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SELF-EMBEDDINGS OF MODELS OF ARITHMETIC; FIXED POINTS,
SMALL SUBMODELS, AND EXTENDABILITY

SAEIDEH BAHRAMI

Abstract. In this paper we will show that for every cut I of any countable nonstandard model M
of IΣ1, each I-small Σ1-elementary submodel of M is of the form of the set of fixed points of some proper
initial self-embedding of M iff I is a strong cut of M. Especially, this feature will provide us with some
equivalent conditions with the strongness of the standard cut in a given countable model M of IΣ1. In
addition, we will find some criteria for extendability of initial self-embeddings of countable nonstandard
models of IΣ1 to larger models.

§1. Introduction. In 1973, Harvey Friedman proved a striking result for countable
nonstandard models of finite set theory, and consequently for countable models of
Peano arithmetic (PA) stating that every countable nonstandard model of PA carries a
proper initial self-embedding; here an initial self-embedding is a self-embedding whose
image is an initial segment of the ground model [5]. Afterward, many versions of
Friedman’s style theorem appeared in the literature of model theory of arithmetic
(e.g., see [3] or [16]). In [1], it is shown that some results on the set of fixed
points of automorphism of countable recursively saturated models of PA can be
generalized for initial self-embeddings of countable nonstandard models of IΣ1 (see
Theorem 2.4). In this paper, inspired by results about automorphisms of models of
PA, we will investigate some more properties of countable models of IΣ1 through
initial self-embeddings.

In [4], Enayat generalized the notion of a small submodel from [14], to I-small1

for a given cut I of a model of PA (see Definition 1), and proved that:

Theorem 1.1 (Enayat). Suppose M |= PA is countable, recursively saturated, and
I is a strong cut of M. Moreover, let M0 be an I -small elementary submodel of M.
Then there exists some automorphism j of M such thatM0 is equal to the set of fixed
points of j.

In Section 3 of this paper, after investigating some basic properties of I -small
Σ1-elementary submodels of a countable model M of IΣ1 for some cut I of M, we
will refine the above theorem for initial self-embeddings; i.e., we will show that I is
strong in M iff every I -small Σ1-elementary submodel of M is equal to the set of

Received April 24, 2022.
2020 Mathematics Subject Classification. Primary 03C62, 03F30, 03H15.
Key words and phrases. Peano arithmetic, nonstandard model, self-embedding, fixed point, strong cut,

small submodel.
1In his paper [4], Enayat called such submodels I -coded. The name I-small is borrowed from Kossak–

Schmerl’s book [13].
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SELF-EMBEDDINGS OF MODELS OF ARITHMETIC 1045

fixed points of some proper initial self-embedding of M. This result also generalizes
one of the main theorems of [1] (see Corollary 4.3).

Section 4 of this paper is devoted to the investigation of equivalent conditions to
strongness of the standard cut, denoted by N, in a countable model of IΣ1, through
the set of fixed points of initial self-embeddings. In [12], it is shown that:

Theorem 1.2 (Kossak–Schmerl). Suppose M is a countable recursively saturated
model of PA. If N is not strong in M, then for every automorphism j of M the set of
fixed points of j is isomorphic to M.

In Corollary 4.2, we will show that for every countable nonstandard model M of
IΣ1, if N is not strong in M, then the set of fixed points of any initial self-embedding
j of M is either a model of ¬BΣ1, or is isomorphic to some proper initial segment
of M. Then, we conclude that N is strong in a countable recursively saturated model
M of PA iff there exists some proper initial self-embedding j of M such that the
set of fixed points of j is small in M and consequently it is not isomorphic to any
proper initial segment of M.

In Section 5, we will study the extendability of initial embeddings of models of
IΣ1 to larger models. In particular, we will prove that any isomorphism between
two Σ1-elementary initial segment of a countable nonstandard model M of IΣ1 is
extendable to some initial self-embedding of M iff it preserves coded subsets (for
the case of automorphisms of countable recursively saturated models of PA this
condition is only a necessary condition for extendability to larger models [10]).

§2. Preliminaries. In this section we will review some definitions and results which
are used through this paper. All unexplained notions can be found in [6, 7].

• Through this paper, we will work in the language of arithmetic
LA := {+, ., <, 0, 1}. For a given class Γ of L-formulas (where L ⊇ LA), IΓ is
the fragment of PA∗ := PA(L) with the induction scheme limited to formulas
of Γ. The Γ-Collection scheme, denoted by BΓ, consists of the formulas of the
following form for every ϕ ∈ Γ:

∀z̄, u ((∀x < u ∃y ϕ(x, y, z̄)) → ∃v (∀x < u ∃y < v ϕ(x, y, z̄))).

Moreover, the strong Γ-Collection scheme, denoted by B+Γ, consists of the
formulas of the following form for every ϕ ∈ Γ:

∀z̄, u ∃v ∀x < u (∃y ϕ(x, y, z̄) → ∃y < v ϕ(x, y, z̄)).

It is folklore that IΣn+1 � B+Σn+1 � BΣn+1 for all n ∈ �; moreover, for every
n ∈ �, IΣn � BΣn+1 and IΣn � ¬BΣn+1 (see [6, Chapter I]).

• Within IΔ0 + Exp, the Δ0-formula xEy denotes the Ackermann’s membership
relation, asserting that “the x-th bit of the binary expansion of y is 1.” For every
M |= IΔ0 + Exp and each a ∈M , aE denotes the set of E-members of a in M.
Moreover, the Δ0-formulas Card(x) = y, 〈x̄〉 = y, Len(x) = y, (x)y = z, and
x �y= z, respectively, express that “there exists some bijection between y and the
set coded by x,” “the sequence number of x̄ is y,” “length of the sequence coded
by x is y,” “the yth element of the sequence number x is z,” and “the restriction
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of the sequence number x to y is z.” In addition, for every formula ϕ(x), by the
formula y = �x ϕ(x) we mean “y is the least element such that ϕ(y) holds.”
Furthermore, for every n ∈ � there exist LA-formulas SatΣn and SatΠn which
define the satisfaction predicate for Σn-formulas and Πn-formulas, respectively,
in an ambient model. For every natural number n > 0, it can be shown that
SatΣn and SatΠn are Σn and Πn, respectively, in IΣ1. Moreover, SatΔ0 ∈ ΔIΣ1

1
[6, Chapter I, Theorem 1.75]. If M is a nonstandard model of IΣn, the
aforementioned feature along with Σn-Overspill in M imply that every coded
Σn-type and every coded bounded Πn-type is realized in M.

• Σn-Pigeonhole Principle. For every n > 0, if M |= IΣn, a ∈M , and ϕ is a
Σ1-formula which defines a function from a + 1 into a in M, then ϕ is not
one-to-one [6].

• Given LA-structure M and subset X of M, for every n > 0, we define:
– Kn(M;X ) :=the set of all Σn-definable element of M with parameters

from X .
– In(M;X ) := {x : x ≤ a for some a ∈ Kn(M;X )} .
– Hn(M;X ) :=

⋃
k∈� Hnk(M;X ), where:

Hn0(M;X ) := In(M;X ), and

Hnk+1(M;X ) := In(M; Hnk(M;X )).

– K(M;X ) := ∪n∈�Kn(M;X ).
(When X = ∅, we omit X from the notations.) Clearly, In(M;X ) and
Hn(M;X ) are initial segments of M. The following properties of these
submodels of M are well-known (see, e.g., [6, Chapter IV, Theorem 1.33]):

Theorem 2.1. Suppose n > 0, and M |= IΣn and X ⊆M , then the following
hold:

(1) Kn(M;X ) ≺Σn M, and if Kn(M) is nonstandard, then Kn(M) |= ¬BΣn.
(2) In(M;X ) ≺Σn–1 M and In(M;X ) |= BΣn.
(3) Hn(M;X ) ≺Σn M and Hn(M;X ) |= BΣn+1.

• A given structure M is called recursively saturated if it realizes every recursive
type with finite number of parameters inM . In [2], Barwise and Shilipf showed
that any countable model Mof PA is recursively saturated iff it carries an
inductive satisfaction class; here an inductive satisfaction classS ofM is a subset
ofM which contains 〈ϕ, a〉 such that (1) M |= Form(ϕ), (2) (M;S) |= PA∗,
and (3) (M;S) satisfies Tarski’s inductive conditions for satisfaction (for a
more precise definition see [7]). Smoryński in [15], by generalizing Barwise–
Ressayre expandability result, proved that for every countable recursively
saturated model Mof PA there exists some inductive satisfaction class S such
that (M;S) is also recursively saturated.

• For every cut I of M the I-Standard System of M, denoted by SSyI (M), is
the family of subsets of I of the form I ∩ aE for some a ∈M . By SSy(M)
we mean SSyN(M). It is well-known that for every model M of IΣn (for
n > 0), SSyI (M) is equal to the family of intersections of Σn-definable (with
parameters) subsets of M with I (see [6, Chapter I]). Moreover, it is easy to
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check that if N is an initial segment and a submodel of M containing I, then
SSyI (M) = SSyI (N ) (see [7]).

