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Abstract. Periodic points of piecewise monotonic transformations are investigated
using an oriented graph, whose closed paths represent the periodic orbits of the
transformation. In the first part it is shown that the inverse of the {-function is a
kind of characteristic polynomial of this graph, which is a power series if the graph
is infinite. In the second part, the sets are determined, which can occur as {neN: 3x
with T"(x)=x and T'(x)# x for 0<i<n}, where T is a monotonic mod one
transformation.

0. Introduction
The aim of this paper is the investigation of periodic points of piecewise monotonic
transformations ([0, 1], T). One calls T piecewise monotonic if [0, 1]1=J", J, where
the J; are non-trivial disjoint intervals and T|J; is continuous and monotone.
Sometimes it is more appropriate to consider the shift space (27, o) one gets from
([0, 1], T) by f-expansion, especially if ([0, 1], T) has infinitely many periodic points
of a fixed period (cf. lemma 1 of § 1).

The method we use is that of an oriented graph, called a Markov diagram, which
reflects the orbit structure of 7. The first part of the paper investigates the {-function
of 7 given by

D(x)=exp (:Z;x;pk>,

where p, denotes the number of fixed points of ¢*:Z%>2%. In §2 we define a
characteristic power series C(x) of the Markov diagram considered as 0-1-matrix,
which is an analogy to the characteristic polynomial of a matrix. We then show that
C(x)™" essentially equals the {-function. From this it follows that the kneading
invariant, defined in [8] for the special case of continuous piecewise monotonic
transformations, is the characteristic power series of the Markov diagram. This sheds
light on the fact that both methods, the Markov diagram and the kneading invariant,
have been used to determine the topological structure of piecewise monotonic
transformations. In the first case the Markov diagram is split up into irreducible
submatrices (cf. [2]-[6]) and in the second case the kneading invariant, i.e. the
characteristic power series of the Markov diagram, is split up into the corresponding
product (cf. {7]).
Then we turn to the investigation of the set

Z(T)={n:3xe[0,1] with T"(x)=x and T'(x)#x for I<i<=n-1}
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For continuous T, the theorem of Sarkovskii (cf. [1]) gives a nice characterization
of all possible sets Z(T). For general piecewise monotonic transformations T many
more sets can occur as Z(T), as we shall see at the end of § 2. In § 3 we investigate
monotonic mod 1 transformations T on [0, 1), i.e. there is a continuous increasing
function h:[0, 1) >R such that T(x)=h(x) mod 1. If we consider | as a periodic
point, if lim,, T*(1) =1 for some k, and if L is a maximal topologically transitive
subset of ([0, 1], T), we get the following result for Z(T|L):

There are integers p, g and real numbers A, u with 0< A < 1= g =00 such that
{vp+wg: A <w/v<pandv,weN}c Z(T|L)yc{vp+wg: A <w/v<puand v, weN}.
We also determine

Z(T|LYyn{vp+wqg: w/v=a and v, weN} for a =A and a =y,
(cf. theorem 2). From this one can deduce which sets can occur as Z(T) for
monotonic mod 1 transformations T (cf. theorem 3).

1. Preliminaries
Let ([0, 1], T) be piecewise monotonic and let J; for 1 <i=< N be the intervals on
which T is monotone and continuous. The f-expansion ¢:[0,1]>{1,..., N}V is
defined by
e(x)=x=Xx¢X1 X2, ..., where x; is such that T'(x)e J,. (1.1)
One sees easily that oo¢ = ¢o T. We define
7=¢([0,1]) (1.2)

If u and v are the left and right endpoints of J; respectively, we set
a' =lifn o(t) and b’ =1irm o(1).

tlu ttov

A characterization of 2% in terms of a' and b' is given in [2]. If
Y=U o7*({a’,b: 1=i=N}), (1.3)

k=0
then S\ ¢ ([0, 1]y = Y (cf. [2]). For x € ¢([0, 1]), one easily checks that ¢~ '({x}) is
either a single point or an interval. We compare the periodic points of (27, o) and
of ([0,1], T). We say an x€[0, 1] has period n if T"(x)=x and T'(x)# x for
l<i=n—1. We use the same definition for (2%, o). The proof of the following
lemma is easy.

LemMa 1. If xe X% is not periodic, then ¢ ~'({x}) contains no periodic point.

Y contains at most finitely many periodic points. Suppose y€ =AY has
period n.

(i) If ¢ '({y}) is a single point y€[0, 1], then y has period n.

