invariant tori of a vector field it is customary to introduce two
concepts: an arithmetic condition (called Diophantine), which is related to the dynamics of u on T , and
a nondegeneracy condition (called twist) that is related to the dynamics of u in the normal direction to T .

We say that the invariant torus T is Diophantine with Diophantine frequency 𝜔 if there exist global
coordinates on the torus (𝜃1, 𝜃2) ∈ (R/Z)2 such that the restriction of the field u to T reads in these
coordinates as

𝑢 |T = 𝑎 𝑒𝜃1 + 𝑏 𝑒𝜃2 , (4.1)
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for some nonzero real constants 𝑎, 𝑏, and 𝜔 := 𝑎/𝑏 modulo 1 is a Diophantine number. This means that
there exist constants 𝑐 > 0 and 𝜈 > 1 such that���𝜔 − 𝑝

𝑚

��� � 𝑐

𝑚𝜈+1

for any integers 𝑝, 𝑚 with 𝑚 � 1. Here, 𝑒𝜃 𝑗 (often denoted by 𝜕𝜃 𝑗 ) denotes the tangent vector in the
direction of 𝜃 𝑗 . We recall that the set of Diophantine numbers (with all 𝑐 > 0 and all 𝜈 > 1) has
full measure. It is well known that the Diophantine property (possibly changing the constant c) of the
frequency 𝜔 is independent of the choice of coordinates.

Let us now introduce the notion of twist, which is more involved. To this end, we parameterize a
neighborhood of T with a coordinate system (𝜌, 𝜃1, 𝜃2) ∈ (−𝛿, 𝛿) × (R/Z)2 such that T = {𝜌 = 0}
and 𝑢 |𝜌=0 has the form (4.1). Let us now compute the Poincaré map 𝜋 defined by the flow of u on a
transverse section Σ ⊂ {𝜃2 = 0} (which exists if 𝛿 is small enough because 𝑏 ≠ 0):

𝜋 : (−𝛿′, 𝛿′) × (R/Z) → (−𝛿, 𝛿) × (R/Z) (4.2)
(𝜌, 𝜃1) ↦→ (𝜋1 (𝜌, 𝜃1), 𝜋2 (𝜌, 𝜃1)) , (4.3)

for 𝛿′ < 𝛿. Obviously, 𝜋(0, 𝜃1) = (0, 𝜃1 + 𝜔). Since u is divergence-free, the map 𝜋 preserves an area
form 𝜎 on Σ, which one can write in these coordinates as

𝜎 = 𝐹 (𝜌, 𝜃1) 𝑑𝜌 ∧ 𝑑𝜃1 , (4.4)

for some positive function F. Notice that the area form 𝜎 is exact because it can be written as 𝜎 = 𝑑𝐴,
where A is the 1-form

𝐴 := ℎ(𝜌, 𝜃1) 𝑑𝜃1 , ℎ(𝜌, 𝜃1) :=
∫ 𝜌

−𝛿
𝐹 (𝑠, 𝜃1) 𝑑𝑠 ,

and the map 𝜋 is also exact in the sense that 𝜋∗𝐴 − 𝐴 is an exact 1-form. Indeed, the area preservation
implies that 𝑑 (𝜋∗𝐴 − 𝐴) = 0; moreover, the periodicity of h in 𝜃1 readily implies that∫ 1

0
(𝜋∗𝐴 − 𝐴) |𝜌=0 =

∫ 1

0
(ℎ(0, 𝜃1 + 𝜔) − ℎ(0, 𝜃1)) 𝑑𝜃1 = 0 ,

so the claim follows from De Rham’s theorem. The exactness of both 𝜎 and 𝜋 is a crucial ingredient to
apply the KAM theory.

Remark 4.4. It was shown in [14, Proposition 7.3] that if the Euclidean volume form 𝑑𝑥 reads as
𝐻 (𝜌, 𝜃1, 𝜃2) 𝑑𝜌∧𝑑𝜃1∧𝑑𝜃2 in coordinates (𝜌, 𝜃1, 𝜃2) for some positive function H, then the factor F that
defines the area form 𝜎 is 𝐹 (𝜌, 𝜃1) = 𝐻 (𝜌, 𝜃1, 0)𝑢𝜃2 (𝜌, 𝜃1, 0), where 𝑢𝜃2 denotes the 𝜃2-component of
the vector field u.

The twist of the invariant torus T is then defined as the number

𝜏 :=
∫ 1

0

𝜕𝜌𝜋2 (0, 𝜃1)
𝐹 (0, 𝜃1)

𝑑𝜃1 . (4.5)

The reason for which we consider this quantity is that it crucially appears in the KAM nondegeneracy
condition of [20], cf. Ref. [14, Definition 7.5] for this particular case.

In the present paper, we are interested in the volume of the set of invariant tori of a divergence-
free vector field u. More precisely, given a quadruple J := (𝜔1, 𝜔2, 𝜏1, 𝜏2), where 0 < 𝜔1 < 𝜔2,
0 < 𝜏1 < 𝜏2, we denote by 𝑉 t

𝑢 (𝑅; [T ],J ) the inner measure of the set of Diophantine invariant tori
of a vector field u contained in the ball 𝐵𝑅, of knot type [T ], whose frequencies and twists are in the
intervals (𝜔1, 𝜔2) and (𝜏1, 𝜏2), respectively. One must employ the inner measure of this set (as opposed
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to its usual volume) because this set does not need to be measurable. When we speak of the volume of
this set, it should always be understood in this sense. An efficient way of providing a lower bound for this
volume is by considering, for each 𝑉0 > 0, the number 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0) of pairwise disjoint (closed)
solid tori contained in 𝐵𝑅 whose boundaries are Diophantine invariant tori with parameters in J and
which contain a set of Diophantine invariant tori with parameters in J of inner measure greater that 𝑉0.

Remark 4.5. The twist defined in equation (4.5) depends on several choices we made to construct
the Poincaré map (i.e., the transverse section and the coordinate system). Accordingly, the functional
𝑉 t

𝑢 (𝑅; [T ],J ) has to be understood as the inner measure of the set of Diophantine invariant tori whose
twists lie in the interval (𝜏1, 𝜏2) for some choice of (suitably bounded) coordinates and sections, and
similarly with 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0). It is well known that the property of nonzero twist is independent of
the aforementioned choices.

Since the Poincaré map 𝜋 that we introduced above is exact, we can apply the KAM theorem
for divergence-free vector fields [27, Theorem 3.2] to show that the above invariant tori are robust
for 𝐶4-small perturbations so that 𝑉 t

𝑣 (𝑅; [T ],J ) � 𝑉 t
𝑢 (𝑅; [T ],J ) + 𝑜(1) and 𝑁 t

𝑣 (𝑅; [T ],J , 𝑉0) �
𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0) for any divergence-free vector field v that is𝐶4-close to u. Indeed, if ‖𝑢−𝑣‖𝐶4 (𝐵𝑅) <
𝛿, then v has a set of Diophantine invariant tori of knot type [T ] and of volume

𝑉 t
𝑣 (𝑅; [T ],J ) � 𝑉 t

𝑢 (𝑅; [T ],J ) − 𝐶𝛿1/2 .

Here, we have used that the frequency and twist of each of these invariant tori is 𝛿-close to those of u, so
by choosing 𝛿 small enough they lie in the intervals (𝜔1, 𝜔2) and (𝜏1, 𝜏2), respectively. The argument
for 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0) is analogous. Summing up, we have proved the following.

Proposition 4.6. The functionals 𝑢 ↦→ 𝑁 t
𝑢 (𝑅; [T ],J , 𝑉0) and 𝑢 ↦→ 𝑉 t

𝑢 (𝑅; [T ],J ) are lower semicon-
tinuous in the 𝐶𝑘 compact open topology for divergence-free vector fields, for any 𝑘 � 4.

We next show that, for any knot type [T ], one can pick a quadruple J and some 𝑉0 > 0 for which
there is a Beltrami field u with 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0) � 1. This is a straightforward consequence of [14,
Theorem 1.1] (see also [11, Section 3]), so we just sketch the proof.

Proposition 4.7. Given an embedded torus T ⊂ R3, there exists a set of numbers J , 𝑉0 as above, and
a Hermitian finite linear combination of spherical harmonics 𝜑 such that the Beltrami field 𝑢0 := 𝑈𝜑𝑝

has a set of inner measure greater than 𝑉0 > 0 that consists of Diophantine invariant tori of knot type
[T ] whose frequencies and twists lie in the intervals (𝜔1, 𝜔2) and (𝜏1, 𝜏2), respectively.

Proof. It follows from [14, Theorem 1.1] that there exists a Beltrami field v that satisfies curl 𝑣 = 𝜆𝑣
in R3 for some small constant 𝜆 > 0, which has a positive measure set of invariant tori of knot type
[T ]. These tori are Diophantine and have positive twist. It is obvious that the field 𝑢(𝑥) := 𝑣(𝑥/𝜆)
satisfies the equation curl 𝑢 = 𝑢 in R3, and still has a set of Diophantine invariant tori of knot type
[T ] of measure bigger than some constant 𝑉0, and positive twist. The result follows taking the intervals
(𝜔1, 𝜔2) and (𝜏1, 𝜏2) in the definition of J so that they contain the frequencies and twists of these tori
of u, and applying Proposition 2.5 to approximate u by a Beltrami field 𝑈𝜑𝑝 in a large ball containing
the aforementioned set of invariant tori. �

Corollary 4.8. Take J and 𝑉0 as in Proposition 4.7. There exists 𝑅0 > 0 and 𝛿 > 0 such that
𝑁 t

𝑤 (𝑅0; [T ],J , 𝑉0) � 1 and 𝑉 t
𝑤 (𝑅0; [T ],J ) > 𝑉0/2 for any divergence-free vector field w such that

‖𝑤 − 𝑢0‖𝐶𝑘 (𝐵𝑅0 )
< 𝛿, provided that 𝑘 � 4.

Proof. Taking 𝑅0 large enough so that the aforementioned set of invariant tori of 𝑢0 is contained in
𝐵𝑅0 , the result is a straightforward consequence of the lower semicontinuity of 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0) and
𝑉 t

𝑢 (𝑅; [T ],J ), cf. Proposition 4.6. �
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5. A Beltrami field on R3 that is stably chaotic

Our objective in this section is to construct a Beltrami field u in R3 that exhibits a horseshoe, that is,
a compact (normally) hyperbolic invariant set with a transverse section homeomorphic to a Cantor set
on which the time-T flow of u (or of a suitable reparametrization thereof) is topologically conjugate to
a Bernoulli shift. It is standard that a horseshoe of a three-dimensional flow is a connected branched
surface and that the existence of a horseshoe is stable in the sense that any other field that is 𝐶1-close
to u has a horseshoe too [22, Theorem 5.1.2]. Moreover, the existence of a horseshoe implies that the
field has positive topological entropy; recall that the topological entropy of the field, which we denote
as ℎtop(𝑢), is defined as the entropy of its time-1 flow. Summarizing, we have the following result for
the number of (pairwise disjoint) horseshoes of u contained in 𝐵𝑅, 𝑁h

𝑢 (𝑅).

Proposition 5.1. The functional 𝑢 ↦→ 𝑁h
𝑢 (𝑅) is lower semicontinuous in the 𝐶𝑘 compact open topology

for vector fields, for any 𝑘 � 1. Moreover, if u has a horseshoe, its topological entropy is positive.

In short, the basic idea to construct a Beltrami field with a horseshoe, is to construct first ‘an
integrable’ Beltrami field having a heteroclinic cycle between two hyperbolic periodic orbits, which we
subsequently perturb within the Beltrami class to produce a transverse heteroclinic intersection. By the
Birkhoff–Smale theorem, this ensures the existence of horseshoe-type dynamics.

Proposition 5.2. There exists a Hermitian finite linear combination of spherical harmonics 𝜑 such that
the Beltrami field 𝑢0 := 𝑈𝜑𝑝 exhibits a horseshoe. In other words, 𝑁h

𝑢0 (𝑅0) � 1 for all large enough
𝑅0 > 0.

Proof. Let us take cylindrical coordinates (𝑧, 𝑟, 𝜃) ∈ R × R+ × T, with T := R/2𝜋Z, defined as

𝑧 := 𝑥3 , (𝑟 cos 𝜃, 𝑟 sin 𝜃) := (𝑥1, 𝑥2) .