• A given model M of IΔ0 is called 1-tall if K1(M; a) is cofinal in M for no
a ∈M ; and it is called 1-extendable if it possesses some end extension N |= IΔ0
such that ThΣ1(M) = ThΣ1 (N ). Dimitracopoulos and Paris [3] showed that:

Theorem 2.2 (Dimitracopoulos–Paris). (1) For any two countable and
nonstandard models M and N of IΔ0 + Exp such that M is 1-extendable
and N is 1-tall, there exists a proper initial embedding from M into N iff
SSy(M) = SSy(N ) and ThΣ1(M) ⊆ ThΣ1(N ).

(2) Any 1-tall countable modelM of BΣ1 + Exp in whichN is not Π1-definable
(without parameters), is 1-extendable.

• A cut I of a model M is called strong if for every coded functionf of M whose
domain contains I, there exists some e > I such that f(i) ∈ I iff f(i) < e for
all i ∈ I . Paris and Kirby, in [9], proved that I is a strong cut of a model M of
IΔ0 + Exp iff (I,SSyI (M)) |= ACA0 (here ACA0 is the subsystem of second
order arithmetic with the comprehension scheme restricted to formulas with
no second order quantifiers).

• For given LA-structures M and N , an (a proper) initial embedding j is an
embedding from M into N whose image is an (a proper) initial segment of N .
To every self-embedding j of M, we associate two subsets of M:

Ifix(j) := {m ∈M : ∀x ≤ m j(x) = x}, and

Fix(j) := {m ∈M : j(m) = m}.

In [1], it is shown that for every model M of IΣ1, and any self-embedding
j of M, it holds that K1(M) ≺Σ1 Fix(j) ≺Σ1 M. Consequently, Fix(j) |=
IΔ0 + Exp. The following results on the set of fixed points of initial self-
embeddings were also proved in [1]:

Theorem 2.3 (B-Enayat). Let M and N be countable nonstandard models of
IΣ1, c ∈M and d, b ∈ N , and let I be a proper cut shared by M and N which is
closed under exponentiation. Then the following are equivalent:

(1) There exists some proper initial embedding j from M into N such that
I ⊆ Ifix(j), j(M ) < b, and j(c) = d .

(2) SSyI (M) = SSyI (N ), and for every Δ0-formula �(z, x, y) and every i ∈ I
it holds that

M |= ∃z �(z, c, i) ⇒ N |= ∃z < b �(z, d, i).

Remark 1. With the above assumptions, suppose a ∈M ∩N such that for
all Δ0-formula � and for every i ∈ I it holds that

M |= ∃z �(z, c, (a)i ) ⇒ N |= ∃z < b �(z, d, (a)i ).

Then, by an appropriate modification in the proof of Theorem 2.3, we can
manage to construct the above proper initial embedding j with the additional
feature that j((a)i ) = (a)i for every i ∈ I .
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Theorem 2.4 (B-Enayat). Suppose M |= IΣ1 is countable and nonstandard
and I is a cut of M. Then the following hold:

(1) I is closed under exponentiation iff there exists some proper initial self-
embedding j of M such that Ifix(j) = I .

(2) I is strong in M and I ≺Σ1 M, iff there exists some proper initial self-
embedding j of M such that Fix(j) = I .

(3) N is strong in M iff there exists some proper initial self-embedding j of
M such that Fix(j) = K1(M).

The following lemma from [1] will be useful in Section 4 of this paper:

Lemma 2.5. Suppose M |= IΔ0 + Exp in which N is not a strong cut, then for
any self-embedding j of M, the following hold:

(1) The nonstandard fixed points of j are downward cofinal in the nonstandard
part of M.

(2) For every element a ∈M , and m ∈ Fix(j) there exists an element
b ∈ Fix(j) such that

ThΣ1(M; a,m) ⊆ ThΣ1(M; b,m).

Convention. Suppose M |= IΣ1 and 〈�r : r ∈M 〉 is a canonical enumeration
of all Δ0-formulas within M as in [6, Chapter I]. To be more precise, 〈�r :
r ∈M 〉 is an enumeration of all Δ0-formulas of M (containing nonstandard
formulas) such that for every r ∈M it holds that

• �r is a standard Δ0-formula for all standard r ∈M , and
• for every Δ0-formula � there exists some standard r ∈M such that M

believes that r is the Gödel number of �.
(For more details see [6] or [7].)
Now, for every r ∈M , we define the following notations:

• fr(♦) = � denotes the following partial Σ1-function in M:

∃z((z)0 = � ∧ z = �ySatΔ0(�r(♦, (y)0, (y)1)).

• The notation [fr(x̄) ↓] denotes the Σ1-formula ∃z, y SatΔ0 (�r(x̄, y, z)),
and [fr(x̄) ↓]<w stands for the formula ∃z, y < w SatΔ0(�r(x̄, y, z)).

• Let F(M) to be the collection of all ∅-definable partial Σ1-functions in M.
First note that, it is shown in [1] that

K1(M; a) = {f(a) : f ∈ F(M) and M |= [f(a) ↓]}.

Clearly, fr ∈ F(M) for all standard r ∈M . Moreover, by a little bit of effort
we can show that for every f ∈ F(M) there exists some standard r ∈M such
that f = fr (for details see [1, Lemma 3.1.2]).

As a result, if M and N are two models of IΔ0 such that ThΣ1(M) =
ThΣ1(N ), then F(M) = F(N ) = F := {fn : n ∈ N}.

§3. I-small Σ1-elementary submodels. In [14], Lascar introduced a class of
submodels of models of arithmetic, namely small submodels, which resemble those
submodels of a model of set theory whose cardinality is less than the cardinality
of the ground model. Then, Enayat inspired by a result of Schmerl (stated without
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proof as Theorem 5.7 in [8]), generalized this notion in [4]. In this section we will
prove some results about these submodels.

Definition 1. For a given proper cut I of a modelMof IΔ0 + Exp, subsetX ofM
is called I-small in M if there exists some a ∈M such that X = {(a)i : i ∈ I }, and
(a)i �= (a)j for all distinct i, j ∈ I . When I = N, we simply use small for N-small.

It is easy to see that for every model M of IΣ1, each proper cut I of M is
I -small. Moreover, for every a ∈M , K1(M; a) is small in M. In [12], it is shown
that every recursively saturated model M of PA possesses some small submodel
which is not finitely generated. This result can be generalized for I -small submodels,
when I is a strong cut of M (see Theorem 3.2). Furthermore, By using compactness
arguments, for every model M of IΣ1, we can find some elementary extension of
M in which it is small. And finally, in [11] it is shown that every nonstandard
small submodel is a mixed submodel (i.e., neither cofinal, nor initial segment). In
a similar manner, for every cut I of a model M of IΣ1, and each I -small submodel
M0 of M, if I �M0 then M0 is mixed in M. (Since if M0 := {(a)i : i ∈ I }, and
A := {i ∈ I : M |= ¬iE(a)i}, then A ∈ SSyI (M) \ SSyI (M0). So M0 cannot be
an initial segment of M.)

In the following lemma we will show that in the definition of I-small, if I is a
strong cut or it is equal to N, then the condition (a)i �= (a)j for all distinct i, j ∈ I ,
can be eliminated:

Lemma 3.1. Suppose M |= IΣ1 is nonstandard, I �e M, M0 is a submodel of M
such thatM0 = {(a)i : i ∈ I } for some a ∈M . Then the following hold:

(1) If I = N, then M0 is small.
(2) If I is strong in M, then M0 is I -small.

Proof. First, we will inductively define the following Δ0-function (with param-
eters) in M:

g(0) := (a)0,

and

g(x + 1) := y iff

∃r < Len(a)

⎛
⎝ y = (a)r ∧
r = �z

(
∃u < z

(
g(x) = (a)u ∧

∀w < z ((a)w �= (a)z ∧ ∃v ≤ u((a)w = (a)v))

))⎞⎠ .
Note that by the way we defined g, its domain is an initial segment of M, and
Dom(g) ≤ Len(a). Moreover, since I and M0 are not Δ0-definable in M, then
I � Dom(g). So by Σ1-induction in M, we can find some d ∈M such that
(d )i = g(i) for every i ∈ I . Clearly, (d )i �= (d )j for every distinct i, j ∈ I , and
M0 ⊆ {(d )i : i ∈ I }. Now, in each case of the statement of the theorem we will
prove that {(d )i : i ∈ I } ⊆M0:

(1) Suppose I = N. If {(d )n : n ∈ N} �M0, then there exists the least number
n ∈ N such that (d )n /∈M0. So by the definition of g, there exist somem ∈ N
and some r ∈M \ N such that (d )n–1 = (a)m and (d )n = (a)r . Therefore,
by the definition of g, it holds that M0 = {(a)0, ... , (a)m}, which is a
contradiction.
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(2) In the general case with the extra assumption that I is strong in M, consider
the following partial Δ0-function in M:

h(x) := �r((d )x = (a)r).