Gii) If <p“({);}) is an interval I, then T"(I)< I and I contains at least one periodic
point. If T"| Iis increasing, all these periodic points in I have period n. If T"|I is
decreasing, one of them has period n and all others have period 2n.

Lemma 1 shows the following: to investigate (X%, o) instead of ({0, 1], T) means
to consider equivalence classes of periodic points, where x and y €0, 1] are called
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equivalent if ¢(x) = ¢(y), and to add finitely many periodic points, which are in Y.
For the investigation of (2%, o) we use the Markov diagram, which we define now.

The Markov diagram is a finite or countable oriented graph, whose vertices are
subsets of 7. Set [XoX; -« - x_ ]={yeZF y;=x; for 0=i=<k—1}. If D<[i] for
some i with 1 =i=< N, we call the n(;n-empty sets among [jlno(D) for 1<j< N
the successors of D. Let & be the set which contains {i] for | =i=< N, and which
contains all successors of D if it contains D. To get the oriented graph, which we
call Markov diagram, we insert an arrow from every D € & to all its successors. We
write D — C to denote that C is a successor of D.

A sequence DyD\D, - - - with D;e @ is called a path if D;— D,,,. Remark that
all De @ satisfy Dc<li] for some i. Hence we can define y(D) =i, if D<{i]. We
say that the path DyD, D, - - - represents x, if x = (Do) (D) (D,) - - - . The follow-
ing two important facts about the representation of points x € 2% are proved in [5]:
If De @, then

D={xeX7: x=y(Do)¥(D,) - - - for some path D,D, - - - with D= D} (1.4)

If xe 33\ Z, where Z ={o*(a"), o*(b"): 1=i= N, k=0}, and x is represented by
the paths C,C,C, -+ - and DyD\D, - - - | then:

there is a teN with C;=D, for i= . (1.5)

We call an ordered n-tuple DD, - - - D,_, with D;€ & a closed path of length n if
we have D,» D,,, for 0=<i<=n—-2 and D,_,-> D,, and if there is no divisor m of
n with D;=D;,,, for 0<i=m—1 and l=k=(n/m)—1. Such a path represents
the periodic point x = ¢(Dy)y(D,) - - - ¢(D,_ )y (Do) (D,) - - - . The properties
(1.4) and (1.5) have the following consequence. Let xe€ 2} be of period n. As
xe[x]€ @, x is represented by a path DyD, D, - - - with Dy =[x}, by (1.4). Since
o"(x)=x, x is also represented by the path D,D,\D,,, . If x# Z thereis a t
with D,,;=D; for i=1t by (1.5). Hence x is represented by the closed path
D.D,,, - -- D,.,_,, where s = jn = t, which has length n. If it had length < n, it would
follow that D; = D,,, for all i=s and some r <n, and x = ¢(D,)y(D;,,) - - - would
have period r < n. It follows also from (1.5) that the representation of x¢ Z by a
closed path is unique. For x € Z and piecewise increasing T, the same result except
for the uniqueness of the closed path representing x is shown in the proof of lemma
7 in [5]). Such an x has finitely many representations as a closed path (cf. lemma 4
below). By the methods of part I1 of {2], this last result for x € Z holds also in the
general case, but the length of the closed path can also be 2n. We summarize this
in the following lemma.

LeEmMa 2. (i) Every x € 27\ Z of period n is uniquely represented by a closed path in
the Markov diagram, which has length n.

(ii) If x € Z has period n, then x is represented by a closed path finitely many times.
These closed paths have length n, if T is piecewise increasing. If T is decreasing on
some J,, some of them can have length 2n.

(iii) A point represented by a closed path is periodic.
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Remark. Using (1.4) and (1.5), it is shown in [5] that there is a 1-1 correspondence
between maximal topological transitive subsets () of 7 containing a periodic point
and maximal irreducible subsets @' of %. The results of [§] imply that lemma 2
holds also for € instead of =% and @’ instead of 9.