We now consider the axisymmetric vector field v in R3 given by

𝑣 :=
1
𝑟

(
𝜕𝑟𝜓 𝐸𝑧 − 𝜕𝑧𝜓 𝐸𝑟 +

𝜓

𝑟
𝐸𝜃

)
. (5.1)

Here,

𝜓 := cos 𝑧 + 3𝑟𝐽1 (𝑟)

with 𝐽1 being the Bessel function of the first kind and order 1, and the vector fields

𝐸𝑧 := (0, 0, 1) , 𝐸𝑟 :=
1
𝑟
(𝑥1, 𝑥2, 0) , 𝐸𝜃 := (−𝑥2, 𝑥1, 0) ,

which are often denoted by 𝜕𝑧 , 𝜕𝑟 , 𝜕𝜃 in the dynamical systems literature, have been chosen so that

𝐸𝑧 · ∇𝜙 = 𝜕𝑧𝜙 , 𝐸𝑟 · ∇𝜙 = 𝜕𝑟𝜙 , 𝐸𝜃 · ∇𝜙 = 𝜕𝜃𝜙

for any function 𝜙. Notice that 𝑣 · ∇𝜓 = 0, so the scalar function 𝜓 is a first integral of v. This means
that the trajectories of the field v are tangent to the level sets of 𝜓.

The vector field v is not defined on the z-axis, so we shall consider the domain in Euclidean 3-space

Ω := {(𝑧, 𝑟, 𝜃) : (𝑧, 𝑟) ∈ D , 𝜃 ∈ T} ,

where D is the domain in the (𝑧, 𝑟)-plane given by

D :=
{
(𝑧, 𝑟) : −10 < 𝑧 < 10,

9
10

< 𝑟 <
18
5

}
.
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The reason for choosing this particular domain of R3 will become clear later in the proof; for the time
being, let us just note that 𝜓(𝑧, 𝑟) > 0 if (𝑧, 𝑟) ∈ D.

Also, observe that, away from the axis 𝑟 = 0, the vector field v is smooth and satisfies the Beltrami
field equation curl 𝑣 = 𝑣.

We claim that, in Ω, v has two hyperbolic periodic orbits joined by a heteroclinic cycle. Indeed,
noticing that

(𝜕𝑧𝜓, 𝜕𝑟𝜓) = (− sin 𝑧, 3𝑟𝐽0 (𝑟)) ,

where we have used the identity 𝜕𝑟 [𝑟𝐽1(𝑟)] = 𝑟𝐽0(𝑟), it follows that the points 𝑝± := (±𝜋, 𝑗0,1) ∈ D are
critical points of 𝜓. Here, 𝑗0,1 = 2.4048 . . . is the first zero of the Bessel function 𝐽0. Plugging this fact
in equation (5.1), this implies that, on the circles in 3-space

𝛾± := {(𝑧, 𝑟, 𝜃) : (𝑧, 𝑟) = 𝑝± , 𝜃 ∈ T} ,

the field v takes the form

𝑣(𝑝±, 𝜃) =
𝑐0

𝑗2
0,1

𝐸𝜃

with 𝑐0 := 3 𝑗0,1𝐽1( 𝑗0,1) − 1 > 0. Therefore, we conclude that the circles 𝛾± are periodic orbits of v
contained in Ω.

It is standard that the stability of these periodic orbits can be analyzed using the associated normal
variational equation. Denoting by (𝑣𝑧 , 𝑣𝑟 , 𝑣 𝜃 ) the components of the field v in the basis {𝐸𝑧 , 𝐸𝑟 , 𝐸𝜃 },
this is the linear ordinary differential equation (ODE)

�𝜂 = 𝐴𝜂 ,

where 𝜂 takes values in R2 and A is the constant matrix

𝐴 :=
𝜕 (𝑣𝑧 , 𝑣𝑟 )
𝜕 (𝑧, 𝑟)

����
(𝑧,𝑟 )=𝑝±

=

(
0 3𝐽 ′0 ( 𝑗0,1)

−1/ 𝑗0,1 0

)
.

The Lyapunov exponents of the periodic orbit 𝛾± are the eigenvalues of the matrix A. Therefore, since
𝐽 ′0 ( 𝑗0,1) < 0, these periodic orbits have a positive and a negative Lyapunov exponent, so they are
hyperbolic periodic orbits of saddle type.

Since 𝜓 is a first integral of v and 𝜓(𝑝±) = 𝑐0, the set

{(𝑧, 𝑟, 𝜃) : 𝜓(𝑧, 𝑟) = 𝑐0}

is an invariant singular surface of the vector field v. This set contains two regular surfaces Γ1 and Γ2
diffeomorphic to a cylinder. We label them so that Γ1 is contained in the half space {𝑟 � 𝑗0,1} and Γ2
in {𝑟 � 𝑗0,1}. The boundaries of these cylinders are the periodic orbits 𝛾±. The surface Γ1 is the stable
manifold of 𝛾+ that coincides with an unstable manifold of 𝛾−, while Γ2 is the unstable manifold of 𝛾+
that coincides with a stable manifold of 𝛾−. Hence, the union Γ1 ∪ Γ2 of both cylinders then form an
heteroclinic cycle between the periodic orbits 𝛾+ and 𝛾−, and one can see that it is contained in Ω.

Let us now perturb the Beltrami field v in Ω by adding a vector field w (to be fixed later) that also
satisfies the Beltrami field equation curl𝑤 = 𝑤. Our goal is to break the heteroclinic cycle Γ1 ∪ Γ2 in
order to produce transverse intersections of the stable and unstable manifolds of 𝛾𝜀

+ and 𝛾𝜀
− , where 𝛾𝜀

±
denote the hyperbolic periodic orbits of the perturbed vector field

𝑋 := 𝑣 + 𝜀𝑤 =

(
𝜕𝑟𝜓

𝑟
+ 𝜀𝑤𝑧

)
𝐸𝑧 +

(
−𝜕𝑧𝜓

𝑟
+ 𝜀𝑤𝑟

)
𝐸𝑟 +

(
𝜓

𝑟2 + 𝜀𝑤 𝜃

)
𝐸𝜃 .
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As before, (𝑤𝑧 , 𝑤𝑟 , 𝑤 𝜃 ) denote the components of the vector field w in the basis {𝐸𝑧 , 𝐸𝑟 , 𝐸𝜃 }, which
are functions of all three cylindrical coordinates (𝑧, 𝑟, 𝜃). If 𝜀 > 0 is small enough, the 𝜃-component of
X is positive on the domain Ω, so we can divide X by the factor 𝑋𝜃 := 𝜓

𝑟2 + 𝜀𝑤 𝜃 > 0 to obtain another
vector field Y that has the same integral curves up to a reparametrization:

𝑌 :=
𝑋

𝑋𝜃
=
𝑟𝜕𝑟𝜓 + 𝜀𝑟2𝑤𝑧

𝜓 + 𝜀𝑟2𝑤 𝜃
𝐸𝑧 +

−𝑟𝜕𝑧𝜓 + 𝜀𝑟2𝑤𝑟

𝜓 + 𝜀𝑟2𝑤 𝜃
𝐸𝑟 + 𝐸𝜃 . (5.2)

Substituting the expression of 𝜓(𝑧, 𝑟) and expanding in the small parameter 𝜀, the analysis of the
integral curves of Y reduces to that of the following nonautonomous system of ODEs in the planar
domain D:

𝑑𝑧

𝑑𝑡
=

3𝑟2𝐽0(𝑟)
𝜓(𝑧, 𝑟) + 𝜀

(
𝑟2𝑤𝑧 (𝑧, 𝑟, 𝑡)

𝜓(𝑧, 𝑟) − 3𝑟4𝐽0 (𝑟)𝑤 𝜃 (𝑧, 𝑟, 𝑡)
𝜓(𝑧, 𝑟)2

)
+𝑂 (𝜀2) , (5.3)

𝑑𝑟

𝑑𝑡
=

𝑟 sin 𝑧

𝜓(𝑧, 𝑟) + 𝜀

(
𝑟2𝑤𝑟 (𝑧, 𝑟, 𝑡)

𝜓(𝑧, 𝑟) − 𝑟3 sin 𝑧 𝑤 𝜃 (𝑧, 𝑟, 𝑡)
𝜓(𝑧, 𝑟)2

)
+𝑂 (𝜀2) . (5.4)

Notice that the dependence on t is 2𝜋-periodic and that we have replaced 𝜃 by t in the function 𝑤𝑧 (𝑧, 𝑟, 𝜃)
(and similarly 𝑤𝑟 , 𝑤 𝜃 ) because the 𝜃-component of the vector field Y is 1. When 𝜀 = 0, one has

�𝑧 = 3𝑟2𝐽0(𝑟)
𝜓(𝑧, 𝑟) , (5.5)

�𝑟 = 𝑟 sin 𝑧

𝜓(𝑧, 𝑟) . (5.6)

Hence, the unperturbed system is Hamiltonian with symplectic form 𝜔 := 𝑟−1𝑑𝑧 ∧ 𝑑𝑟 and Hamiltonian
function𝐻 (𝑧, 𝑟) := log𝜓(𝑧, 𝑟). The periodic orbits 𝛾± of v and their heteroclinic cycle Γ1∪Γ2 correspond
to the (hyperbolic) fixed points 𝑝± of the unperturbed system joined by two heteroclinic connections
Γ̃𝑘 := Γ𝑘 ∩ {𝜃 = 0}, 𝑘 = 1, 2. These are precisely the two pieces of the level curve {𝐻 (𝑧, 𝑟) = log 𝑐0}
that are contained in D. Let us denote by

𝛾𝑘 (𝑡) = (𝑍𝑘 (𝑡; 0, 𝑟𝑘 ), 𝑅𝑘 (𝑡; 0, 𝑟𝑘 ))

the integral curves of the separatrices that solve equations (5.5) and (5.6) with initial conditions (0, 𝑟𝑘 ) ∈
Γ̃𝑘 . Of course, the closure of the set {𝛾𝑘 (𝑡) : 𝑡 ∈ R} is Γ̃𝑘 , and the stability analysis of the periodic
integral curves 𝛾± readily implies that lim𝑡→±(−1)𝑘+1∞ 𝛾𝑘 (𝑡) = 𝑝±.

By the implicit function theorem, the perturbed system (5.3) and (5.4) has exactly two hyperbolic
fixed points 𝑝𝜀

± ∈ D so that 𝑝𝜀
± → 𝑝± as 𝜀 → 0. The technical tool to prove that the unstable (resp.

stable) manifold of 𝑝𝜀
+ and the stable (resp. unstable) manifold of 𝑝𝜀

− intersect transversely when 𝜀 > 0
is small is the Melnikov function. We define the vector fields 𝑌0, 𝑌1, respectively, as the unperturbed
system and the first order in 𝜀 perturbation, that is,

𝑌0 :=
3𝑟2𝐽0 (𝑟)
𝜓(𝑧, 𝑟) 𝐸𝑧 +

𝑟 sin 𝑧

𝜓(𝑧, 𝑟) 𝐸𝑟 ,

𝑌1 :=
(
𝑟2𝑤𝑧

𝜓(𝑧, 𝑟) −
3𝑟4𝐽0 (𝑟)𝑤 𝜃

𝜓(𝑧, 𝑟)2

)
𝐸𝑧 +

(
𝑟2𝑤𝑟

𝜓(𝑧, 𝑟) −
𝑟3 sin 𝑧𝑤 𝜃

𝜓(𝑧, 𝑟)2

)
𝐸𝑟 .
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Since the unperturbed system is Hamiltonian, we can apply Lemma 5.4 below (which is a variation on
known results in Melnikov theory) to conclude that if the Melnikov functions

𝑀𝑘 (𝑡0) :=
∫ ∞

−∞
𝜔(𝑌0, 𝑌1) |𝛾𝑘 (𝑡−𝑡0) 𝑑𝑡 (5.7)

have simple zeros for each 𝑘 = 1, 2, then the aforementioned transverse intersections exist, and that
actually the heteroclinic connections intersect at infinitely many points. The integrand 𝜔(𝑌0, 𝑌1) denotes
the action of the symplectic 2-form 𝜔 on the vector fields 𝑌0, 𝑌1, evaluated on the integral curve
𝛾𝑘 (𝑡 − 𝑡0). It is standard that the improper integral in the definition of the Melnikov functions is
absolutely convergent because of the hyperbolicity of the fixed points joined by the separatrices (see,
e.g., [22, Section 4.5]). Also, notice that although [22, Section 4.5] concerns transverse intersections
of homoclinic connections, the analysis applies verbatim to transverse intersections of heteroclinic
connections.

More explicitly, the Melnikov functions are given by

𝑀𝑘 (𝑡0) =
1
𝑐2

0

∫ ∞

−∞
𝑅𝑘 (𝑡)2 [

𝑤𝑧 (𝑍𝑘 (𝑡), 𝑅𝑘 (𝑡), 𝑡) sin 𝑍𝑘 (𝑡) − 3𝑅𝑘 (𝑡)𝐽0(𝑅𝑘 (𝑡))𝑤𝑟 (𝑍𝑘 (𝑡), 𝑅𝑘 (𝑡), 𝑡)
]
𝑑𝑡 ,

where 𝑅𝑘 (𝑡) ≡ 𝑅𝑘 (𝑡; 0, 𝑟𝑘 ) and 𝑍𝑘 (𝑡) ≡ 𝑍𝑘 (𝑡; 0, 𝑟𝑘 ). It is well known that the existence of transverse
intersections is independent of the choice of initial condition.