Since I is strong and I ⊆ dom(h) (because g is well-defined on I), there exists
some e ∈M such that h(i) ∈ I iff h(i) < e, for all i ∈ I . Moreover, by the
definition of d , g and h, for every i ∈ I it holds that (d )i = (a)h(i). So it
suffices to prove that h(i) < e for every i ∈ I . Suppose not; so there exists
some i0 ∈ I which is the least element ofM such that h(i0) > e. Now, by the
way we defined g and h, it holds that

M |= ∀i < h(i0) ((a)i �= (a)h(i0) ∧ ∃j ≤ h(i0 – 1)((a)i = (a)j)).

Therefore, M0 = {x ∈M : M |= ∃i ≤ h(i0 – 1) x = (a)i}. So M0 is
Δ0-definable in M, which is a contradiction. �

In the following theorem, we will show that when I is strong, the basic properties
which hold for small submodels, also hold for I -small ones.

Theorem 3.2. Let M |= IΣ1 be nonstandard, and let I be a strong cut of M. Then:

(1) For every a ∈M , K1(M; I ∪ {a}) is I -small.
(2) If M0 is an I -small submodel of M, then I ⊆M0.
(3) If M |= PA is countable and recursively saturated, then there exists some
I -small elementary submodel of M which is not of the form of K(M; I ∪ {a})
for any a ∈M .

Proof. (1) First fix some arbitrary s > I . So by using strong Σ1-Collection in
M for the formula SatΔ0(�r(i, a, z)), we will find some b ∈M such that

M |= ∀〈r, i〉 < s ([fr(i, a) ↓] → [fr(i, a) ↓]<b).

Then, by using Σ1-induction we observe that M |= ∃y ∀〈r, i〉 <
s ϕ(y, r, i, a, b), in which ϕ(y, r, i, a, b) is the following Δ0-formula:(

([fr(i, a) ↓]<b → (y)〈r,i〉 = fr(i, a)) ∧ (¬[fr(i, a) ↓]<b → (y)〈r,i〉 = 0)
)
.

As a result, if d ∈M is such that M |= ∀〈r, i〉 < s ϕ(d, r, i, a, b), then

K1(M; I ∪ {a}) = {(d )i : i ∈ I }.

So by Lemma 3.1, K1(M; I ∪ {a}) is I -small in M.
(2) The exact argument used in [4, Theorem 4.5.1] works here: let
M0 = {(a)i : i ∈ I } for some a ∈M such that (a)i �= (a)j for all distinct
i, j ∈ I . Then put

Z := {〈y, z〉 ∈M : M |= (a)y = z}.

Since Z is Δ0-definable in M, then X := I ∩ Z ∈ SSyI (M). As a result,
because I is strong in M, (I ;X ) |= PA∗. Now, suppose I �M0. So (I ;X ) |=
∃x (∀y 〈y, x〉 /∈ X ). Let (I, X ) |= x0 := �x(∀y 〈y, x〉 /∈ X ). Therefore,
x0 /∈M0. So since x0 �= 0, and by the definition of x0, we conclude that
x0 – 1 ∈M0, which contradicts the fact that M0 is a submodel of M.
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(3) We will generalize the method used in [12, Proposition 2.10]: let S be a
nonstandard partial inductive satisfaction class for M such that (M;S)
is recursively saturated. Put M∗ := (M;S), and N := K(M∗; I ∪ {s}) for
some s > I . First, note that N is I -small in M: since M∗ is a countable
recursively saturated model of PA∗, so it also possesses an inductive
satisfaction class. Moreover, I is also strong in M∗. Therefore, by repeating
the argument used in the proof of part (1) of this theorem, and Lemma 3.1(2),
we can show that N is I -small in M.
Moreover, on one hand, it is easy to see that S ∩N is a nonstandard
satisfaction class for the LA-structure N . So N is also a recursively saturated
model of PA. On the other hand, I is a proper initial segment of N (because
s > I ). Therefore, N is of the form of K(M; I ∪ {a}) for no a ∈M . �

Remark 2. In part (2) of the above theorem, as the anonymous referee suggested,
we do not need the whole strength of PA∗; it suffices that (I ;X ) |= IΣ1. As a result,
if I is a semiregular cut of M, then part (2) of the above theorem holds (for the
definition of a semiregular cut and their properties, see [13]).

The following lemma will be useful in the proof of the main theorem of this
section:

Lemma 3.3. Suppose M |= IΣ1, I is a strong cut of M, and a ∈M \ I such
that (a)i �= (a)j for all distinct i, j ∈ I . Moreover, let M0 = {(a)i : i ∈ I } be a
Σ1-elementary submodel of M, X ⊆M0 be coded in M, and i0 ∈ I such that i < i0
for all (a)i ∈ X . Then X is coded in M0.

Proof. Suppose α ∈M codes X in M. So M |=

�(α,�,i1)︷ ︸︸ ︷
α =

∑
i<i1

2(�)i , in which i1 =

Card(X ) ≤ i0 and � := 〈x : xEα〉 (so Len(�) = i1). Since �(x, y, z) is a Δ0-formula
and M0 ≺Σ1 M, it suffices to prove that � ∈M0. For this purpose let Y := {i < i0 :
M |= (a)iEα}. Then there exists some � ∈ I which codes Y .

Now, we define

h(z) :=

{
�u(〈(a)x : xEz〉 = (a)u ∧ u < Len(a)), if M |= ∃u < Len(a) 〈(a)x : xEz〉 = (a)u,

0, otherwise.

Since I is strong in M, there exists some e such that h(i) > e iff h(i) > I , for
all i ∈ I . We claim that M |= ∀x ϕ(x, a, �, e), where ϕ(x, a, �, e) is the following
Δ0-formula:

∀y < Len(x) ∃zE� ((x)y = (a)z) → ∃w < min{e,Len(a)} (x = (a)w).

Therefore, M |= ϕ(�, a, �, e), which implies that � = (a)c for some c <
min{e,Len(a)}. So � = (a)h(�) and h(�) < e, which implies that � ∈M0 .

In order to prove the above claim, we will use Δ0-induction inside M:
let x ∈M such that M |= ϕ(w, a, �, e) for every w < x, and M |= ∀y <
Len(x) ∃zE� ((x)y = (a)z). So by induction hypothesis M |= x �Len(x)–1= (a)z
for some z < min{e,Len(a)}. Then, we put Z := {i < � : M |= ∃y < Len(x) –
1 (x)y = (a)i}, and let z0 ∈ I code Z. As a result, h(z0) ≤ z < min{e,Len(a)},
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which implies that x �Len(x)–1= (a)h(z0) ∈M0. So since M0 ≺Σ1 M, then x is inM0.
Therefore, x = (a)i for some i ∈ I < min{e,Len(a)}. �

Now we are ready to prove the main theorem and corollary of this section. The
method we use for proving Theorem 3.4 is a combination of the back-and-forth
method used in [1, Theorem 6.1] and [8, Theorem 5.6].

Theorem 3.4. Assume N |= IΣ1 is countable and nonstandard, I is a strong cut
of N , and N0 is an I -small Σ1-elementary submodel of N such that I �= N0. If
M := H1(N ;N0), then there exists some proper initial self-embedding j of M such
that N0 = Fix(j).

In order to prove Theorem 3.4, we will first prove the following lemmas:

Lemma 3.4.1. Suppose N , N0, I, and M are as in Theorem 3.4. Then I is strong
in M and there exists some a ∈M such that N0 = {(a)i : i ∈ I } and (a)i �= (a)i for
distinct i, j ∈ I .

Proof. By Theorem 2.1, M is a Σ1-elementary initial segment of N such that
M |= IΣ1. So it is easy to see that I is also strong in M. Moreover, sinceN0 �= I , by
using Σ1-Overspill in M we can find the desired a ∈M . �

Lemma 3.4.2. Suppose N ,N0, I, M, and a ∈M are as in Theorem 3.4 and Lemma
3.4.1. Moreover, let b ∈M , ū := u1, ... , un, and v̄ := v1, ... , vn < b be finite tuples in
M . Then the following holds:

(i) For every m ∈M there exists some α ∈M such that I ∩ αE equals to the
following set:

C :=
{
〈r, i〉 ∈ I : M |= [fr(ū, m, (a)i) ↓] and fr(ū, m, (a)i) /∈ K1(M;N0 ∪ {ū})

}
.

(ii) For every m′ ∈M there exists some α′ ∈M such that I ∩ α′
E equals to the

following set:

C ′ := {〈r, i〉 ∈ I : M |= [fr(v̄, m′, (a)i ) ↓]<b and fr(v̄, m′, (a)i ) /∈ K1(M;N0 ∪ {v̄})}.

Proof. We will prove part (i), and part (ii) will be proved similarly. Let

R :=
{
〈〈r, i〉, k, t〉 ∈ I : M |=

(
([fr(ū, m, (a)i) ↓] ∧ [ft(ū, (a)k) ↓]) →

fr(ū, m, (a)i) = ft(ū, (a)k)

)}
.

On one hand, since R is Π1-definable in M, then R ∈ SSyI (M). On the other
hand, by Lemma 3.2(2), it holds that

I \ C =

B︷ ︸︸ ︷
{〈r, i〉 ∈ I : (I, R) |= ∃k, t 〈〈r, i〉, k, t〉 ∈ R}.