2. {-functions

In this section we consider the Markov diagram as a 9 X @-matrix M with entries
0 and 1. For C, De @ we define M~p =1, if and only if C - D. Since every C€ @
has at most N successors, u— uM is an I'(D)-operator, whose spectral radius r(M)
satisfies 7(M) < | M|, < N. It is shown in [2] that exp h,,,(27) =< r(M). Let p; denote
the number of fixed points of o*:2% > Z%. The {-function is defined by

0 k
D(z) =exp ( r %pk)-
k=1
This power series converges for |z| <exp (—h,,(27)) and hence for |z| <1/r(M),
since pr<card {[xo- - - x,_ 1} [x0 " * * X1 ] # }. If Z contains no periodic point, we
have by lemma 2 that p, =tr M*, which denotes the trace of the matrix M* Instead
of D(z) we consider
~ © zk
D(z)=exp ( Y —tr M").
k=1 k
To add a periodic point of period n to =} means to multiply D(z) by (1—z")"".
Since each of the finitely many periodic points in Z is represented by finitely many
closed paths (cf. lemma 2), we get D(z)=D(z) - H(z), where H and H ' are
holomorphic on {z: |z| < 1}. Our goal is to define a characteristic power series C(z)
of M and to show C(z)= D(z)™".

To this end set @, ={[i]: l=si< N}c D. If @, < D is defined, let P, be the set
which contains %, and all successors of elements of &,. We have &, < &,,, and
U%=1 @i = @ by the definition of &. As every D € & has at most N successors, the
sets 9, are finite. Set M, = M|9,. We call a closed path DD, - - - D, _, self-avoiding
if D,;# D, for 0=i<j=<n—1. For L=M, or L=M let b,(L) be the number of
i-tuples of self-avoiding closed paths in L, which are pairwise disjoint and the sum
of whose lengths is n. Set ao(L) =1 and for n=1 set a,(L)=Y;_, (—1)'b,(L). The
following lemma is easy to prove.

LeMMA 3. For the characteristic polynomial C,(z)=det (I —zM,) of M,, I the unit
matrix, one has

C(z)= Y a,(M)z"

n=0
We define the characteristic power series of M by C(z)=Y"_, a,(M)z" which is

justified by theorem 1, for which we need the following lemma.

LeEMMA 4. (i) There is a finite or empty set of closed paths in the Markov diagram,
each of which represents an x € Z, such that a closed path of length n, which is not in
this set, is contained in 9,,_,. If T is piecewise increasing, it is even contained in @,,_,.
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(ii) There is a k, such that k = ky and k=2n—1 imply b\,(M,) = b',(M), a,(M,) =
a,(M) and tr M;=tr M".

Proof. We show (i) only if T is piecewise increasing. From this one easily gets the
general result using the method of part 11 of [2].

It is shown by lemma 12 of [2], that & can be written as
D={(A,ik),(Bik)1=i=N,k=1},

where some of the elements of this set are identified. In particular, (A, i, 1) and
(B, i, 1) are identified and represent [i}€ 9. Furthermore (A, i, k) and (B, i, k) have
the successors (A, i, k+1) and (B, i, k+1) respectively. All other successors of
(A, i, k) or (B,i k) are in {[i]: 1 =i= N} except possibly one, which is (B, j, ) or
(A, j, 1) respectively, where 1=j=<N and =k This shows that 9,={(4, i k),
(B,i,k): 1=i=N, l<k=n}.

If a closed path is contained in & ={(A, i, k): k= 1} for some i, then (A4, )=
(A, i,m) for some [#m and (A, i I+j)=(A, i m+j) for j=0 (cf. [2]). The ;;ath
represents o' '(a')=0"""(a’) € Z and no other closed path can be contained in
;. We collect the closed paths contained in some &; orinsome B; ={(B, i, k): k= 1}
as the exceptional set, which has then at most 2N elements and suppose now that
the path is not contained in an &; or 3.

Let (A, i, k) be that element of the closed path of length n, which has the largest
k. Let I=k be the smallest integer, such that (A, i, I)> (A, i l+1)>--->(A, k)
is contained in the path. As (A, i, I — 1) is not the predecessor of (A, i, I) in the path,
there is a (B, j, m) in the path with (B, j, m) - (A, i, I). It follows from lemma 12 of
[2] that then (B, j, t) has only the predecessor (B, j, t—1) for m—1+1<t=<m, so that

(B,jym—1+1)>--->(B,jym)>(A, i)~ ->(A,ik),
which has length k+1, is contained in the closed path of length n. This implies
k=n—1. As (A, i, k) had the largest k of all elements of the path and as &, =
{(A, i, k), (B,i,k): 1=i=< N, | =k=n}, we get (i).

Now (ii) follows from (i) and the definitions, where we choose k, such that the
exceptional paths of (i) are in &, ]

THEOREM 1. The convergence radius of C(z) is at least 1/r(M). For |z|<1/r(M)
we have lim,,_ . C,(z)=C(z) and C(z)=D(z)™".