To analyze these Melnikov integrals, let us now choose the particular perturbation

𝑤 = 𝐽1(𝑟) sin 𝜃 𝐸𝑧 +
𝐽1(𝑟)
𝑟

cos 𝜃 𝐸𝑟 −
𝐽 ′1 (𝑟) sin 𝜃

𝑟
𝐸𝜃 . (5.8)

It is easy to check that curl𝑤 = 𝑤 in R3; in fact 𝑤 = (curl curl+ curl) (𝐽0(𝑟), 0, 0) (or, to put it differently,
𝑤 = 𝑈𝜑′𝑞 ( 𝜉1)−1 𝑝 , where the distribution 𝜑′ on the sphere S is the Lebesgue measure of the equator,
normalized to unit mass). With this choice, the Melnikov functions take the form

𝑐2
0𝑀𝑘 (𝑡0) =

∫ ∞

−∞
𝑅𝑘 (𝑡)2 [

𝐽1 (𝑅𝑘 (𝑡)) sin 𝑍𝑘 (𝑡) sin(𝑡 + 𝑡0) − 3𝐽0 (𝑅𝑘 (𝑡))𝐽1(𝑅𝑘 (𝑡)) cos(𝑡 + 𝑡0)
]
𝑑𝑡

=: 𝑎𝑘 sin 𝑡0 + 𝑏𝑘 cos 𝑡0 ,

where the constants 𝑎𝑘 , 𝑏𝑘 are given by the integrals

𝑎𝑘 =
∫ ∞

−∞
𝑅𝑘 (𝑡)2 [

𝐽1 (𝑅𝑘 (𝑡)) sin 𝑍𝑘 (𝑡) cos 𝑡 + 3𝐽0 (𝑅𝑘 (𝑡))𝐽1(𝑅𝑘 (𝑡)) sin 𝑡
]
𝑑𝑡 ,

𝑏𝑘 =
∫ ∞

−∞
𝑅𝑘 (𝑡)2 [

𝐽1 (𝑅𝑘 (𝑡)) sin 𝑍𝑘 (𝑡) sin 𝑡 − 3𝐽0 (𝑅𝑘 (𝑡))𝐽1(𝑅𝑘 (𝑡)) cos 𝑡
]
𝑑𝑡 .

Since the Hamiltonian function has the symmetry 𝐻 (−𝑧, 𝑟) = 𝐻 (𝑧, 𝑟), it follows that 𝑅𝑘 (𝑡) = 𝑅𝑘 (−𝑡)
and 𝑍𝑘 (𝑡) = −𝑍𝑘 (−𝑡). This immediately yields that 𝑎1 = 𝑎2 = 0. Moreover, it is not hard to compute
the constants 𝑏1 and 𝑏2 numerically:

𝑏1 = 3.5508 . . . , 𝑏2 = 0.2497 . . .

Therefore, the function 𝑀𝑘 (𝑡0) = 𝑏𝑘 cos 𝑡0 is a nonzero multiple of the cosine, so it obviously has
exactly two zeros in the interval [0, 2𝜋), which are nondegenerate. It then follows from Lemma 5.4
below that the two heteroclinic connections joining 𝑝𝜀

± intersect transversely. In turn, this implies [33,
Theorem 26.1.3] that each hyperbolic fixed point 𝑝𝜀

± has transverse homoclinic intersections, so by the
Birkhoff–Smale theorem [22, Theorem 5.3.5] the perturbed system (5.3) and (5.4) (with w given by
equation (5.8)) has a compact hyperbolic invariant set on which the dynamics is topologically conjugate
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to a Bernoulli shift. This set is contained in a neighborhood of the heteroclinic cycle Γ̃1 ∪ Γ̃2, and hence
in the planar domain D where the system is defined. This immediately implies that the vector field Y
defined in equation (5.2), which is the suspension of the nonautonomous planar system (5.3), has a
compact normally hyperbolic invariant set K on which its time-T flow is topologically conjugate to a
Bernoulli shift, where 𝑇 := 2𝜋𝑁 for some positive integer 𝑁 > 0. The invariant set K is contained in Ω
because it lies in a small neighborhood of the invariant set Γ1 ∪ Γ2. Since the integral curves of X and
Y are the same, up to a reparametrization, K is also a chaotic invariant set of the Beltrami field X in Ω.

Finally, since R3\Ω is connected, and of course the vector field X satisfies the Beltrami equation in
an open neighborhood of Ω, for each 𝛿 > 0, Proposition 2.5 shows that there is a Hermitian finite linear
combination of spherical harmonics 𝜑 such that

‖𝑋 −𝑈𝜑𝑝 ‖𝐶1 (Ω) < 𝛿 .

If 𝛿 is small enough, the stability of transverse intersections implies that the Beltrami field 𝑈𝜑𝑝 has a
compact chaotic invariant set 𝐾𝛿 in a small neighborhood of K on which a suitable reparametrization
of its time-T flow is conjugate to a Bernoulli shift, so the proposition follows. �

Corollary 5.3. There exists 𝑅0 > 0 and 𝛿 > 0 such that 𝑁h
𝑤 (𝑅0) � 1 for any vector field w such that

‖𝑤 − 𝑢0‖𝐶𝑘 (𝐵𝑅0 )
< 𝛿, provided that 𝑘 � 1.

Proof. Taking 𝑅0 so that the horseshoe of 𝑢0 is contained in 𝐵𝑅0 , the result is a straightforward
consequence of the lower semicontinuity of 𝑁h

𝑢 (𝑅), cf. Proposition 5.1. �

To conclude, the following lemma gives the formula for the Melnikov function that we employed
in the proof of Proposition 5.2 above. This is an expression for the Melnikov function of perturbations
of a planar system that is Hamiltonian with respect to an arbitrary symplectic form. This is a minor
generalization of the well-known formulas [22, Theorem 4.5.3] and [25, Equation (23)], which assume
that the symplectic form is the standard one.

Lemma 5.4. Let𝑌0 be a smooth Hamiltonian vector field defined on a domain D ⊂ R2 with Hamiltonian
function H and symplectic form 𝜔. Assume that this system has two hyperbolic fixed points 𝑝± joined
by a heteroclinic connection Γ̃. Take a smooth nonautonomous planar field 𝑌1, which we assume 2𝜋-
periodic in time, and consider the perturbed system 𝑌0 + 𝜀𝑌1 + 𝑂 (𝜀2). Then the simple zeros of the
Melnikov function

𝑀 (𝑡0) :=
∫ ∞

−∞
𝜔(𝑌0, 𝑌1) |𝛾 (𝑡−𝑡0;𝑝0) 𝑑𝑡 ,

where the integrand is evaluated at the integral curve 𝛾(𝑡 − 𝑡0; 𝑝0) of 𝑌0 parametrizing the separatrix
Γ̃, give rise to a transverse heteroclinic intersection of the perturbed system, for any small enough 𝜀.

Proof. If 𝜀 is small enough, the perturbed system has two hyperbolic fixed points 𝑝𝜀
± . To analyze

how the heteroclinic connection is perturbed, we take a point 𝑝0 ∈ Γ̃ and we compute the so-called
displacement (or distance) function Δ (𝑡0) on a section Σ based at 𝑝0 and transverse to Γ̃. Recall that the
function 𝜀Δ (𝑡0) gives the distance of the splitting, up to order 𝑂 (𝜀2), between the corresponding stable
and unstable manifolds of the perturbed system at the section Σ.

A standard analysis, cf. [25, Equation (22)] or the proof of [22, Theorem 4.5.3], yields the following
formula for Δ (𝑡0):

Δ (𝑡0) =
1

|𝑌0 (𝑝0) |

∫ ∞

−∞
𝑌1 (𝛾(𝑡 − 𝑡0)) × 𝑌0 (𝛾(𝑡 − 𝑡0))𝑒−

∫ 𝑡−𝑡0
0 Tr 𝐷𝑌0 (𝛾 (𝑠)) 𝑑𝑠 𝑑𝑡 , (5.9)

where we have omitted the dependence of the integral curve on the initial condition 𝑝0 ∈ Γ̃. Here, we
are using the notation 𝑋 ×𝑌 := 𝑋1𝑌2−𝑋2𝑌1 for vectors 𝑋,𝑌 ∈ R2 and Tr 𝐷𝑌0 is the trace of the Jacobian
matrix of the unperturbed field 𝑌0.
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Take coordinates in D, which we will call (𝑧, 𝑟) just as in the proof of Proposition 5.2, and write the
symplectic form as 𝜔 = 𝜌(𝑧, 𝑟) 𝑑𝑧 ∧ 𝑑𝑟 , where 𝜌(𝑧, 𝑟) is a smooth function that does not vanish. Let us
call here {𝑒𝑧 , 𝑒𝑟 } the basis of vector fields dual to {𝑑𝑧, 𝑑𝑟} (which are usually denoted by 𝜕𝑧 and 𝜕𝑟 ,
as they correspond to the partial derivatives with respect to the coordinates z and r). The Hamiltonian
field 𝑌0 reads in these coordinates as

𝑌0 =
1

𝜌(𝑧, 𝑟)

(
𝜕𝑟𝐻 𝑒𝑧 − 𝜕𝑧𝐻 𝑒𝑟

)
.

Noting that

𝑌1 (𝛾(𝑡 − 𝑡0)) × 𝑌0 (𝛾(𝑡 − 𝑡0)) =
𝜔(𝑌0, 𝑌1) |𝛾 (𝑡−𝑡0)

𝜌(𝛾(𝑡 − 𝑡0))

and

𝑒−
∫ 𝑡−𝑡0

0 Tr 𝐷𝑌0 (𝛾 (𝑠)) 𝑑𝑠 = 𝑒
∫ 𝑡−𝑡0

0 𝑌0 (𝛾 (𝑠)) ·∇ log 𝜌(𝛾 (𝑠)) 𝑑𝑠 (5.10)

= 𝑒
∫ 𝑡−𝑡0

0
𝑑 log𝜌(𝛾 (𝑠) )

𝑑𝑠 𝑑𝑠 =
𝜌(𝛾(𝑡 − 𝑡0))

𝜌(𝑝0)
, (5.11)

equation (5.9) implies that

Δ (𝑡0) =
𝑀 (𝑡0)

|𝑌0 (𝑝0) |𝜌(𝑝0)
,

so the claim follows because 𝑀 (𝑡0) coincides with the displacement function up to a constant propor-
tionality factor. �

6. Asymptotics for random Beltrami fields on R3

We are now ready to prove our main results about random Beltrami fields on R3, Theorems 1.2 and 1.5.
To do this, as we saw in the two previous sections, we need to handle sets that have a rather geometrically
complicated structure, which gives rise to several measurability issues. For this reason, we start this
section by proving a version of the Nazarov–Sodin sandwich estimate [30, Lemma 1] that circumvents
some of these issues and which is suitable for our purposes.

6.1. A sandwich estimate for sets of points and for arbitrary closed sets

For any subset Γ ⊂ R3, we denote by 𝑁 (𝑥, 𝑟; Γ) the number of connected components of Γ that are
contained in the ball 𝐵𝑟 (𝑥). Also, if X := {𝑥 𝑗 : 𝑗 ∈ J }, where 𝑥 𝑗 ∈ R3, is a countable set of points
(which is not necessarily a closed subset of R3), then we define

N (𝑥, 𝑟;X ) := #[X ∩ 𝐵𝑟 (𝑥)]

as the number of points of X contained in the open ball 𝐵𝑟 (𝑥). For the ease of notation, we will write
𝑁 (𝑟; Γ) := 𝑁 (0, 𝑟; Γ) and similarly N (𝑟;X ). We remark that these numbers may be infinite.
Lemma 6.1. Let Γ be any subset of R3 whose connected components are all closed and let X := {𝑥 𝑗 :
𝑗 ∈ J }, with 𝑥 𝑗 ∈ R3, be a countable set of points of R3. Then the functions N (·, 𝑟;X ) and 𝑁 (·, 𝑟; Γ)
are measurable, and for any 0 < 𝑟 < 𝑅 one has∫

𝐵𝑅−𝑟

N (𝑦, 𝑟;X )
|𝐵𝑟 |

𝑑𝑦 � N (𝑅;X ) �
∫

𝐵𝑅+𝑟

N (𝑦, 𝑟;X )
|𝐵𝑟 |

𝑑𝑦 ,∫
𝐵𝑅−𝑟

𝑁 (𝑦, 𝑟; Γ)
|𝐵𝑟 |

𝑑𝑦 � 𝑁 (𝑅; Γ) .
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Proof. Let us start by noticing that

N (𝑦, 𝑟;X ) = #{ 𝑗 ∈ J : 𝑥 𝑗 ∈ 𝐵(𝑦, 𝑟)} =
∑
𝑗∈J

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) .