Since I is strong in M, which implies that (I, SSyI (M)) |= ACA0, and because B
is arithmetical in R and R ∈ SSyI (M), we may deduce that B ∈ SSyI (M), and
consequently C ∈ SSyI (M). �

Lemma 3.4.3. Suppose N , I, N0, M, and a ∈M are as in Theorem 3.4 and
Lemma 3.4.1. Moreover, let b ∈M , ū := u1, ... , un, and v̄ := v1, ... , vn be finite tuples
inM such that

M |= (v̄ < b ∧ P(ū, v̄) ∧ Q(ū, v̄)), where
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P(ū, v̄) ≡ [f(ū, (a)i) ↓] → [f(v̄, (a)i) ↓]<b, for all f ∈ F and i ∈ I ;
and

Q(ū, v̄) ≡
(

[f(ū, (a)i) ↓] ∧ [f(v̄, (a)i) ↓]<b∧
f(ū, (a)i) /∈ N0

)
⇒ f(ū, (a)i) �= f(v̄, (a)i), for all

f ∈ F and all i ∈ I.
Then the following holds:

(i) If (a)i ∈ N0 andm ∈M such thatm ≤ t(ū, (a)i) for some t ∈ F andα ∈M as
in Lemma 3.4.2(i), then for every natural number k > 0 and any (k + 1)-many
elements f,fn1 , ... , fnk of F and each z ∈ N0 there exist some s > I and some
m′ < b such that M |= Ψ(f,fn1 , ... , fnk , ū, m, v̄, m

′, b, a, s, α, z, (a)i), where
Ψ is the following Π1-formula:

m′ ≤ t(v̄, (a)i) ∧

⎛
⎝∀i < s([f(ū, m, (a)i , z) ↓] → [f(v̄, m′, (a)i , z) ↓]<b) ∧

∀i < s
∧
t≤k

(
([fnt (v̄, m

′, (a)i) ↓]<b ∧ 〈nt, i〉Eα) →
fnt (ū, m, (a)i) �= fnt (v̄, m′, (a)i)

)⎞⎠ .
(ii) If m′ < max{v̄} and α′ ∈M as in Lemma 3.4.2(ii), then for every natural

number k > 0 and any (k + 1)-many elements f,fn1 , ... , fnk of F and
each z ∈ N0 there exist some s > I and some m < max{ū} such that
M |= Ψ′(f,fn1 , ... , fnk , ū, m, v̄, m

′, b, a, s, α, z), where Ψ′ is the following Π1-
formula:⎛

⎝∀i < s(¬[f(v̄, m′, (a)i , z) ↓]<b → ¬[f(ū, m, (a)i , z) ↓]) ∧
∀i < s

∧
t≤k

(
(〈nt, i〉Eα′ ∧ [fnt (ū, m, (a)i) ↓]) →
fnt (ū, m, (a)i) �= fnt (v̄, m′, (a)i)

) ⎞
⎠ .

Proof. (i) First note that since P(ū, v̄) holds inM, Theorem 2.3 and Remark 1
imply that
(1): There exists some initial self-embedding j0 of M such that j0(M ) < b,
j0(ū) = v̄, and N0 ⊆ Fix(j0).

Now, suppose that part (i) of this lemma does not hold; i.e., there is
some k > 0 for which there exist (k + 1)-many elements {f,fn1 , ... , fnk}
of F , and some z ∈ N0 such that for all s > I it holds that

M |= ∀y < b ¬Ψ(f,fn1 , ... , fnk , ū, m, v̄, y, b, a, s, α, z, (a)i).

Therefore, by Σ1-Underspill in M, there exists some s ∈ I such that

M |= ∀y < b ¬Ψ(f,fn1 , ... , fnk , ū, m, v̄, y, b, a, s, α, z, (a)i).

(2): Let k0 ∈ N be the least natural number, for which there exists a set
{f,fn1 , ... , fnk0

} of elements of F , some z0 ∈ N0, and some s0 ∈ I such
that

M |= ∀y < b ¬Ψ(f,fn1 , ... , fnk0
, ū, m, v̄, y, b, a, s0, α, z0, (a)i).
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Put

X := {x ∈M : M |= ∃i < s0(x = (a)i ∧ [f(ū, m, (a)i , z0) ↓])}
and

X ′ := {〈n, x〉 ∈M : M |= ∃i < s0(x = (a)i ∧
∨ k0

t=1
n = nt ∧ 〈n, i〉Eα)}.

By Lemma 3.3, there exist (a)	 ∈ N0 and (a)
 ∈ N0 which code X and
X ′, respectively. So we can restate statement (2) in the following form:

(3): Let k0 ∈ N be the least natural number, for which there exists a set
{f,fn1 , ... , fnk0

} of elements of F , some z0, (a)
 , (a)	 ∈ N0 such that

M |= ∀y ≤ t(v̄, (a)i)

⎛
⎝ ∀� < (a)	(�E(a)	 → [f(v̄, y, �, z0) ↓]<b →

∃ε < E(a)

∨k0
t=1

(
〈nt, ε〉E(a)
 ∧ [fnt (v̄, y, ε) ↓]<b∧
fnt (ū, m, ε) = fnt (v̄, y, ε)

)⎞⎠ .
Our plan is to consider two cases k0 = 1 and k0 > 1, and in each case
obtain a contradiction. But before dividing the cases we will define some
Σ1-functions which will help us in achieving the desired contradictions.
First, by considering the code of the sequence 〈fnt (ū, m, ε) : 〈nt, ε〉E(a)
〉
in M, we may quantify out fnt (ū, m, ε)s from the formula in
statement (3); in other words, there exists some x ∈M such that
(x)〈nt ,ε〉 = fnt (ū, m, ε) for every 〈nt, ε〉E(a)
 . So we will deduce that

(4): M |= ∃x∀y ≤ t(v̄, (a)i) 
(y, b, v̄, x, (a)	, (a)
 , z0), where 
(y, b, v̄, x,
(a)	, (a)
 , z0) is the following Δ0-formula:(

∀� < (a)	(�E(a)	 → [f(v̄, y, �, z0) ↓]<b) →
∃〈nt, ε〉E(a)


(
[fnt (v̄, y, ε) ↓]<b ∧ (x)〈nt ,ε〉 = fnt (v̄, y, ε)

)) .
Then, we will define Σ1-definable partial functions b(♦, y, (a)	, (a)
 , z0)
and g(♦, (a)	, (a)
 , z0, (a)i), as follows (we omit the parameters (a)	 ,
(a)
 , (a)i, and z0 in the presentations of these functions for the sake of
simplicity):

– b(♦, y) := min
{
w :

(
∀�E(a)	 ([f(♦, y, �, z0) ↓]<w)∧
∀〈nt, ε〉E(a)
 ([fnt (♦, y, ε) ↓]<w)

)}
.

– g(♦) := x iff ∃z

⎛
⎜⎝ (z)0 = x ∧

z = �w ∀y ≤ t(♦, (a)i)

(
[b(♦, y) ↓]<(w)1 →


(y, b(♦, y),♦, (w)0, (a)	 , (a)
 , z0)

)⎞⎟⎠ ;

and gt(♦, ε) := (g(♦))〈nt ,ε〉, for every 〈nt, ε〉E(a)
 .

From the definition of gt(v̄, ε)s and statement (4) we may infer that

(5): M |= ∀y ≤ t(v̄, (a)i)

⎛
⎜⎝([b(v̄, y) ↓]<b ∧ ∀� < (a)	(�E(a)	 → [f(v̄, y, �, z0) ↓]<b(v̄,y))) →

∃〈nt , ε〉E(a)


(
[fnt (v̄, y, ε) ↓]<b(v̄,y) ∧ [gt(v̄, ε) ↓]<b(v̄,y) ∧

gt(v̄, ε) = fnt (v̄, y, ε)

) ⎞
⎟⎠.

It is not difficult to express the formula in the statement (5) in the form
of ∀z < b �(v̄, (a)	, (a)
 , z0) for some Δ0-formula �. Therefore, by the
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property P(ū, v̄), the definition of function s , and statement (5) we
deduce that

(6): M |= ∀y ≤ t(ū, (a)i)

⎛
⎜⎝([b(ū, y) ↓] ∧ ∀� < (a)	(�E(a)	 → [f(ū, y, �, z0) ↓]<b(ū,y))) →

∃〈nt , ε〉E(a)


(
[fnt (ū, y, ε) ↓]<b(ū,y) ∧ [gt(ū, ε) ↓]<b(ū,y)) ∧

gt(ū, ε) = fnt (ū, y, ε)

) ⎞
⎟⎠.

Finally, we will simultaneously define two more Σ1-definable functions
in M:

〈o(♦, y), h(♦, y)〉

:= min

⎧⎨
⎩〈nt, ε〉E(a)
 :

⎛
⎝ [b(♦, y) ↓]∧

[fnt (♦, y, ε)↓]<b(♦,y) ∧ [gt(♦, ε)↓]<b(♦,y)∧
gt(♦, ε) = fnt (♦, y, ε)

⎞
⎠
⎫⎬
⎭ .

(Note that, similar to the way we defined function g, we can express the
above definition by a Σ1-formula.) Then, by statement (5) it holds that

(7): M |= ∀y ≤ t(v̄, (a)i)
(

([b(v̄, y) ↓]<b ∧ ∀� < (a)	(�E(a)	 → [f(v̄, y, �, z0) ↓]<b)) →
[〈o(v̄, y), h(v̄, y)〉 ↓]

)
.

Similarly, from statement (6) we may deduce that

(8): M |= ∀y ≤ t(ū, (a)i)
(

([b(ū, y) ↓] ∧ ∀� < (a)	(�E(a)	 → [f(ū, y, �, z0) ↓]<b(ū,y))) →
[〈o(ū, y), h(ū, y)〉 ↓]

)
.

Now, we are ready to examine the mentioned underlined cases for k0:
– If k0 > 1: By using Lemma 3.3, let (a)� ∈ N0 be the code of the

following subset of N0:

A :=

⎧⎪⎪⎨
⎪⎪⎩〈o(v̄, y), h(v̄, y)〉 : M |=

⎛
⎜⎜⎝

y ≤ t(v̄, (a)i) ∧ [〈o(v̄, y), h(v̄, y)〉 ↓]<b∧
∀� < (a)	(�E(a)	 → [f(v̄, y, �, z0) ↓]<b∧

∃ε < (a)


(
〈n1, ε〉E(a)
 ∧ [fn1 (v̄, y, ε) ↓]<b∧
fn1 (v̄, y, ε) = fn1 (ū, m, ε)

)
⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

So, by statements (3), (7), and the definition of (a)�, we conclude that

(9): M |= ∀y ≤ t(v̄, (a)i)

⎛
⎜⎜⎜⎜⎝

∀� < (a)	

⎛
⎝�E(a)	 → [f(v̄, y, �, z0) ↓]<b∧

[〈o(v̄, y), h(v̄, y)〉 ↓]<b∧
¬〈o(v̄, y), h(v̄, y)〉E(a)�

⎞
⎠→

∃ε < E(a)

∨k0
t=2

(
〈nt , ε〉E(a)
 ∧ [fnt (v̄, y, ε) ↓]<b∧
fnt (ū, m, ε) = fnt (v̄, y, ε)

)
⎞
⎟⎟⎟⎟⎠.

Let f′ ∈ F such that

f′(♦, y, �, 〈z0, (a)�, (a)
 , (a)	〉) = x

iff

x = f(♦, y, �, z0) ∧ [〈o(♦, y), h(♦, y)〉 ↓] ∧ ¬〈o(♦, y), h(♦, y)〉E(a)�.

So by consideringf′ instead off in statement (3) and 〈z0, (a)�, (a)
 , (a)	〉
instead of z0, statement (9) leads to contradiction with the minimality
of k0.
– If k0 = 1: In this case our plan for obtaining a contradiction is as

follows: on one hand, by the definitions of h(ū, y) and (a)
 , M thinks
that the cardinality of {h(ū, y) : M |= (y < t(ū, (a)i) ∧ [h(ū, y) ↓])}
is at most s0. On the other hand, for every i ∈ I we will inductively
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define some Σ1-functions, namely w(ū, i)s, such that M |=
[w(ū, i) ↓]<t(ū,(a)i) and M believes that there is a bijection between
members of {h(ū, w(ū, i)) : i ∈ I and M |= [h(ū, w(ū, i)) ↓]} and
the elements of I. So the contradiction is achieved. To be more precise,
we define

w(♦, 0) := min

{
y ≤ t(♦, (a)i) :

(
[b(♦, y) ↓] ∧ [h(♦, y) ↓]<(a)
∧

∀� < (a)	(�E(a)	 → [f(♦, y, �, z0) ↓]<b(♦,y))

)}
,

and
w(♦, i + 1) := min {y ≤ t(♦, (a)i) : ϕ(♦, i, y, (a)
 , (a)	, z0)}, where
ϕ(♦, i, y, (a)
 , (a)	, z0) is the following formula:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

[b(♦, y) ↓] ∧ [h(♦, y) ↓]<(a)
∧
∀� < (a)	(�E(a)	 → [f(♦, y, �, z0) ↓]<b(♦,y)) ∧

∀x ≤ i

⎛
⎜⎜⎝

⎛
⎝ [h(♦, w(♦, x)) ↓]<(a)
∧

[fn1 (♦, y, h(♦, w(♦, x))) ↓]<b(♦,y)∧
[fn1 (♦, w(♦, x), h(♦, w(♦, x))) ↓]<b(♦,w(♦,x))

⎞
⎠→

fn1(♦, y, h(♦, w(♦, x))) �= fn1(♦, w(♦, x), h(♦, w(♦, x)))

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

First, we will show that M |= [w(ū, i) ↓] for all i ∈ I . Otherwise, there
exists the least 0 < i0 ∈ I such that

(10): M |= ∀y ≤ t(ū, (a)i) ¬ϕ(ū, i0, y, (a)
 , (a)	, z0).
Note that by the definition of (a)	 and (a)
 it holds that

(11): M |= ([b(ū, m) ↓] ∧ ∀� < (a)	(�E(a)	 → [f(ū, m, �, z0) ↓]<b(ū,m)).
So by statements (8), (10), and (11), there exists some i1 < i0 such that

(12): M |=

⎛
⎝ [h(ū, w(ū, i1)) ↓] ∧ [fn1 (ū, m, h(ū, w(ū, i1))) ↓]∧

[fn1(ū, w(ū, i1), h(ū, w(ū, i1))) ↓]∧
fn1 (ū, m, h(ū, w(ū, i1))) = fn1(ū, w(ū, i1), h(ū, w(ū, i1)))

⎞
⎠.

Clearly, fn1(ū, w(ū, i1), h(ū, w(ū, i1))) ∈ K1(M;N0 ∪ {ū}). So by
statement (12), fn1(ū, m, h(ū, w(ū, i1))) ∈ K1(M;M0 ∪ {ū}). So
M |= ¬〈n1, h(ū, w(ū, i1))〉E(a)
 (by the definition of (a)
), which is
in contradiction with the definition of the function h.

Then, by the definition of w(ū, i)s and statement (8), the function
i �→ h(ū, w(ū, i)) from {i : i ≤ s0 + 1} into ((a)
)E is well-defined and
coded in M. So, since the cardinality of (a)
 is less than s0 + 1, by Σ1-
Pigeonhole Principle in M, there exists some distinct i0 < i1 ≤ s0 + 1
such that

(13): M |= h(ū, w(ū, i0)) = h(ū, w(ū, i1)).
Therefore, by statement (13) and the definition of h we conclude that

(14): M |=
(

[g1(ū, h(ū, w(ū, i0))) ↓] ∧ [g1(ū, h(ū, w(ū, i1))) ↓]∧
g1(ū, h(ū, w(ū, i0))) = g1(ū, h(ū, w(ū, i1)))

)
.

Moreover, by the definition of h(ū, w(ū, i)), for i = i0, i1 it holds that
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(15): M |=
(

[fn1 (ū, w(ū, i), h(ū, w(ū, i))) ↓] ∧ [g1(ū, h(ū, w(ū))) ↓]∧
fn1 (ū, w(ū, i), h(ū, w(ū, i))) = g1(ū, h(ū, w(ū)))

)
.

So statements (13–15) imply that

(16): M |= fn1(ū, w(ū, i1), h(ū, w(ū, i0))) = fn1(ū, w(ū, i0), h(ū, w(ū, i0))).
But statement (16) is in contradiction with the definition of w(ū, i1).

(ii) Part (ii) of this lemma will be proved exactly like part (i), except we
need an extra statement between statements (3) and (4): by using Σ1-
Collection, we deduce that

(3’): M |= ∃w∀x < u0

⎛
⎝ ∀� < (a)� ([f(ū, x, �, z0) ↓]<w → �E(a)�) →

∃ε < (a)�
∨
t≤k1

(
〈nt , ε〉E(a)� ∧ [fnt (ū, x, ε) ↓]<w∧
fnt (ū, x, ε) = fnt (v̄, m

′, ε)

)⎞⎠;

in which (a)� ∈ N0 and (a)� ∈ N0 code the following Y and Y ′,
respectively:

Y := {x ∈M : M |= ∃i < s0(x = (a)i ∧ [f(v̄, m′, (a)i , z0) ↓]<b)}, and

Y ′ := {〈n, x〉 ∈M : M |= ∃i < s0(x = (a)i ∧
k0∨
t=0

n = nt ∧ 〈n, i〉Eα′)}.

�

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. By Lemma 3.4.1, there exists some a ∈M such
that N0 = {(a)i : i ∈ I } and (a)i �= (a)i for distinct i, j ∈ I . Now, in order to
construct j, first by using strong Σ1-Collection in M, we will find some b ∈M
such that

M |= [f((a)i) ↓] → [f((a)i) ↓]<b, for all f ∈ F and all i ∈ I.