As the ball 𝐵𝑟 (𝑥) is an open set, it is clear that 1𝐵𝑟 (𝑥) (·) is a lower semicontinuous function. Recall that
lower semicontinuity is preserved under sums and that the supremum of an arbitrary set (not necessarily
countable) of lower semicontinuous functions is also lower semicontinuous. Therefore, from the formula

N (·, 𝑟;X ) = sup
J ′

∑
𝑗∈J ′

1𝐵𝑟 (𝑥 𝑗 ) (·) ,

where J ′ ranges over all finite subsets of J , we deduce that the function N (·, 𝑟;X ) is lower semicon-
tinuous, and therefore measurable.

Now, let J𝑅 := { 𝑗 ∈ J : 𝑥 𝑗 ∈ 𝐵𝑅} and note that

|𝐵𝑟 |N (𝑅;X ) =
∑
𝑗∈J𝑅

∫
𝐵𝑅+𝑟

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) 𝑑𝑦 .

As we can interchange the sum and the integral by the monotone convergence theorem and∑
𝑗∈J𝑅

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) �
∑
𝑗∈J

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) = N (𝑦, 𝑟;X ) ,

one immediately obtains the upper bound for N (𝑅;X ). Likewise, using now that

|𝐵𝑟 |N (𝑅;X ) =
∑
𝑗∈J𝑅

∫
𝐵𝑅+𝑟

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) 𝑑𝑦

�
∑
𝑗∈J𝑅

∫
𝐵𝑅−𝑟

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) 𝑑𝑦

=
∑
𝑗∈J

∫
𝐵𝑅−𝑟

1𝐵𝑟 (𝑥 𝑗 ) (𝑦) 𝑑𝑦 =
∫

𝐵𝑅−𝑟

N (𝑦, 𝑟;X ) 𝑑𝑦 ,

we derive the lower bound. The sandwich estimate for N (𝑅;X ) is then proved.
Now, let 𝛾 be a connected component of Γ, which is a closed set by hypothesis. Since 𝛾 ⊂ 𝐵𝑟 (𝑦) if

and only if 𝑦 ∈ 𝐵𝑟 (𝑥) for all 𝑥 ∈ 𝛾, one has that

𝑁 (𝑦, 𝑟; Γ) =
∑
𝛾⊂Γ

1𝛾𝑟 (𝑦) , (6.1)

where the sum is over the connected components of Γ and the set 𝛾𝑟 is defined, for each connected
component 𝛾 of Γ, as

𝛾𝑟 :=
⋂
𝑥∈𝛾

𝐵𝑟 (𝑥) ,

that is, as the set of points in R3 whose distance to any point of 𝛾 is less than r. Obviously, the set 𝛾𝑟 is
open, so 1𝛾𝑟 is lower semicontinuous and contained in the ball 𝐵𝑟 (𝑥0), where 𝑥0 is any point of 𝛾. Also
notice that 𝛾𝑟 is not the empty set provided that 2𝑟 is larger than the diameter of 𝛾. Therefore, by the
same argument as before, if follows from the expression (6.1) that the function 𝑁 (·, 𝑟; Γ) is measurable.
If we now define the set Γ𝑅 consisting of the connected components of Γ that are contained in the ball
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𝐵𝑅, the same argument as before shows that

𝑁 (𝑅; Γ) �
∑

𝛾⊂Γ𝑅

1
|𝛾𝑟 |

∫
𝐵𝑅+𝑟

1𝛾𝑟 (𝑦) 𝑑𝑦

�
∑

𝛾⊂Γ𝑅

1
|𝛾𝑟 |

∫
𝐵𝑅−𝑟

1𝛾𝑟 (𝑦) 𝑑𝑦

=
∑
𝛾⊂Γ

1
|𝛾𝑟 |

∫
𝐵𝑅−𝑟

1𝛾𝑟 (𝑦) 𝑑𝑦

�
∫

𝐵𝑅−𝑟

𝑁 (𝑦, 𝑟; Γ)
sup𝛾⊂Γ |𝛾𝑟 | 𝑑𝑦

�
∫

𝐵𝑅−𝑟

𝑁 (𝑦, 𝑟; Γ)
|𝐵𝑟 |

𝑑𝑦 .

In the first inequality, we are summing over components 𝛾 whose diameter is smaller than 2𝑟 , and to
pass to the last inequality we have used the obvious volume bound |𝛾𝑟 | � |𝐵𝑟 |. Note that the proof of
the upper bound for N (𝑅;X ) does not apply in this case, essentially because we do not have lower
bounds for |𝛾𝑟 | in terms of |𝐵𝑟 |. �

6.2. Proof of Theorem 1.2 and Corollary 1.3

We are ready to prove Theorem 1.2. In fact, we will establish a stronger result which permits controlling
the parameters of the periodic orbits and the invariant tori. In what follows, we shall use the notation
introduced in Sections 4 and 5 for the number of periodic orbits 𝑁o

𝑢 (𝑅; [𝛾], I), the number of Diophan-
tine toroidal sets 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0) (and the volume of the set of invariant tori 𝑉 t
𝑢 (𝑅; [T ],J )) and the

number of horseshoes 𝑁h
𝑢 (𝑅). This is useful in itself, since we showed in Section 4.1 that the quantity

𝑁o
𝑢 (𝑅; [𝛾], I) is finite but this does not need to be the case if one just counts 𝑁o

𝑢 (𝑅; [𝛾]). Also, the choice
of counting the volume of invariant tori instead of its number (which one definitely expect to be infinite)
provides the trivial bound 𝑉 t

𝑢 (𝑅; [T ],J ) � |𝐵𝑅 |. Specifically, the result we prove is the following.

Theorem 6.2. Consider a closed curve 𝛾 and an embedded torus T of R3. Then for any I =
(𝑇1, 𝑇2,Λ1,Λ2), some J = (𝜔1, 𝜔2, 𝜏1, 𝜏2) and some 𝑉0 > 0, where

0 < 𝑇1 < 𝑇2 , 0 < Λ1 < Λ2 , 0 < 𝜔1 < 𝜔2 , 0 < 𝜏1 < 𝜏2 ,

a Gaussian random Beltrami field u satisfies

lim inf
𝑅→∞

𝑁h
𝑢 (𝑅)
|𝐵𝑅 |

� 𝜈h ,

lim inf
𝑅→∞

𝑁 t
𝑢 (𝑅; [T ],J , 𝑉0)

|𝐵𝑅 |
� 𝜈t([T ],J , 𝑉0) ,

lim inf
𝑅→∞

𝑁o
𝑢 (𝑅; [𝛾], I)

|𝐵𝑅 |
� 𝜈o([𝛾], I)

with probability 1, with constants that are all positive. In particular, the topological entropy of u is
positive almost surely, and

lim inf
𝑅→∞

𝑉 t
𝑢 (𝑅; [T ],J )

|𝐵𝑅 |
� 𝑉0 𝜈

t([T ],J , 𝑉0) ,

with probability 1.
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Proof. For the ease of notation, let us denote by Φ𝑅 (𝑢) the quantities 𝑁h
𝑢 (𝑅), 𝑁o

𝑢 (𝑅; [𝛾], I) and
𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0), in each case. Horseshoes are closed, and so are the set of periodic orbits isotopic to
𝛾 with parameters in I and the set of closed invariant solid tori of the kind counted by 𝑁 t

𝑢 (𝑅; [T ],J , 𝑉0).
Therefore, the lower bound for sets Γ whose components are closed proved in Lemma 6.1 ensures that,
for any 0 < 𝑟 < 𝑅,

Φ𝑅 (𝑢)
|𝐵𝑅 |

�
1

|𝐵𝑅 |

∫
𝐵𝑅−𝑟

Φ𝑟 (𝜏𝑦𝑢)
|𝐵𝑟 |

𝑑𝑦 �
1

|𝐵𝑅 |

∫
𝐵𝑅−𝑟

Φ𝑚
𝑟 (𝜏𝑦𝑢)
|𝐵𝑟 |

𝑑𝑦 ,

where for any large 𝑚 > 1 we have defined the truncation

Φ𝑚
𝑟 (𝑤) := min{Φ𝑟 (𝑤), 𝑚} .

We recall that the translation operator is defined as 𝜏𝑦𝑢(·) = 𝑢(· + 𝑦).
As the truncated random variable Φ𝑚

𝑟 is in 𝐿1 (𝐶𝑘 (R3,R3), 𝜇𝑢) for any m, one can consider the limit
𝑅 → ∞ and apply Proposition 3.8 to conclude that

lim inf
𝑅→∞

Φ𝑅 (𝑢)
|𝐵𝑅 |

� lim inf
𝑅→∞

|𝐵𝑅−𝑟 |
|𝐵𝑅 |

−
∫

𝐵𝑅−𝑟

Φ𝑚
𝑟 (𝜏𝑦𝑢)
|𝐵𝑟 |

𝑑𝑦 =
1

|𝐵𝑟 |
EΦ𝑚

𝑟

𝜇𝑢-almost surely, for any r and m. Corollaries 4.3, 4.8 and 5.3 imply that (for any I in the case of
periodic orbits, for some J and some 𝑉0 > 0 in the case of invariant tori, and unconditionally in the
case of horseshoes), there exists some 𝑟 > 0, some 𝛿 > 0 and a Beltrami field 𝑢0 such that

Φ𝑟 (𝑤) � 1

for any divergence-free vector field 𝑤 ∈ 𝐶𝑘 (R3,R3) with ‖𝑤 − 𝑢0‖𝐶4 (𝐵𝑟 ) < 𝛿. As the random variable
Φ𝑟 is nonnegative, and the measure 𝜇𝑢 is supported on Beltrami fields (cf. Proposition 3.9), which are
divergence-free, it is then immediate that, when picking the parameters I, J and 𝑉0 as above, one has
for 𝑘 � 4

EΦ𝑚
𝑟 � 𝜇𝑢

(
{𝑤 ∈ 𝐶𝑘 (R3,R3) : ‖𝑤 − 𝑢0‖𝐶𝑘 (𝐵𝑟 ) < 𝛿}

)
=: M(𝑢0, 𝛿) .

This is positive again by Proposition 3.9. So defining the constant, in each case, as

𝜈 :=
M(𝑢0, 𝛿)

|𝐵𝑟 |
> 0

the first part of the theorem follows.
Finally, the topological entropy of u is positive almost surely because u has a horseshoe with

probability 1; see Proposition 5.1. The estimate for the growth of the volume of Diophantine invariant
tori follows from the trivial lower bound

𝑉 t
𝑢 (𝑅; [T ],J ) > 𝑉0 𝑁

t
𝑢 (𝑅; [T ],J , 𝑉0) . �

Remark 6.3. A simple variation of the proof of Theorem 6.2 provides an analogous result for links.
We recall that a link L is a finite set of pairwise disjoint closed curves in R3, which can be knotted and
linked among them. More precisely, if 𝑁 l(𝑅; [L], I) is the number of unions of hyperbolic periodic
orbits of u that are contained in 𝐵𝑅, isotopic to the link L, and whose periods and maximal Lyapunov
exponents are in the intervals prescribed by I, then

lim inf
𝑅→∞

𝑁 l(𝑅; [L], I)
|𝐵𝑅 |

� 𝜈l([L], I) > 0 .
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To apply the lower bound obtained in Lemma 6.1 to estimate the number of links, it is enough to
transform each link into a connected set by joining its different components by closed arcs. The proof
then goes exactly as in Theorem 6.2 upon noticing that analogs of Proposition 4.2 and Corollary 4.3
also hold for links (the proof easily carries over to this case).

Proof of Corollary 1.3. The corollary is now an immediate consequence of the fact that the number
of isotopy classes of closed curves and embedded tori is countable. Indeed, by Theorem 1.2, with
probability 1, a Gaussian random Beltrami field has infinitely many horseshoes, an infinite volume of
ergodic invariant tori isotopic to a given embedded torus T and infinitely many periodic orbits isotopic
to a given closed curve 𝛾. Since the countable intersection of sets of probability 1 also has probability
1, the claim follows. �

6.3. Proof of Theorem 1.5

We are now ready to prove the asymptotics for the number of zeros of the Gaussian random Beltrami
field u. Let us start by noticing that, almost surely, the zeros of u are nondegenerate. This is because

𝜇𝑢
({
𝑤 ∈ 𝐶𝑘 (R3,R3) : det∇𝑤(𝑥) = 0 and 𝑤(𝑥) = 0 for some 𝑥 ∈ R3})

= 0 ,

which is a consequence of the boundedness of the probability density function (cf. Remark 3.7) and that
u is 𝐶∞ almost surely; see [4, Proposition 6.5]. Hence, the intersection of the zero set

X𝑤 := {𝑥 ∈ R3 : 𝑤(𝑥) = 0}

with a ball 𝐵𝑅 is a finite set of points almost surely. The implicit function theorem then implies that
these zeros are robust under 𝐶1-small perturbations so that with probability 1, N (𝑅;X𝑣 ) � N (𝑅;X𝑤 )
for any vector field v that is close enough to w in the 𝐶1 norm. Summarizing, we have the following.