Then, by using back-and-forth method we will inductively build finite functions
ū �→ v̄ such that ū, v̄ ∈M , and M |= (v̄ < b ∧ P(ū, v̄) ∧ Q(ū, v̄)), where P(ū, v̄)
and Q(ū, v̄) are properties as stated in Lemma 3.4.3. Through the “forth” stages
of back-and-forth we shall make the domain of j to be equal to M , and “back”
stages are for making the range of j to be an initial segment of M. For the first
step of induction, we will choose 0 �→ 0. Then, suppose ū �→ v̄ is built such that
M |= (v̄ < b ∧ P(ū, v̄) ∧ Q(ū, v̄)).

“Forth” stages: Let m ∈M \ {ū} be arbitrary. By the definition of M, without loss
of generality, we can assume thatm ≤ t(ū, (a)i) for some t ∈ F and i ∈ I . Moreover,
let α ∈M be as in Lemma 3.4.2. In order to find some image form, for every s ∈M
we define the following bounded Π1-type:

ps(y) := {y ≤ t(v̄, (a)i)} ∪ ps1(y) ∪ ps2(y),where

ps1(y) := {∀i < s([f(ū, m, (a)i) ↓] → [f(v̄, y, (a)i) ↓]<b) : f ∈ F};

and

ps2(y) :=
{
∀i < s

(
([fn(v̄, y, (a)i) ↓]<b ∧ 〈n, i〉Eα) →
fn(ū, m, (a)i) �= fn(v̄, y, (a)i)

)
: n ∈ N

}
.
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We claim that there exists some s > I such that the type ps(y) is finitely satisfiable
in M. Then since ps is a Π1, bounded and recursive type in M, there exists some
m′ which realizes ps(y) in M. Therefore, P((ū, m), (v̄, m′)) and Q((ū, m), (v̄, m′))
hold in M, and this finishes the “forth” stage.

In order to prove the above claim, let d > I be an arbitrary and fixed element
ofM . Moreover, suppose i, s ∈M , and Θ(s, i, ū, m, v̄, b, a, α, �, (a)i) is the following
Δ0-formula:

∀r < i ∃y ≤ t(v̄, (a)i)

⎛
⎝ ∀w < s(〈r, w〉E� → [fr(v̄, y, (a)w) ↓]<b) ∧

∀w < s∀r′ < i
(

([fr′(v̄, y, (a)w) ↓]<b ∧ 〈r′, w〉Eα) →
fr′(ū, m, (a)w) �= fr′(v̄, y, (a)w)

)⎞⎠,
where � is the code of the following Σ1-definable set in M:

L := {〈r, w〉 < d : M |= [fr(ū, m, (a)w) ↓]}.

Note that the parameter i in Θ is for bounding indexes of functions which appear
in Θ. Moreover, the parameter s is for bounding elements ofN0 appearing in Θ; i.e.,
if Θ contains some element of the form (a)w , then w < s . Now, for every i ∈M , we
let G(i) be an upper bound for parameters s as above. To be more precise, we define

G(i) := max{x < d : M |= Θ(x, i, ū, m, v̄, b, a, α, �, (a)i)}.

Clearly G is Δ0-definable function in M, and I ⊆ Dom(G) (we assume
max(∅) = 0). Therefore, since I is strong, there exists some e > I such that for
all i ∈ I , G(i) > I iff G(i) > e. We will show that pe(y) is finitely satisfiable in M:

First, note that, pe1(y) is closed under conjunctions. (This holds similar to the
way statement (1) in the proof of Lemma 3.4.3 holds.) So let fn,fn1 , ... , fnk be
some finite number of elements of F , and let n∗ = max{n, n0, ... , nk}. Then, use
Lemma 3.4.3(i), (n∗ + 2)-many times; i.e., for every t = 0, ... , n∗ + 1 consider ft
instead off in the assertion of Lemma 3.4.3(i), 0 ∈M0 instead of z, andf1, ... , fn∗ .
So by Lemma 3.4.3(i), for every t = 0, ... , n∗ + 1 there exists some st > I such that

(1): M |= ∃y < b Ψ(ft, f1, ... , fn∗ , ū, m, v̄, y, b, a, st , α, 0, (a)i).
Then, let s∗ := min{st : t < n∗ + 1}. Therefore, by statement (1) and the
definitions of Θ and Ψ it holds that

(2): M |= Θ(s∗, n∗, ū, m, v̄, b, a, α, �, (a)i).
So from statement (2) and the definition of G, we infer that G(n∗) > I and
it holds that

(3): M |= Θ(G(n∗), n∗, ū, m, v̄, b, a, α, �, (a)i).
Consequently G(n∗) > e, and again by the definition of Θ and statement (3),
we deduce that

(4): M |= Θ(e, n∗, ū, m, v̄, b, a, α, �, (a)i).
Statement (4) implies that

(4): M |= ∃y ≤ t(v̄, (a)i)

⎛
⎝ ∀i < e([fn(ū, m, (a)i ) ↓] → [fn(v̄, y, (a)i ) ↓]<b) ∧∧k

t=1 ∀i < e
(

([fnt (v̄, y, (a)i ) ↓]<b ∧ 〈nt, i〉Eα) →
fnt (ū, m, (a)i ) �= fnt (v̄, y, (a)i )

)⎞⎠.

So statement (4) finishes the proof of the claim.
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“Back” stages: Letm′ ∈M \ {v̄} such thatm′ < v0 := max{v̄}, and u0 := max{ū}.
In order to find some element ofM whose image is m′, we modify the proof of the
“forth” stage in the following way:

• Replace ps(y) by

qs(x) := {x < u0} ∪ qs1(x) ∪ qs2(x),where,

qs1(x) := {∀i < s(¬[f(v̄, m′, (a)i ) ↓]<b → ¬[f(ū, x, (a)i ) ↓]) : f ∈ F}; and

qs2(x) :=

⎧⎨
⎩∀i < s

⎛
⎝

(
〈n, i〉Eα′∧

[fn(ū, x, (a)i ) ↓]

)
→

fn(ū, x, (a)i ) �= fn(v̄, m′, (a)i )

⎞
⎠ : n ∈ N

⎫⎬
⎭.

• Replace Θ(s, i, ū, m, v̄, b, a, α, �) with Θ′(s, i, ū, v̄, m′, b, a, α′, � ′):

∀r < i ∃x < u0

⎛
⎝ ∀w < s(〈x, r, w〉E� ′ → [fr(v̄, m′, (a)w) ↓]<b)∧
∀w < s∀r′ < i

(
(〈r′, w〉Eα′ ∧ 〈x, r′, w〉E� ′) →
fr′(ū, m, (a)w) �= fr′(v̄, y, (a)w))

)⎞⎠ ,
where � ′ is the code of the following Σ1-definable set in M:

L′ := {〈x, r, w〉 : M |= (x < u0 ∧ w < d ∧ r < d ∧ [fr(ū, x, (a)w) ↓])}.

The rest of the argument goes smoothly by modifying the “forth” stage according
to the above changes, and this completes the proof. �

Corollary 3.5. Assume M |= IΣ1 is countable and nonstandard, I is a proper cut
of M, and M0 is an I -small Σ1-elementary submodel of M. Then the following are
equivalent:

(1) I is strong in M.
(2) There exists some proper initial self-embedding j of M such thatM0 = Fix(j).

Proof. SupposeM0 = {(a)i : i ∈ I }, for some a ∈M such that (a)i �= (a)j for
all distinct i, j ∈ I .

(1) ⇒ (2): If M0 = I , then by Theorem 2.4(2), we are done. So suppose
I �M0. First, by using Theorem 3.4 let h be some proper initial self-embedding of
H1(M;M0) such that Fix(h) =M0. Moreover, fix some b ∈ H1(M;M0) \M0 such
that h(H1(M;M0)) < b. Now, by using strong Σ1-Collection in H1(M;M0), and
since H1(M;M0) ≺Σ1 M, we can find some d ∈ H1(M;M0) such that

M |= [f((a)i , b) ↓] → [f((a)i , b) ↓]<d , for all f ∈ F and all i ∈ I.

Therefore, by Theorems 2.1 and 2.3 and Remark 1, there exists some proper
initial embedding k : M ↪→ H1(M;M0) such that M0 ⊆ Fix(k), k(M ) < d, and
b ∈ k(M ) (note that since H1(M;M0) is an initial segment of M, then SSyI (M) =
SSyI (H1(M;M0))). Finally, we put j := k–1hk. It is easy to check that j is a well-
defined proper initial self-embedding of M such that Fix(j) =M0.

(2) ⇒ (1): We combine the methods used in the proofs of Theorems 5.1 and 6.1
of [1]. Suppose I is not strong; i.e., there exists some coded function f in M such
that I ⊆ Dom(f), and the setD := {f(i) : i ∈ I ∧ I < f(i)} is downward cofinal
inM \ I .
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Let b ∈M \M0 and g := j(f). For every k ∈M , we put

Ak := {〈r, y〉 < k : M |= SatΔ0(�r((a)y, b))}.

Since Ak is bounded and Δ1-definable, it is coded by some sk in M. Moreover, the
function k �→ sk is Δ1-definable in M. Now, we define

h(k) := �x (∀〈r, y〉 < k (〈r, y〉Esk → SatΔ0(�r((a)y, x)))).

So note that:

(I) For everyk > I , we have ThΔ0(M; b, {(a)i}i∈I ) ⊆ ThΔ0(M; h(k), {(a)i}i∈I ).
(II) For every i ∈ I , h(i) is well-defined and inside M0 = Fix(j); the reason

behind this statement is that for every i ∈ I we consider the following set:

Bi := {〈r, �〉 : M |= ∃y < i((a)y = � ∧ 〈r, y〉Esi)}.

Then, by Lemma 3.3, Bi is coded by some αi ∈M0 = Fix(j). So it holds
that

M |= h(i) = �x(∀〈r, �〉Eαi (SatΔ0(�r(�, x))).

As a result, since M0 ≺Σ1 M, statement (II) holds.

Now, let h′ := j(h). So for all i ∈ I , and all u < i such thatf(u) < i , statement (II)
implies that

h′(g(u)) = j(h)(j(f)(u)) = j(h)(j(f)(j(u))) = j(h(f(u))) = h(f(u)).

Therefore, for all i ∈ I , M |= ϕ(i, f, g, h, h′), where ϕ(i, f, g, h, h′) is the following
Δ1-formula:

∀u < i (f(u) < i → h(f(u)) = h′(g(u))).

So by Σ1-Overspill in M, there exists some s > I such that

(♠) : ∀u < s (f(u) < s → h(f(u)) = h′(g(u))).

Since D is downward cofinal in M \ I , there is some i0 ∈ I such that I <
f(i0) < s . Let c := h(f(i0)). On one hand, by (I), ThΔ0(M; b, {(a)i}i∈I ) ⊆
ThΔ0(M; c, {(a)i}i∈I ). As a result, because b /∈M0, we have c /∈M0 = Fix(j). On
the other hand (♠) implies that

j(c) = j(h(f(i0))) = j(h)(j(f)((j(i0))) = h′(g(i0)) = h(f(i0)) = c.

As a result, I has to be strong in M. �

§4. Strongness of the standard cut and fixed points. In this section, we will show
some properties of Fix(j), when N is not strong in M. Then we will derive some
criteria for strongness of N in a countable nonstandard model of IΣ1 in terms of sets
of fixed points of its initial self-embeddings.

Lemma 4.1. Suppose M is a nonstandard model of IΣ1 in which N is not strong.
Then for any self-embedding j of M the following hold:

(1) Fix(j) is 1-tall.
(2) If Fix(j) is a countable model of BΣ1, then it is 1-extendable.
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Proof. (1) Let a ∈ Fix(j) be arbitrary and fixed. Since Fix(j) ≺Σ1 M, it suf-
fices to prove that K1(M; a) is not cofinal in Fix(j). Since M |= B+Σ1, there
exists some t0 ∈M such that K1(M; a) < t0. Moreover, by Lemma 2.5(2)
there exists some t00 ∈ Fix(j) such that ThΣ1(M; t0, a) ⊆ ThΣ1(M; t00, a).
Therefore, K1(M; a) < t00.

(2) By Theorem 2.2(2), and part (1) of this lemma, it suffices to prove that
N is not Π1-definable in Fix(j). Suppose not; i.e., N is definable in Fix(j)
by some Π1-formula �(x). By Lemma 2.5(1), Fix(j) ∩M \ N is downward
cofinal inM \ N. So by Σ1-Underspill in M, there exists some n ∈ N such that
M |= ¬�(n), and consequently since Fix(j) ≺Σ1 M, Fix(j) |= ¬�(n), which
is a contradiction. �

The following corollary generalizes Theorem 1.2:

Corollary 4.2. Let M |= IΣ1 be countable and nonstandard in which N is not
strong, and j is an initial self-embedding of M such that Fix(j) |= BΣ1. Then Fix(j)
is isomorphic to a proper cut of M.

Proof. By Theorem 2.2(1) and the previous lemma, it is enough to prove that
SSy(Fix(j)) = SSy(M). So let X = N ∩ aE for some a ∈M . Since N is not strong
in M, by Lemma 2.5(2) there exists some b ∈ Fix(j) such that ThΣ1(M; a) ⊆
ThΣ1(M; b). Therefore, X = N ∩ bE, and this finishes the proof. �

We conclude this section with a generalization of a similar result about
automorphisms of countable recursively saturated models of PA in [12]. Moreover,
the following corollary defines Theorem 2.4(3).

Corollary 4.3. Let M |= IΣ1 be countable and nonstandard. Then the following
are equivalent:

(1) N is strong in M.
(2) There exists some proper initial self-embedding j of M such that Fix(j) =

K1(M).
(3) There exists some proper initial self-embedding j ofM, and some smallM0 ≺Σ1

M, such that Fix(j) =M0.
(4) For every small M0 ≺Σ1 M there exists some proper initial self-embedding j

of M such that Fix(j) =M0.
(5) There exists some proper initial self-embedding j of M such that Fix(j) ⊆

I1(M).

If M |= PA and it is recursively saturated, then the above statements are equivalent to
the following:

(6) There exists some proper initial self-embedding j of M such that Fix(j) |= BΣ1

and it is isomorphic to no proper initial segments of M.

Proof. The equivalences of statements (1)–(5) is a straightforward implication
of Corollary 3.5 and Lemma 4.1(1). Moreover, (6) ⇒ (1) holds by Corollary 4.2.
In order to prove (4) ⇒ (6), similar to the proof of Theorem 3.2(3), we will find
some small recursively saturated elementary submodel M0 of M. So statement (4)
will provide us with a proper initial self-embedding j of M such that Fix(j) =M0.
Clearly Fix(j) |= BΣ1. Moreover, as we mentioned in the beginning of Section 3,
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SSy(M0) �= SSy(M). As a result, Fix(j) is isomorphic to no proper initial segment
of M. �

§5. Extendability. In this section, we will study the extendability of initial
embeddings. Most of the theorems of this section are generalizations of results
about automorphisms of countable recursively saturated models of PA obtained in
[10, 11].

Definition 2. Suppose M and N are models of IΣ1, M0 and N0 are bounded
submodels (or proper cuts) of M and N , respectively. We call an initial embedding
j : M0 ↪→ N0 an initial (M,N )-embedding if for every A ⊆M0 it holds that

A ∈ SSyI (M) iff j(A) ∈ SSyJ (N ),

where I := I1(M;M0), and J := I1(N ; j(M0)).

If M = N , we call such j an initial M-embedding.

First, in the next lemma we will show that the condition in the above definition,
i.e., preserving coded subsets, is a necessary condition for extendability of an initial
embedding.

Lemma 5.1. Suppose M and N are models of IΣ1, M0 ⊆ M and N0 ⊆ N are
bounded submodels (or proper cuts), and j : M0 ↪→ N0 is an initial embedding. If j
is extendable to some initial embedding ĵ : M ↪→ N , then j is an initial (M,N )-
embedding.

Proof. Put I := I1(M;M0), J := I1(N ; j(M0)), and let A ⊆M0 be arbitrary. If
A = I ∩ (αE)M for some α in M, then clearly j(A) = J ∩ ((ĵ(α))E)N . Conversely,
suppose j(A) ∈ SSyJ (N ). Since M0 is bounded in M, we have J �e ĵ(M ). As a
result, j(A) ∈ SSyJ (ĵ(M )), which implies that A ∈ SSyI (M). �

Converse of the above lemma holds, when M0 and j(M0) are Σ1-elementary
initial segments of M and N .

Theorem 5.2. Suppose M and N are countable and nonstandard models of IΣ1,
and I and J are Σ1-elementary initial segments of M and N , respectively. Then for any
isomorphism j : I → J which is an initial (M,N )-embedding and each b > J , there
exists some proper initial embedding ĵ : M ↪→ N such that ĵ �I= j and ĵ(M ) < b.

Sketch of proof. The proof is conducted by a back-and-forth argument similar
to the one used in the proof of [1, Theorem 3.3]; we will build finite partial functions
ū �→ v̄ such that the following induction hypothesis holds:

If M |= [f(ū, i) ↓], then N |= [f(v̄, j(i)) ↓]<b,

for every f ∈ F and i ∈ I.
For the “forth” steps, if ū �→ v̄ is built, for given m ∈M we define

H := {〈r, i〉 ∈ I : M |= [fr(ū, m, i) ↓]}.
Then, let h ∈M such that H = I ∩ hE. Since j is an initial (M,N )-embedding,

there exists some h′ ∈ N such that j(H ) = J ∩ h′E. Therefore, by induction
hypothesis for every s ∈ I it holds that
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(1): N |= ∃x,w < b ∀〈r, i〉 < j(s) (〈r, i〉Eh′ → [fr(v̄, x, i)) ↓]<w).
Since j is onto, statement (1) implies that for every t ∈ J it hold that

(2): N |= ∃x,w < b ∀〈r, i〉 < t (〈r, i〉Eh′ → [fr(v̄, x, i)) ↓]<w).

Therefore, by using Σ1-Overspill in N , we will find some image for m, for which
induction hypothesis holds. The “back” stages can be done similarly. �

The proof of the above theorem can also be modified for I -small submodels.