Proposition 6.4. Almost surely, the functional 𝑤 ↦→ N (𝑅;X𝑤 ) is lower semicontinuous in the 𝐶𝑘

compact open topology for vector fields, for any 𝑘 � 1. Furthermore,N (𝑅;X𝑤 ) < ∞with probability 1.

Since the variance E[𝑢(𝑥) ⊗ 𝑢(𝑥)] is the identity matrix by Corollary 3.6, the Kac–Rice formula [4,
Proposition 6.2] then enables us to compute the expected value of the random variable

Φ𝑟 (𝑤) :=
N (𝑟;X𝑤 )

|𝐵𝑟 |
(6.2)

as

EΦ𝑟 = −
∫
𝐵𝑟

E{| det∇𝑤(𝑥) | : 𝑤(𝑥) = 0} 𝜌(0) 𝑑𝑥

= (2𝜋)−
3
2E{| det∇𝑤(𝑥) | : 𝑤(𝑥) = 0} . (6.3)

Here, we have used that the above conditional expectation is independent of the point 𝑥 ∈ R3 by
the translational invariance of the probability measure. We recall that the probability density function
𝜌(𝑦) := (2𝜋)− 3

2 𝑒−
1
2 |𝑦 |

2 was introduced in Remark 3.7.
To compute the above conditional expectation value, one can argue as follows.

Lemma 6.5. For any 𝑥 ∈ R3,

E{| det∇𝑢(𝑥) | : 𝑢(𝑥) = 0} = (2𝜋)
3
2 𝜈z ,

where the constant 𝜈z is given by (1.4).
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Proof. Let us first reduce the computation of the conditional expectation to that of an ordinary expec-
tation by introducing a new random variable 𝜁 . Just like ∇𝑢(𝑥), this new variable takes values in the
space of 3 × 3 matrices, which we will identify with R9 by labeling the matrix entries as

𝜁 =: ���
𝜁1 𝜁2 𝜁3
𝜁4 𝜁5 𝜁6
𝜁7 𝜁8 𝜁9

��� . (6.4)

This variable is defined as

𝜁 := ∇𝑢(𝑥) − 𝐵𝑢(𝑥) , (6.5)

where the linear operator B (which is a 9 × 3 matrix if we identify ∇𝑢(𝑥) with a vector in R9) is chosen
so that the covariance matrix of 𝑢(𝑥) and 𝜁 is 0:

𝐵 := E(∇𝑢(𝑥) ⊗ 𝑢(𝑥))
[
E(𝑢(𝑥) ⊗ 𝑢(𝑥))

]−1
= E(∇𝑢(𝑥) ⊗ 𝑢(𝑥)) .

Here, we have used that the second matrix is in fact the identity by Corollary 3.6. An easy computation
shows that then

E(𝜁 ⊗ 𝑢(𝑥)) = 0 ;

as 𝑢(𝑥) and 𝜁 are Gaussian vectors with zero mean, this condition ensures that they are independent
random variables. Therefore, we can use the identity (6.5) to write the conditional expectation as

E{| det∇𝑢(𝑥) | : 𝑢(𝑥) = 0} = E{| det[𝜁 + 𝐵𝑢(𝑥)] | : 𝑢(𝑥) = 0} = E| det 𝜁 | .

Our next goal is to compute the covariance matrix of 𝜁 in closed form, which will enable us to find
the expectation of | det 𝜁 |. By definition,

E(𝜁 ⊗ 𝜁) = E[(∇𝑢(𝑥) − 𝐵𝑢(𝑥)) ⊗ (∇𝑢(𝑥) − 𝐵𝑢(𝑥))]
= E[∇𝑢(𝑥) ⊗ ∇𝑢(𝑥)] − E[∇𝑢(𝑥) ⊗ 𝑢(𝑥)] E[𝑢(𝑥) ⊗ ∇𝑢(𝑥)] .

The basic observation now is that, for any Hermitian polynomials in three variables 𝑞(𝜉) and 𝑞′(𝜉), the
argument that we used to establish the formula (3.3) and Corollary 3.6 shows that

E[(𝑞(𝐷)𝑢 𝑗 (𝑥)) (𝑞′(𝐷)𝑢𝑘 (𝑥))] = E[𝑞(𝐷𝑥)𝑢 𝑗 (𝑥) 𝑞′(𝐷𝑦)𝑢𝑘 (𝑦)] |𝑦=𝑥

=
∫
S

𝑞(𝜉) 𝑞′(−𝜉) 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑒𝑖 𝜉 · (𝑥−𝑦) 𝑑𝜎(𝜉)
����
𝑦=𝑥

=
∫
S

𝑞(𝜉) 𝑞′(−𝜉) 𝑝 𝑗 (𝜉) 𝑝𝑘 (𝜉) 𝑑𝜎(𝜉) .

Here, we have used that 𝑞′(𝐷)𝑢𝑘 is real-valued because 𝑞′ is Hermitian. As all the matrix integrals in
the calculation of E(𝜁 ⊗ 𝜁) are of this form with 𝑞(𝜉) = 𝑖𝜉 or 1, the computation again boils down to
evaluating integrals of the form

∫
S
𝜉𝛼 𝑑𝜎(𝜉), which can be computed using the formula (3.4).
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Tedious but straightforward computations then yield the following explicit formula for the covariance
matrix of 𝜁 :

Σ := E(𝜁 ⊗ 𝜁) =

����������������

5
21 0 0 0 − 5

42 0 0 0 − 5
42

0 11
84 0 11

84 0 0 0 0 0
0 0 11

84 0 0 0 11
84 0 0

0 11
84 0 11

84 0 0 0 0 0
− 5

42 0 0 0 3
14 0 0 0 − 2

21
0 0 0 0 0 13

84 0 13
84 0

0 0 11
84 0 0 0 11

84 0 0
0 0 0 0 0 13

84 0 13
84 0

− 5
42 0 0 0 − 2

21 0 0 0 3
14

����������������
Note that this matrix is not invertible: it has rank 5, and an orthogonal basis for the (4-dimensional)
kernel is

{𝑒1 + 𝑒5 + 𝑒9, 𝑒2 − 𝑒4, 𝑒3 − 𝑒7, 𝑒6 − 𝑒8} ,

where {𝑒 𝑗 }9
𝑗=1 denotes the canonical basis of R9. As we are dealing with Gaussian vectors, this is

equivalent to the assertion that

𝜁1 + 𝜁5 + 𝜁9 = 0 , 𝜁2 = 𝜁4 , 𝜁3 = 𝜁7 , 𝜁6 = 𝜁8 (6.6)

almost surely (which amounts to saying that 𝜁 is a traceless symmetric matrix). Notice that these
equations define a 5-dimensional subspace orthogonal to the kernel of Σ. The remaining random
variables 𝜁 ′ := (𝜁1, 𝜁2, 𝜁3, 𝜁5, 𝜁6) are independent Gaussians with zero mean and covariance matrix

Σ′ := E(𝜁 ′ ⊗ 𝜁 ′) =

�������

5
21 0 0 − 5

42 0
0 11

84 0 0 0
0 0 11

84 0 0
− 5

42 0 0 3
14 0

0 0 0 0 13
84

�������
By construction, Σ′ is an invertible matrix, so we can immediately write down a formula for the
expectation value of | det 𝜁 |:

E| det 𝜁 | = (2𝜋)−
5
2 (detΣ′)−

1
2

∫
R5

������det���
𝜁1 𝜁2 𝜁3
𝜁2 𝜁5 𝜁6
𝜁3 𝜁6 −𝜁1 − 𝜁4

���
������ 𝑒− 1

2 𝜁 ′ ·Σ′−1𝜁 ′
𝑑𝜁 ′

= (2𝜋)−
5
2 (detΣ′)−

1
2

∫
R5

|𝑄(𝜁 ′) | 𝑒−
1
2 𝜁 ′ ·Σ′−1𝜁 ′

𝑑𝜁 ′ ,

with the cubic polynomial Q being defined as in equation (1.5). Since 1
2 𝜁

′ · Σ′−1𝜁 ′ = 𝑄(𝜁 ′), where the
quadratic polynomial 𝑄 was defined in equation (1.6), and

detΣ′ =
5 · 1432

28 · 215 ,

we therefore have

E| det 𝜁 | = (2𝜋)
3
2 𝜈z .

The result then follows. �
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Remark 6.6. If one keeps track of the connection between 𝜁 and ∇𝑢(𝑥), it is not hard to see that the
first condition 𝜁1 + 𝜁5 + 𝜁9 = 0 in equation (6.6) is equivalent to div 𝑢(𝑥) = 0, while the remaining three
just mean that curl 𝑢(𝑥) = 𝑢(𝑥), at the points 𝑥 ∈ R3, where 𝑢(𝑥) = 0.

In particular, this shows that Φ𝑅 ∈ 𝐿1 (𝐶𝑘 (R3,R3), 𝜇𝑢). For the ease of notation, let us define the
ergodic mean operator

A𝑅Φ(𝑤) :=
1

|𝐵𝑅 |

∫
𝐵𝑅

Φ(𝜏𝑦𝑤) 𝑑𝑦 .

Since N (𝑅,X𝑤 ) is finite almost surely, cf. Proposition 6.4, the sandwich estimate proved in Lemma 6.1
implies that, almost surely,

1
|𝐵𝑅 |

∫
𝐵𝑅−𝑟

Φ𝑟 (𝜏𝑦𝑤) 𝑑𝑦 � Φ𝑅 (𝑤) �
1

|𝐵𝑅 |

∫
𝐵𝑅+𝑟

Φ𝑟 (𝜏𝑦𝑤) 𝑑𝑦

for any 0 < 𝑟 < 𝑅. Therefore, and using that |𝐵𝑅±𝑟 |/|𝐵𝑅 | = (1 ± 𝑟/𝑅)3, one has

|Φ𝑅 −A𝑅Φ𝑟 | �
����(1 + 𝑟

𝑅

)3
A𝑅+𝑟Φ𝑟 −A𝑅Φ𝑟

���� + ����(1 − 𝑟

𝑅

)3
A𝑅−𝑟Φ𝑟 −A𝑅Φ𝑟

���� .
For fixed r, equation (6.3) and Proposition 3.8 ensure that

A𝑅Φ𝑟
𝐿1

−−→
a.s.
EΦ𝑟 = 𝜈z (6.7)

as 𝑅 → ∞; also, note that the limit (which is independent of r) has been computed in Lemma 6.5 above.
Therefore, if we let 𝑅 → ∞ while r is held fixed, the right-hand side of the estimate before equation

(6.7) tends to 0 𝜇𝑢-almost surely and in 𝐿1 (𝜇𝑢), so that

Φ𝑅 −A𝑅Φ𝑟
𝐿1

−−→
a.s.

0

as 𝑅 → ∞. As A𝑅Φ𝑟
𝐿1

−−→
a.s.

𝜈z by (6.7), Theorem 1.5 is proven.

7. The Gaussian ensemble of Beltrami fields on the torus

7.1. Gaussian random Beltrami fields on the torus

As introduced in Section 1.3, a Beltrami field on the flat 3-torus T3 := (R/2𝜋Z)3 (or, equivalently, on
the cube of R3 of side length 2𝜋 with periodic boundary conditions) is a vector field on T3 satisfying
the equation

curl 𝑣 = 𝜆𝑣

for some real number 𝜆 ≠ 0. To put it differently, Beltrami fields on the torus are the eigenfields of
the curl operator. It is easy to see that such an eigenfield is divergence-free and has zero mean, that is,∫
T3 𝑣 𝑑𝑥 = 0.

Since Δ𝑣 + 𝜆2𝑣 = 0, it is well known (see, e.g., [10]) that the spectrum of the curl operator on the
3-torus consists of the numbers of the form 𝜆 = ±|𝑘 | for some vector with integer coefficients 𝑘 ∈ Z3.
For concreteness, we will henceforth assume that 𝜆 > 0; the case of negative frequencies is completely
analogous. Since k has integer coefficients, one can label the positive eigenvalues of curl by a positive
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integer L such that 𝜆𝐿 = 𝐿1/2. Let us define

Z𝐿 := {𝑘 ∈ Z3 : |𝑘 |2 = 𝐿},

and note that the set Z𝐿 is invariant under reflections (i.e., −𝑘 ∈ Z𝐿 if 𝑘 ∈ Z𝐿).
The Beltrami fields corresponding to the eigenvalue 𝜆𝐿 must be of the form

𝑣 =
∑

𝑘∈Z𝐿

𝑉𝑘 𝑒
𝑖𝑘 ·𝑥 , (7.1)

for some 𝑉𝑘 ∈ C3. Conversely, this expression defines a Beltrami field with frequency 𝜆𝐿 if and only if
𝑉𝑘 = 𝑉−𝑘 (which ensures that v is real-valued) and

𝑖𝑘

𝐿1/2 ×𝑉𝑘 = 𝑉𝑘 .

Since |𝑘 | = 𝐿1/2, we infer from the proof of Proposition 2.1 that the vector 𝑉𝑘 must be of the form

𝑉𝑘 = 𝛼𝑘 𝑝(𝑘/𝐿1/2) (7.2)

unless 𝑘 = (±𝐿1/2, 0, 0). Here, 𝛼𝑘 ∈ C is an arbitrary complex number and the Hermitian vector field
𝑝(𝜉) was defined in equation (2.4).

The multiplicity of the eigenvalue 𝜆𝐿 is given by the cardinality 𝑑𝐿 := #Z𝐿 . By Legendre’s three-
square theorem, Z𝐿 is nonempty (and therefore 𝜆𝐿 is an eigenvalue of the curl operator) if and only if
L is not of the form 4𝑎 (8𝑏 + 7) for nonnegative integers a and b.

Based on the formulas (7.1) and (7.2), we are now ready to define a Gaussian random Beltrami field
on the torus with frequency 𝜆𝐿 as

𝑢𝐿 (𝑥) :=
(

2𝜋
𝑑𝐿

)1/2 ∑
𝑘∈Z𝐿

𝑎𝐿
𝑘 𝑝(𝑘/𝐿1/2) 𝑒𝑖𝑘 ·𝑥 , (7.3)

where the real and imaginary parts of the complex-valued random variable 𝑎𝐿
𝑘 are standard Gaussian

variables. We also assume that these random variables are independent except for the constraint 𝑎𝐿
𝑘 =

𝑎𝐿
−𝑘 . The inessential normalization factor (2𝜋/𝑑𝐿)1/2 has been introduced for later convenience.

Note that 𝑢𝐿 (𝑥) is a smooth R3-valued function of the variable x, so it induces a Gaussian probability
measure 𝜇𝐿 on the space of 𝐶𝑘 -smooth vector fields on the torus, 𝐶𝑘 (T3,R3). As before, we will always
assume that 𝑘 � 4 to apply results from KAM theory. We will also employ the rescaled Gaussian
random field

𝑢𝐿,𝑧 (𝑥) := 𝑢𝐿

(
𝑧 + 𝑥

𝐿1/2

)
for any fixed point 𝑧 ∈ T3.

7.2. Estimates for the rescaled covariance matrix

In what follows, we will restrict our attention to the positive integers L, which we will henceforth call
admissible, that are not congruent with 0, 4 or 7 modulo 8. When L is congruent with 7 modulo 8,
Legendre’s three-square theorem immediately implies that Z𝐿 is empty. The reason to rule out numbers
congruent with 0 or 4 modulo 8 is more subtle: A deep theorem of Duke [9], which addresses a question
raised by Linnik, ensures that the set Z𝐿/𝐿1/2 becomes uniformly distributed on the unit sphere as
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𝐿 → ∞ through integers that are congruent to 1, 2, 3, 5 or 6 modulo 8. This ensures that

4𝜋
𝑑𝐿

∑
𝑘∈Z𝐿

𝜙(𝑘/𝐿1/2) →
∫
S

𝜙(𝜉) 𝑑𝜎(𝜉) (7.4)

as 𝐿 → ∞ through admissible values, for any continuous function 𝜙 on S. A particular case is when L
goes to infinity through squares of odd values, that is, when 𝐿 = (2𝑚 + 1)2 and 𝑚 → ∞.

The covariance kernel of the Gaussian random variable 𝑢𝐿 is the matrix-valued function

𝜅𝐿 (𝑥, 𝑦) := E𝐿 [𝑢𝐿 (𝑥) ⊗ 𝑢𝐿 (𝑦)] .

Following Nazarov and Sodin [30], we will be most interested in the covariance kernel of the rescaled
field 𝑢𝐿,𝑧 at a point 𝑧 ∈ T3, which is given by

𝜅𝐿,𝑧 (𝑥, 𝑦) = E𝐿

[
𝑢𝐿

(
𝑧 + 𝑥

𝐿1/2

)
⊗ 𝑢𝐿

(
𝑧 + 𝑦

𝐿1/2

)]
.

The following proposition ensures that, for large admissible frequencies L, the rescaled covariance
kernel, and suitable generalizations thereof, tend to those of a Gaussian random Beltrami field on R3,
𝜅(𝑥, 𝑦), defined in equation (3.2):

Proposition 7.1. For any 𝑧 ∈ T3, the rescaled covariance kernel 𝜅𝐿,𝑧 (𝑥, 𝑦) has the following properties:

(i) It is invariant under translations and independent of z. That is, there exists some function 𝜘𝐿 such
that

𝜅𝐿,𝑧 (𝑥, 𝑦) = 𝜘𝐿 (𝑥 − 𝑦) .

(ii) Given any compact set 𝐾 ⊂ R3, the covariance kernel satisfies

𝜅𝐿,𝑧 (𝑥, 𝑦) → 𝜅(𝑥, 𝑦)

in 𝐶𝑠 (𝐾 × 𝐾) as 𝐿 → ∞ through admissible values.

Proof. Let 𝛼, 𝛽 be any multi-indices, and recall the operator 𝐷 = −𝑖∇ introduced in Section 3. By
definition, and using the fact that 𝑢𝐿 is real,

𝐷𝛼
𝑥 𝐷

𝛽
𝑦 𝜅

𝐿,𝑧 (𝑥, 𝑦) = E𝐿

[
𝐷𝛼

𝑥 𝑢
𝐿

(
𝑧 + 𝑥

𝐿1/2

)
⊗ 𝐷

𝛽
𝑦𝑢

𝐿

(
𝑧 + 𝑦

𝐿1/2

)]
= E𝐿

[
𝐷𝛼

𝑥 𝑢
𝐿

(
𝑧 + 𝑥

𝐿1/2

)
⊗ 𝐷

𝛽
𝑦𝑢𝐿

(
𝑧 + 𝑦

𝐿1/2

)]
=

2𝜋
𝑑𝐿

∑
𝑘∈Z𝐿

∑
𝑘′ ∈Z𝐿

E
𝐿 (𝑎𝐿

𝑘 𝑎
𝐿
𝑘′ ) 𝑝

(
𝑘

𝐿1/2

)
⊗ 𝑝

(
𝑘 ′

𝐿1/2

) (
𝑘

𝐿1/2

) 𝛼 (
−𝑘 ′

𝐿1/2

)𝛽

𝑒
𝑖𝑘 · (𝑧+ 𝑥

𝐿1/2 )−𝑖𝑘′ · (𝑧+ 𝑦

𝐿1/2 ) .

The independence properties of the Gaussian variables 𝑎𝐿
𝑘 (which have zero mean) imply that

E
𝐿 (𝑎𝐿

𝑘 𝑎
𝐿
𝑘′ ) = 0 if 𝑘 ′ ∉ {𝑘,−𝑘}. When 𝑘 ′ = 𝑘 , one has

E
𝐿 [|𝑎𝐿

𝑘 |
2] = E𝐿 [(Re 𝑎𝐿

𝑘 )
2] + E𝐿 [(Im 𝑎𝐿

𝑘 )
2] = 2 ,

and when 𝑘 ′ = −𝑘 ,

E
𝐿 [(𝑎𝐿

𝑘 )
2] = E𝐿 [(Re 𝑎𝐿

𝑘 )
2] − E𝐿 [(Im 𝑎𝐿

𝑘 )
2] + 2𝑖 E𝐿 [(Re 𝑎𝐿

𝑘 ) (Im 𝑎𝐿
𝑘 )] = 0 .

https://doi.org/10.1017/fms.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.52


38 A. Enciso et al.

Therefore, E𝐿 (𝑎𝐿
𝑘 𝑎

𝐿
𝑘′ ) = 2𝛿𝑘𝑘′ and we obtain

𝐷𝛼
𝑥 𝐷

𝛽
𝑦 𝜅

𝐿,𝑧 (𝑥, 𝑦) = 4𝜋
𝑑𝐿

∑
𝑘∈Z𝐿

𝑝

(
𝑘

𝐿1/2

)
⊗ 𝑝

(
𝑘

𝐿1/2

) (
𝑘

𝐿1/2

) 𝛼 (
− 𝑘

𝐿1/2

)𝛽

𝑒𝑖𝑘 · (𝑥−𝑦)/𝐿1/2
.

In particular, this formula shows that 𝜅𝐿,𝑧 (𝑥, 𝑦) is independent of z and translation-invariant.
Using now the fact that Z𝐿 becomes uniformly distributed on S as 𝐿 → ∞ through admissible values,

we obtain via Equation (7.4) that

𝐷𝛼
𝑥 𝐷

𝛽
𝑦 𝜅

𝐿,𝑧 (𝑥, 𝑦) →
∫
S

𝜉𝛼 (−𝜉)𝛽 𝑝(𝜉) ⊗ 𝑝(𝜉) 𝑒𝑖 𝜉 · (𝑥−𝑦) 𝑑𝜎(𝜉)

= 𝐷𝛼
𝑥 𝐷

𝛽
𝑦

∫
S

𝑝(𝜉) ⊗ 𝑝(𝜉) 𝑒𝑖 𝜉 · (𝑥−𝑦) 𝑑𝜎(𝜉) .

By Proposition 3.4, the right-hand side equals 𝐷𝛼
𝑥 𝐷

𝛽
𝑦 𝜅(𝑥, 𝑦), so the result follows. �

7.3. A convergence result for probability measures

We shall next present a result showing that the probability measure defined by the rescaled field 𝑢𝐿,𝑧

converges, as 𝐿 → ∞, to that defined by the Gaussian random Beltrami field on R3, u, on compact sets
of R3.

Lemma 7.2. Fix some 𝑅 > 0 and denote by 𝜇𝐿,𝑧
𝑅 and 𝜇𝑢,𝑅, respectively, the probability measures on

𝐶𝑘 (𝐵𝑅,R
3) defined by the Gaussian random fields 𝑢𝐿,𝑧 and u. Then the measures 𝜇𝐿,𝑧

𝑅 converge weakly
to 𝜇𝑢,𝑅 as 𝐿 → ∞ through the admissible integers.

Proof. Let us start by noting that all the finite-dimensional distributions of the fields 𝑢𝐿,𝑧 converge to
those of u as 𝐿 → ∞. Specifically, consider any finite number of points 𝑥1, . . . , 𝑥𝑛 ∈ R3, any indices
𝑗1, . . . , 𝑗𝑛 ∈ {1, 2, 3}, and any multi-indices with |𝛼 𝑗 | � 𝑘 . Then it is not hard to see that the Gaussian
vectors of zero expectation

(𝜕𝛼1
𝑢𝐿,𝑧

𝑗1 (𝑥1), . . . , 𝜕𝛼𝑛
𝑢𝐿,𝑧

𝑗𝑛 (𝑥𝑛)) ∈ R𝑛

converge in distribution to the Gaussian vector

(𝜕𝛼1
𝑢 𝑗1 (𝑥1), . . . , 𝜕𝛼𝑛

𝑢 𝑗𝑛 (𝑥𝑛)) (7.5)

as 𝐿 → ∞. This follows from the fact that their probability density functions are completely determined
by the 𝑛 × 𝑛 variance matrix

Σ𝐿 :=
(
𝜕𝛼𝑙

𝑥 𝜕𝛼𝑚

𝑦 𝜅𝐿,𝑧
𝑗𝑙 𝑗𝑚

(𝑥, 𝑦)
��
(𝑥,𝑦)=(𝑥𝑙 ,𝑥𝑚)

)
1�𝑙,𝑚�𝑛

,

which converges to Σ := (𝜕𝛼𝑙

𝑥 𝜕𝛼𝑚

𝑦 𝜅 𝑗𝑙 𝑗𝑚 (𝑥, 𝑦) |(𝑥,𝑦)=(𝑥𝑙 ,𝑥𝑚) ) as 𝐿 → ∞ by Proposition 7.1. The latter, of
course, is the covariance matrix of the Gaussian vector (7.5).

It is well known that this convergence of arbitrary Gaussian vectors is not enough to conclude that
𝜇𝐿,𝑧

𝑅 converges weakly to 𝜇𝑢,𝑅. However, notice that, for any integer 𝑠 � 0, the mean of the 𝐻𝑠-norm
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of 𝑢𝐿,𝑧 is uniformly bounded:

E
𝐿,𝑧 ‖𝑤‖2

𝐻 𝑠 (𝐵𝑅) =
∑
|𝛼 |�𝑠

E

∫
𝐵𝑅

|𝐷𝛼𝑢𝐿,𝑧 (𝑥) |2 𝑑𝑥

=
∑
|𝛼 |�𝑠

∫
𝐵𝑅

tr
(
𝐷𝛼

𝑥 𝐷
𝛼
𝑦 𝜅

𝐿,𝑧 (𝑥, 𝑦)
��
𝑦=𝑥

)
𝑑𝑥

−−−−→
𝐿→∞

∑
|𝛼 |�𝑠

∫
𝐵𝑅

tr
(
𝐷𝛼

𝑥 𝐷
𝛼
𝑦 𝜅(𝑥, 𝑦)

��
𝑦=𝑥

)
𝑑𝑥 < 𝑀𝑠,𝑅 .