Theorem 5.3. Suppose M |= IΣ1 is countable and nonstandard, I is a strong cut of
M, M0 is an I -small Σ1-elementary submodel of M such thatM0 := {(a)i : i ∈ I },
and j is an initial embedding of M0 such that j(I ) ⊆e M. Then the following are
equivalent:

(1) j �I is an initial M-embedding, and there exists some b ∈M such that
M |= j((a)i) = (b)j(i) for all i ∈ I .

(2) j extends to some proper initial self-embedding of M.

Sketch of proof. (2) ⇒ (1) holds by Lemma 5.1. In order to prove (1) ⇒ (2),
we will use a similar argument to the proof of [1, Theorem 3.3] to obtain an extension
ĵ of j. For this purpose, first we will fix some d ∈M which is an upper bound forM0.
Then, we will build finite partial functions ū �→ v̄ such that the following induction
hypothesis holds:

M |=[f(ū, (a)i) ↓] → [f(v̄, (b)j(i)) ↓]<d ,

for every f ∈ F and i ∈ I.

Here, we outline the proof for the “back” steps and the proof of “forth” steps is left
to the reader. Suppose ū �→ v̄ is built, and m < max{v̄} is given. We define

L := {〈r, i〉 ∈ j(I ) : M |= ¬[fr(v̄, m, (b)i )]<d}.

Then, let l ∈M such that L = j(I ) ∩ lE. Since j �I is an initial M-embedding,
then there exists some l ′ ∈M such that j–1(L) = I ∩ l ′E. Moreover, by using
Lemma 3.3, for every s ∈ I there exists some (a)is ∈M0 which codes of the following
subset ofM0:

A := {〈r, (a)i〉 : M |= (〈r, i〉 < s ∧ 〈r, i〉El ′)}.

By Π1-Overspill, it suffices to prove that for every s ∈ I it holds that

(�) : M |= ∃x < max{ū} ∀〈r, i〉 < s (〈r, i〉El ′ → ¬[fr(ū, x, (a)i) ↓]).

Suppose not; i.e., there exists some s ∈ I which for statement (�) does not hold.
So we have,

(i): M |= ∀x < max{ū} ∃〈r, i〉 < s (〈r, i〉El ′ ∧ [fr(ū, x, (a)i) ↓]).
As a result, by using Σ1-Collection in M, from statement (i), induction

hypothesis, and the way we chose (a)is , we may conclude that
(ii): M |= ∀x < max{v̄} ∃〈r, �〉E(b)j(is ) ([fr(v̄, x, �) ↓]<d ).

So by statement (ii), there exists some 〈r, i〉 < s such that
(iii): M |= (〈r, i〉El ′ ∧ [fj(r)(v̄, m, (b)j(i)) ↓]<d ).

But statement (iii) is in direct contradiction with the way we chose l ′. �
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In the last theorem, we investigate whether we can control the set of fixed points,
while extending an isomorphism to an initial self-embeddings with larger domain:

Theorem 5.4. Suppose M |= IΣ1 is countable and nonstandard, I is a strong
Σ1-elementary initial segment of M, and j : I → I is an isomorphism and an initial
M-embedding. Then there exists some proper initial self-embedding ĵ of M such that
ĵ �I= j, and Fix(ĵ) = Fix(j).

Sketch of proof. First, we will fix some arbitrary a > I . Since I is strong in
M, there exists some b > I such that:

(�) : if M |= [f(a, i) ↓] and f(a, i) > I then f(a, i) > b, for all f ∈ F and i ∈ I.

So by Theorem 5.2, there exists some proper initial self-embedding j̄ of M such
that j̄ �I= j and j̄(M ) < b. If Fix(j̄) = Fix(j), then we are done. Otherwise, by
using a similar argument to the proof of Theorem 3.4 (as we will briefly outline the
modifications which should be made to the proof below), we will construct some
proper initial self-embedding h of N := H1(M; a) such that h �I= j, Fix(h) =
Fix(j), and h(N ) < b. If M = N , then we are done. Otherwise, by using Theorem
2.3 we shall find some proper initial embedding k : M ↪→ N such that I ⊆ Ifix(k)
and b ∈ k(M ). Finally, we put ĵ := k–1hk.

In order to construct the aforementioned h, we will inductively build finite
functions ū �→ v̄ such that

P(ū, v̄) ≡ [f(ū, i) ↓] → [f(v̄, j(i)) ↓]<b, for all f ∈ F and i ∈ I ; and

Q(ū, v̄) ≡
(

[f(ū, i) ↓] ∧ [f(v̄, j(i)) ↓]<b∧
f(ū, i) /∈ I

)
⇒ f(ū, i) �= f(v̄, j(i)), for all f ∈ F

and all i ∈ I.

• For the first step of induction, we will take a �→ j̄(a); clearly P(a, j̄(a)) holds in
M. Moreover, by statement (�) and since Fix(j̄) < b, the property Q(a, j̄(a))
also holds in M.

• Then suppose ū �→ v̄ is built. We will just mention the changes that should be
made in the “forth” steps of Theorem 3.4, and “back” steps should be modified
similarly:
– Suppose m ∈ N \ {ū} is given. By the definition of N , without loss of

generality, we may assume that m ≤ t(ū, a) for some t ∈ F . Put

C := {〈r, i〉 ∈ I : N |= [fr(ū, m, i) ↓] ∧ fr(ū, m, i) /∈ K1(N ; I ∪ {ū})}.

Let α, α′ ∈ N such that C = I ∩ αE and j(C ) = I ∩ α′E (note that since
N is a Σ1-elementary initial segment of M containing I, j is an initial N -
embedding):

– Let L := {〈r, i〉 ∈ I : N |= [fr(ū, m, i) ↓]}, L = I ∩ �E, and j(L) = I ∩ � ′E
for �, � ′ ∈ N .

– For every s ∈ j̄(N ) such that j̄(s ′) = s for some s ′ ∈ N , let

ps (y) := {y < t(v̄, j̄(a))} ∪ ps1(y) ∪ ps2(y), where

ps1(y) := {∀i < s(〈n, i〉E� ′ → [fn(v̄, y, i) ↓]<b) : n ∈ N}, and
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ps2(y) :=

⎧⎨
⎩∀w < s ′ ∀i < s

⎛
⎝
(
〈n,w〉Eα ∧ 〈n, i〉Eα′ ∧

[fn(v̄, y, i) ↓]<b

)
→

fn(ū, m,w) �= fn(v̄, y, i)

⎞
⎠ : n ∈ N

⎫⎬
⎭ .

– In order to find some s > I such that s ∈ j̄(N ) andps(y) is finitely satisfiable,
we will adapt the rest of the proof of Theorem 3.4 accordingly; for instance,
we will mention two of these adaptations:

(1) Let d ′ ∈ N such that d ′ > I and d := j̄(d ′). Moreover, for every i, s, s ′ ∈ N ,
let Θ(s, s ′, i, ū, m, v̄, b, j̄(a), α, α′, � ′) be the following Δ0-formula:

∀r < i ∃y ≤ t(v̄, j̄(a))

×

⎛
⎜⎜⎜⎜⎝

∀w < s(〈r, w〉E� ′ → [fr(v̄, y, w) ↓]<b) ∧

∀w < s∀w ′ < s ′∀r′ < i

⎛
⎜⎜⎝
⎛
⎝ 〈r′, w ′〉Eα′∧

〈r′, w〉Eα∧
[fr′(v̄, y, (a)w) ↓]<b

⎞
⎠→

fr′(ū, m,w ′) �= fr′(v̄, y, w)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ .

Then, for every i ∈M , we define

G(i) := max{w < d ′ : M |= ∃x ≤ d Θ(x,w, i, ū, m, v̄, b, j̄(a), α, α′, � ′)}.
Since I is strong, there exists some e′ > I such that e′ ≤ d ′, and for all i ∈ I ,
G(i) > I iff G(i) > e′. Then, for every i ∈M put

l(i) := max
{
x < j̄(e′) : M |=

(
[G(i) ↓]<d

′ ∧ G(i) > e′ ∧
Θ(x,G(i), i, ū, m, v̄, b, j̄(a), α, α′, � ′)

)}
.

Again, since I is strong, there exists some e > I such that e ≤ d , and for all
i ∈ I , l(i) > I iff l(i) > e. Then pe(y) is a finitely satisfiable type.

(2) Instead of the function 〈o(♦, y), h(♦, y)〉 we need to define the following
function:

〈o(♦, y), h(♦, y), h′(♦, y)〉

:= min

⎧⎪⎪⎨
⎪⎪⎩〈nt, i, w〉Eαs0 :

⎛
⎜⎜⎝

[b(♦, y) ↓]∧
[fnt (♦, y, i) ↓]<b(♦,y) ∧

[gt(♦, w) ↓]<b(♦,y)∧
gt(♦, w) = fnt (♦, y, i)

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ ,

where αs0 ∈ I is the code of the following subset of I :

{〈n, i, w〉 : M |= i < s0 ∧ w < j–1(s0) ∧ 〈n,w〉Eα ∧ 〈n, i〉Eα′}.
The rest of the adaptations should be made similar to statements (1) and (2)
in order to construct h. �

Remark 3. If we let j be the trivial automorphism of I, then Theorem 5.4 implies
Theorem 2.4(2).
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