To pass to the last line, we have used Proposition 7.1 once more. As the constant 𝑀𝑠,𝑅 is independent
of L, Sobolev’s inequality ensures that

sup
𝐿
E

𝐿,𝑧 ‖𝑤‖2
𝐶𝑘+1 (𝐵𝑅) � 𝐶 sup

𝐿
E

𝐿,𝑧 ‖𝑤‖2
𝐻 𝑘+3 (𝐵𝑅) < 𝑀

for some constant M that only depends on R. For any 𝜀 > 0, this implies that for all admissible L large
enough

𝜇𝐿,𝑧
𝑅

({
𝑤 ∈ 𝐶𝑘 (𝐵𝑅,R

3) : ‖𝑤‖2
𝐶𝑘+1 (𝐵𝑅) > 𝑀/𝜀

})
< 𝜀 .

As the set {𝑤 ∈ 𝐶𝑘 (𝐵𝑅,R
3) : ‖𝑤‖2

𝐶𝑘+1 (𝐵𝑅)
� 𝑀/𝜀} is compact by the Arzelà–Ascoli theorem, we

conclude that the sequence of probability measures 𝜇𝐿,𝑧
𝑅 is tight. Therefore, a straightforward extension

to jet spaces of the classical results about the convergence of probability measures on the space of
continuous functions [7, Theorem 7.1], carried out in [34], permits to conclude that 𝜇𝐿,𝑧

𝑅 indeed
converges weakly to 𝜇𝑢,𝑅 as 𝐿 → ∞. The lemma is then proven. �

7.4. Proof of Theorem 1.6

We are now ready to prove our asymptotic estimates for high-frequency Beltrami fields on the torus.
The basic idea is that, by the definition of the rescaling,

𝜇𝐿 ({
𝑤 ∈ 𝐶𝑘 (T3,R3) : 𝑁h

𝑤 > 𝑚
})
� 𝜇𝐿,𝑧

𝑅

({
𝑤 ∈ 𝐶𝑘 (𝐵𝑅,R

3) : 𝑁h
𝑤 (𝑟) > 𝑚

})
provided that 𝑟 < 𝑅 < 𝐿1/2: this just means that the number of horseshoes that 𝑢𝐿 has in the whole
torus is certainly not less than those that are contained in a ball centered at any given point 𝑧 ∈ T3 of
radius 𝑟/𝐿1/2 < 1. The same is clearly true as well when one counts invariant solid tori, periodic orbits
or zeros instead.

For the ease of notation, let us denote byΦ𝑟 (𝑤) the quantity 𝑁h
𝑤 (𝑟), 𝑁 t

𝑤 (𝑟; [T ],J , 𝑉0), 𝑁o
𝑤 (𝑟; [𝛾], I)

or 𝑁z
𝑤 (𝑟) (that is, the number of nondegenerate zeros of w in 𝐵𝑟 ), in each case. See Sections 4 and 5

for precise definitions. We recall that 𝑁z
𝑤 (𝑟) = N (𝑟;X𝑤 ) with probability 1, cf. Section 6.3. Theorems

6.2 (for periodic orbits, invariant tori and horseshoes) and 1.5 (for zeros) ensure that, given any 𝑚1 > 0,
any 𝛿1 > 0, any closed curve 𝛾 and any embedded torus T , one can find some parameters I, J , 𝑉0 and
𝑟 > 0 such that

𝜇𝑢
({
𝑤 ∈ 𝐶𝑘 (R3,R3) : Φ𝑟 (𝑤) > 𝑚1

})
> 1 − 𝛿1 .

Of course, here we are simply using that the volume |𝐵𝑟 |, which appears in the statements of Theorems
6.2 and 1.5 but not here, can be made arbitrarily large by taking a large r.

Let us now fix a constant 𝑅 > 𝑟 and a point 𝑧 ∈ T3. We showed in Propositions 4.1, 4.6, 5.1 and 6.4
that the functionals that we are now denoting by Φ𝑟 are lower semicontinuous on the space 𝐶𝑘 (R3,R3)
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of divergence-free fields for 𝑘 � 4. This implies that the set

Ω𝑟 ,𝑅,𝑚1 := {𝑤 ∈ 𝐶𝑘 (𝐵𝑅,R
3) : Φ𝑟 (𝑤) > 𝑚1}

is open in 𝐶𝑘 (𝐵𝑅,R
3). Lemma 7.2 ensures that the measure 𝜇𝐿,𝑧

𝑅 converges weakly to 𝜇𝑢,𝑅 as 𝐿 → ∞
through the admissible integers. As the set Ω𝑟 ,𝑅,𝑚1 is open, this is well-known to imply (see, e.g., [7,
Theorem 2.1.iv]) that

lim inf
𝐿→∞

𝜇𝐿,𝑧
𝑅 (Ω𝑟 ,𝑅,𝑚1) � 𝜇𝑢,𝑅 (Ω𝑟 ,𝑅,𝑚1)

= 𝜇𝑢
({
𝑤 ∈ 𝐶𝑘 (R3,R3) : Φ𝑟 (𝑤) > 𝑚1

})
> 1 − 𝛿1 .

We observe that 𝛿1 > 0 can be taken arbitrarily small if r is large enough (and 𝑟/𝐿1/2 < 𝑅/𝐿1/2 < 1).
Now, for any 𝐴 � 1 and L large enough, we can take A pairwise disjoint balls in T3 of radius
𝑟/𝐿1/2 < 𝐴−1/3 centered at points {𝑧𝑎}𝐴

𝑎=1 ⊂ T3. Setting 𝑚 := 𝐴𝑚1, the previous analysis, which is
independent of the point z, readily implies that

𝜇𝐿 ({
𝑤 ∈ 𝐶𝑘 (T3,R3) : 𝑁X,e

𝑤 > 𝑚
})
� 1 − 2𝐴𝛿1 > 1 − 𝛿 ,

where the superscript X stands for h, t, o or z, thus proving the part of the statement concerning
the number of approximately equidistributed horseshoes, invariant tori isotopic to T , periodic orbits
isotopic to 𝛾 or zeros. In fact, concerning invariant tori, we observe that obviously 𝑁 t

𝑤 (𝑟; [T ]) = ∞
if 𝑁 t

𝑤 (𝑟; [T ],J , 𝑉0) � 1. Since the previous estimate ensures that 𝑁 t
𝑤 (𝑟; [T ],J , 𝑉0) > 𝑚1 with

probability 1 as 𝐿 → ∞, we infer that the probability of having an infinite number of (Diophantine)
invariant tori isotopic to T also tends to 1 as 𝐿 → ∞ through the admissible integers. However, this
does not provide any information about the expected volume of the invariant tori.

The result about the topological entropy follows from the following observation. If we denote by 𝜙𝐿
𝑡

the time-t flow of the Beltrami field 𝑢𝐿 (𝑧 + ·), and by 𝜙𝑡 the flow of the rescaled field 𝑢𝐿,𝑧 , it is evident
that

𝜙𝐿
𝑡 =

1
𝐿1/2 𝜙𝐿1/2𝑡 .

Then, the topological entropy ℎtop(𝑢𝐿), which is defined as the entropy of its time-1 flow, satisfies

ℎtop(𝑢𝐿) = ℎtop (𝜙𝐿
1 ) = ℎtop

( 1
𝐿1/2 𝜙𝐿1/2

)
= ℎtop (𝜙𝐿1/2 ) = 𝐿1/2ℎtop(𝜙1) (7.6)

= 𝐿1/2ℎtop (𝑢𝐿,𝑧) . (7.7)

In the third equality, we have used that the topological entropy does not depend on the space scale (or
equivalently, on the metric), and in the fourth equality we have used Abramov’s well-known formula
(see, e.g., [19]). Since the rescaled field has a horseshoe in a ball of radius r with probability 1 as 𝐿 → ∞,
and a horseshoe has positive topological entropy, say larger than some constant 𝜈h

∗ (see Proposition
5.1), equation (7.6) implies that the topological entropy of 𝑢𝐿 is at least 𝜈h

∗𝐿
1/2.

Finally, we prove the statement about the expected values. As above, we use the functional Φ𝑟 (𝑤) to
denote the number of different objects (horseshoes, solid tori or periodic orbits). The case of zeros will
be considered later. Note that, since Φ𝑟 is lower semicontinuous, and 𝜇𝐿,𝑧 converges weakly to 𝜇𝑢 as
𝐿 → ∞ by Lemma 7.2, it is standard that [7, Exercise 2.6]

lim inf
𝐿→∞

E
𝐿,𝑧 Φ𝑟

|𝐵𝑟 |
� E

Φ𝑟

|𝐵𝑟 |
� 𝜂 > 0 ,

https://doi.org/10.1017/fms.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.52


Forum of Mathematics, Sigma 41

where we have picked some fixed, large enough r. Here, we have used the asymptotics in R3, given by
Theorem 6.2, to infer that the last expectation is positive if r is large. Notice that the constant 𝜂 depends
on [𝛾], [T ], I or J depending on the functional that we are considering, but we shall not write this
dependence explicitly. Furthermore, as the distribution of the measure 𝜇𝐿,𝑧

𝑅 is in fact independent of z
by Proposition 7.1, this ensures that there is some 𝐿0 independent of z such that

E
𝐿,𝑧 Φ𝑟

|𝐵𝑟 |
>

𝜂

2

for all admissible 𝐿 > 𝐿0 and all 𝑧 ∈ T3.
Now, given any admissible 𝐿 > 𝐿0, it is standard that we can cover the torus T3 by balls {𝐵𝑟𝐿 (𝑧𝑎) :

1 � 𝑎 � 𝐴𝐿} of radius 𝑟𝐿 := 2𝑟/𝐿1/2 centered at 𝑧𝑎 ∈ T3 such that the smaller balls 𝐵𝑟𝐿/2(𝑧𝑎) are
pairwise disjoint. This implies that 𝐴𝐿 � 𝑐𝐿

3
2 for some dimensional constant c. The expected value of,

say, the number of horseshoes of 𝑢𝐿 in T3 can then be controlled as follows, for any admissible 𝐿 > 𝐿0:

E
𝐿𝑁h

𝐿3/2 �
𝐴𝐿∑
𝑎=1

|𝐵𝑟 |
𝐿3/2 E

𝐿,𝑧𝑎 Φ𝑟

|𝐵𝑟 |

�
𝑐 |𝐵𝑟 |𝜂

2
> 𝜈∗

for some positive constant 𝜈∗ independent of L. An analogous estimate holds for the expected value
E

𝐿𝑁o ([𝛾]).
To estimate the volume of ergodic invariant tori isotopic to T , we can proceed as follows. For any

admissible 𝐿 > 𝐿0, we have:

E
𝐿𝑉 t ([T ]) �

𝐴𝐿∑
𝑎=1

|𝐵𝑟𝐿/2 | E𝐿,𝑧𝑎 𝑉
t (𝑟; [T ],J )

|𝐵𝑟 |

�
𝐴𝐿∑
𝑎=1

|𝐵𝑟𝐿/2 |𝑉0 E
𝐿,𝑧𝑎 Φ𝑟

|𝐵𝑟 |

�
𝑉0𝜂

2

𝐴𝐿∑
𝑎=1

|𝐵𝑟𝐿/2 | > 𝜈t
∗([T ])

for some positive constant 𝜈t
∗([T ]) independent of L. Here, we have used that the balls 𝐵𝑟𝐿/2(𝑧𝑎) are

pairwise disjoint and the sum of their volumes is, by construction, larger than |T3 |/8.
Lastly, in the following lemma we consider the case of zeros:

Lemma 7.3. E𝐿 (𝐿− 3
2 𝑁z

𝑢𝐿 ) → (2𝜋)3𝜈z as 𝐿 → ∞ through admissible values.

Proof. Let us use the notation

𝑄𝑅 := (−𝑅𝜋, 𝑅𝜋) × (−𝑅𝜋, 𝑅𝜋) × (−𝑅𝜋, 𝑅𝜋)

for the open cube of side 2𝜋𝑅 in R3 and call 𝑁z,∗
𝑢𝐿 the number of zeros of 𝑢𝐿 (or rather of its periodic

lift to R3) that are contained in 𝑄1. By Bulinskaya’s lemma [4, Proposition 6.11], with probability 1 the
zero set of 𝑢𝐿 is nondegenerate (and hence a finite set of points) and the lift of 𝑢𝐿 does not have any
zeros on the boundary 𝜕𝑄1. Therefore, for any positive integer R,

𝑁z
𝑢𝐿 = 𝑁z,∗

𝑢𝐿

almost surely. In particular, both quantities have the same expectation.
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Let us now take some small positive real r and denote by 𝑁z
𝑢𝐿 (𝑦, 𝑟) the number of zeros of 𝑢𝐿 (or

rather of its lift to R3) that are contained in the ball 𝐵𝑟 (𝑦). The argument we used to prove the estimate
for N (𝑅;X ) in Lemma 6.1 (starting now from the number of zeros in 𝑄1 instead of in 𝐵𝑅) shows that∫

𝑄1−𝑟

𝑁z
𝑢𝐿 (𝑧, 𝑟)
|𝐵𝑟 |

𝑑𝑧 � 𝑁z,∗
𝑢𝐿 �

∫
𝑄1+𝑟

𝑁z
𝑢𝐿 (𝑧, 𝑟)
|𝐵𝑟 |

𝑑𝑧 .

Note now that ∫
𝑄1±𝑟

𝑁z
𝑢𝐿 (𝑧, 𝑟)
|𝐵𝑟 |

𝑑𝑧 = 𝐿
3
2

∫
𝑄1±𝑟

𝑁z
𝑢𝐿,𝑧 (𝑟𝐿1/2)
|𝐵𝑟𝐿1/2 |

𝑑𝑧 .

The expected value of this quantity is

E
𝐿

∫
𝑄1±𝑟

𝑁z
𝑢𝐿,𝑧 (𝑟𝐿1/2)
|𝐵𝑟𝐿1/2 |

𝑑𝑧 =
∫

𝑄1±𝑟

E
𝐿,𝑧𝑁z

𝑢𝐿,𝑧 (𝑟𝐿1/2)
|𝐵𝑟𝐿1/2 |

𝑑𝑧

= |𝑄1±𝑟 |
E

𝐿,𝑧𝑁z
𝑢𝐿,𝑧 (𝑟𝐿1/2)
|𝐵𝑟𝐿1/2 |

.

To pass to the second line, we have used that the expected value inside the integral is independent of the
point z by Proposition 7.1; in particular, this value is independent of the point z one considers.

We can now argue just as in the case of R3, discussed in detail in Subsection 6.3, so we will just
sketch the arguments and refer to that subsection for the notation. The Kac–Rice formula ensures

E
𝐿,𝑧𝑁z

𝑢𝐿,𝑧 (𝑟𝐿1/2)
|𝐵𝑟𝐿1/2 |

= (2𝜋)−
3
2E

𝐿,𝑧 ({
| det∇𝑢𝐿,𝑧 (0) | : 𝑢𝐿,𝑧 (0) = 0

})
,

and this conditional expectation can be transformed into an unconditional one just as in the proof of
Lemma 6.5:

E
𝐿,𝑧𝑁z

𝑢𝐿,𝑧 (𝑟𝐿1/2)
|𝐵𝑟𝐿1/2 |

= (2𝜋)−3/2
E

𝐿,𝑧 (| det 𝜁𝐿,𝑧 |)

=
(2𝜋)−3/2

(2𝜋)5/2(detΣ′𝐿,𝑧)1/2

∫
R5

𝑄𝐿,𝑧 (𝜁 ′) =: 𝜈z,𝐿,𝑧 .

The fact that the covariance matrix of 𝑢𝐿,𝑧 converges to that of u as 𝐿 → ∞ by Proposition 7.1 implies
that

lim
𝐿→∞

𝜈z,𝐿,𝑧 = 𝜈z .

Hence, writing the aforementioned sandwich estimate as

|𝑄1−𝑟 |𝜈z,𝐿,𝑧 �
E

𝐿𝑁z
𝑢𝐿

𝐿3/2 � |𝑄1+𝑟 |𝜈z,𝐿,𝑧

and letting 𝐿 → ∞ and then 𝑟 → 0, we infer that

lim
𝐿→∞

E
𝐿𝑁z

𝑢𝐿

𝐿3/2 = |𝑄1 |𝜈z = (2𝜋)3𝜈z .

The lemma follows. �

Theorem 1.6 is then proven.
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Appendix A. Fourier-theoretic characterization of Beltrami fields

For the benefit of the reader, in this appendix we describe what polynomially bounded Beltrami fields
look like in Fourier space. As Beltrami fields are a particular class of vector-valued monochromatic
waves, it is convenient to start the discussion by considering polynomially bounded solutions to the
Helmholtz equation

Δ𝐹 + 𝐹 = 0 .

As before, we consider the case of monochromatic waves on R3, but the analysis applies essentially
verbatim to any other dimension. The Fourier transform of this equation shows that

(1 − |𝜉 |2)𝐹 (𝜉) = 0 ,

so the support of 𝐹 must be contained in the unit sphere, S. In spherical coordinates 𝜌 := |𝜉 | ∈ R+ and
𝜔 := 𝜉/|𝜉 | ∈ S, it is standard that this is equivalent to saying that 𝐹 is a finite sum of the form

𝐹 =
𝑁∑

𝑛=1
𝐹𝑛 (𝜔) 𝛿 (𝑛) (𝜌 − 1) .

Here, 𝛿 (𝑛) is the 𝑛th derivative of the Dirac measure and 𝐹𝑛 is a distribution on the sphere, so 𝐹𝑛 ∈ 𝐻𝑠𝑛 (S)
for some 𝑠𝑛 ∈ R (because any compactly supported distribution is in a Sobolev space, possibly of
negative order). Note that F is real-valued if and only if the functions 𝐹𝑛 are Hermitian. Of course, there
are also monochromatic waves that are not polynomially bounded, such as 𝐹 := 𝑒𝑥1 cos(

√
2 𝑥2).

A classical result due to Herglotz [26, Theorem 7.1.28] ensures that if F is a monochromatic wave
with the sharp fall-off at infinity, that is, such that

lim sup
𝑅→∞

1
𝑅

∫
𝐵𝑅

𝐹2 𝑑𝑥 < ∞ ,

then there is a Hermitian vector-valued function 𝑓 ∈ 𝐿2 (S) such that 𝐹 = 𝑓 𝛿(𝜌 − 1). Furthermore,
the value of the above limit is in the interval [𝐶1‖𝐹‖2

𝐿2 (S) , 𝐶2‖𝐹‖2
𝐿2 (S) ] for some constants 𝐶1, 𝐶2. This

bound means that, on an average sense, |𝐹 (𝑥) | decays as 𝐶/|𝑥 |. The prime example of this behavior is
given by 𝑓 = 1, which corresponds to 𝐹 (𝑥) = 𝑐 |𝑥 |−1/2𝐽1/2 (|𝑥 |).

The expression (1.3) corresponds to the case 𝑁 = 0 above, since the function 𝐹0 with 𝐹0 = 𝑓 (𝜔) 𝛿(𝜌−
1) is precisely

𝐹0 (𝑥) =
∫
S

𝑒𝑖𝑥 ·𝜔 𝑓 (𝜔) 𝑑𝜎(𝜔) .

Also, if 𝑓 ∈ 𝐻−𝑘 (S) with 𝑘 � 0 but not necessarily in 𝐿2 (S), the function 𝐹0 is bounded as [15,
Appendix A]

sup
𝑅>0

1
𝑅

∫
𝐵𝑅

𝐹0 (𝑥)2

1 + |𝑥 |2𝑘
𝑑𝑥 � 𝐶‖ 𝑓 ‖2

𝐻−𝑘 (S) . (A.1)

Hence, in this case, 𝐹0 is bounded, on an average sense, by 𝐶 |𝑥 |𝑘−1. Therefore, if 𝑓 ∈ 𝐻−1(S), 𝐹0 is
uniformly bounded in average sense.

If f is a Gaussian random field, as considered in the Nazarov–Sodin theory (see equation (1.3a)),
we showed in Proposition 3.2 that f is almost surely in 𝐻−1−𝛿 (S) for all 𝛿 > 0 and not in 𝐿2 (S). This
behavior morally corresponds to functions that are bounded on a average sense but do not decay at
infinity, as illustrated by the function 𝐹0 := cos 𝑥1 generated by 𝑓 := 1

2 [𝛿𝜉+ (𝜉) + 𝛿𝜉− (𝜉)]. This is the
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kind of behavior one needs to describe the expected local behavior of a high-energy eigenfunction on a
compact manifold as one zooms in at a given point.

The monochromatic wave defined as 𝐹𝑛 := 𝑓 (𝜔) 𝛿 (𝑛) (𝜌 − 1) reads, in physical space, as

𝐹𝑛 (𝑥) =
∫
S

∫ ∞

0
𝑒𝑖𝜌𝑥 ·𝜔 𝑓 (𝜔) 𝜌2 𝛿 (𝑛) (𝜌 − 1) 𝑑𝜌 𝑑𝜎(𝜔) = (−1)𝑛

∫
S

𝑓 (𝜔) 𝜕𝑛
𝜌 |𝜌=1 (𝜌2𝑒𝑖𝜌𝑥 ·𝜔) 𝑑𝜎(𝜔) .

Note that the 𝑛th derivative term involves an 𝑛th power of x. Therefore, using the bound (A.1), one easily
finds that 𝐹𝑛 is bounded on average as 𝐶 |𝑥 |𝑛+𝑘−1 if 𝑓 ∈ 𝐻−𝑘 (S); explicit examples with this growth
can be easily constructed by taking f to be either a constant for 𝑘 = 0 or the (𝑘 − 1)th derivative of the
Dirac measure for 𝑘 � 1. Consequently, picking f as in equation (1.3a), the bound (A.1) morally leads
to thinking of 𝐹𝑛 as a function that grows as |𝑥 |𝑛 at infinity, which cannot be the localized behavior of
an eigenfunction. This is the rationale for defining a random monochromatic wave as in equations (1.3a)
and (1.3b). In this direction, let us recall that the relation between random monochromatic waves and
zoomed-in high-energy eigenfunctions on various compact manifolds is an influential long-standing
conjecture of Berry [6]. A precise form of this relation has been recently established in the case of the
round sphere and of the flat torus [29, 30, 31], which heuristically shows that equations (1.3a) and (1.3b)
is indeed the proper definition of random monochromatic waves for this purpose.

The reasoning leading to the definition of a random Beltrami field as equaiton (1.3) is completely
analogous and the fact that one can relate Gaussian random Beltrami fields on R3 to high-frequency
Beltrami fields on the torus just as in the case of the Nazarov–Sodin theory heuristically ensures that
this is indeed the appropriate definition. For completeness, let us record that, just as in the case of
monochromatic random waves, the Fourier transform of a polynomially bounded Beltrami field u is a
finite sum of the form

𝑢̂ =
𝑁∑

𝑛=1
𝑓𝑛 (𝜔) 𝛿 (𝑛) (𝜌 − 1) ,

where now 𝑓𝑛 is a Hermitian C3-valued distribution on S. For u to be a Beltrami field, there is an
additional constraint on 𝑓𝑛 coming from the fact that not every distribution supported on S satisfies
the equation 𝑖𝜉 × 𝑢̂(𝜉) = 𝑢̂(𝜉). A straightforward computation shows that this constraint amounts to
imposing that

𝑁∑
𝑛= 𝑗

(
𝑛

𝑗

)
𝛼𝑛− 𝑗 ,2 𝑓𝑛 (𝜔) = 𝑖𝜔 ×

𝑁∑
𝑛= 𝑗

(
𝑛

𝑗

)
𝛼𝑛− 𝑗 ,3 𝑓𝑛 (𝜔)

on S for all 0 � 𝑗 � 𝑁 . Here, 𝛼𝑘,𝑙 :=
∏𝑘−1

𝑚=0(𝑙 − 𝑚) with the convention that 𝛼0,𝑙 := 1. To see this, it
suffices to note that the action of 𝑢̂ and 𝑖𝜉 × 𝑢̂ on a vector field 𝑤 ∈ 𝐶∞

𝑐 (R3,R3) is

〈𝑢̂, 𝑤〉 =
𝑁∑

𝑛=0
(−1)𝑛

∫
S

𝑓𝑛 (𝜔) · 𝜕𝑛
𝜌 |𝜌=1

[
𝜌2𝑤(𝜌𝜔)

]
𝑑𝜎(𝜔) ,

〈𝑖𝜉 × 𝑢̂, 𝑤〉 =
𝑁∑

𝑛=0
(−1)𝑛

∫
S

𝑖𝜔 × 𝑓𝑛 (𝜔) · 𝜕𝑛
𝜌 |𝜌=1

[
𝜌3𝑤(𝜌𝜔)

]
𝑑𝜎(𝜔) ,

expand the 𝑛th derivative using the binomial formula and note that 𝛼𝑘,𝑙 is the 𝑘 th derivative of 𝜌𝑙 at 𝜌 = 1.
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