Proof. We apply the formula detexp K =exptr K to K =log (I —zM,) and get

Ck(z)=exp<— )3 %trMZ) (2.1)
n=1

for |z] < 1/r(M) and k=1 using the Taylor series of log (1 —x). By (ii) of lemma

4, the coefficients of z" on both sides of (2.1) converge for k - co to the coefficients

of z"in C(z) and D(z) ' respectively. Hence C(z) has the same convergence radius

as D(z)™"' and the desired results follow. O

Remarks. (i) Theorem 1 together with results of [8] shows that the kneading invariant,
defined in {8] for continuous T, is the characteristic power series of the Markov
diagram.
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(ii) One can show that theorem 1 also holds for topologically transitive subsets
Qof =F.

We turn now to a different question. For a o-invariant subset X of 37 set Z(X)=
{n: Ix € X with period n}. We want to find out what subsets of N can occur as
Z(3%) or Z(Q), where Q is a topologically transitive subset of 7. One easily sees
that every finite type subshift (S, o) can occur as (2%, o) for some piecewise
monotonic transformation T: Introduce the lexicographic ordering in S. Then
cylinder sets become closed intervals, on which o is increasing. Identifying endpoints
of cylinder sets, S becomes isomorphic to [0, 1]and o becomes a piecewise increasing
T on [0, 1], whose 27 is S. On the other hand, one can show that the set Z(Q), if
it is non-empty, always equals a set Z(S), where S is a finite type subshift contained
in Q. Hence the sets Z()), which occur for topologically transitive subsets Q of
some X7, are exactly the sets Z(S), which occur for finite type subshifts S.

In the next section, we consider this problem for a special class of piecewise
increasing T.

3. Monotonic mod 1 transformations
We call T:[0,1)-[0, 1) monotonic mod 1 if T(x)= h(x)mod I, where h:[0,1)>R
is continuous and increasing. Suppose h(0)€[0,1) and choose N such that
lim,,, h(t)e (N —1, N]. We can split [0, 1) up into N half open intervals J; with
T|J; continuous and increasing. The shift space 7 is defined by (1.2). We consider
1 as a periodic point, if lim,q, T*(t)=1 for some k. Let X <27} be o-invariant and
L=¢ '(X).Seta=¢(0)and b= lim,;, ¢ (). For monotonic mod 1 transformations
one has Y ={J 0 %{a, b}, hence Z(L)=Z(X) by lemma 1, where Z(X) and
Z(L) are the sets of n such that points of period n exist in X or L respectively.
In order to investigate Z (X ) we need more information about the Markov diagram
of a monotonic mod 1 transformation, proved in [3], {4] and [6]. For a = a,a,a, - - -
and b = bbb, - - - defineintegersry, ry, ..., (r;,=1)and sy, 55, . . ., (s; = 1) inductively
such that
ag,+i=b;_, forlsi<r.,,—1, g +rp, * o -1 (3.1)
where R, =r,+-:-+r, and R,=0, and
bs,vi=a;, forl=i=s, —1, bs, 450, 7 85 -1 (3.2)
where Siy=s,+---+s5, and S,=0. Set E;=[il, A,=[1], B,=[N] and
A =0(A;)nla), Bi.y=0(B;))n[b] for j=1. It is shown in [3] and [6], that
@ ={E, A, B;:2=i=N—1,j=1} and that there are the following arrows in the
Markov diagram.
A=A, B, - B, for m=1, (3.3)

Ag,~> B,, Ag~>E (ag <I<b,_)) for k=1,
(3.4)
Bs,~» A, Bs,~E (a,_,<l<bg) for k=1,

Ek_)E, (2SISN_1), Ek_)AhBl forszSN—l. (3.5)

WC have Am < [am—l]a Bm < [bm—l] and Em = [m]7 hence w(Am) =y, (p(Bm) = bm~l
and Y(E,.)=m (cf. §1). If A,,=A, for m<n, then A,,. = A, for k=0, since

https://doi.org/10.1017/5014338570000287X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000287X

Piecewise monotonic transformations 243

Ay, is uniquely determined as that successor of A, to which ¢ assigns the minimal
number. As ¥(A,) = a,_,, we get o™ '(a) =0"""(a). If r,<oo for all ], then there is
a k=0 such that A,,.« = A,.« has more than one successor and hence m+ k=R,
and n+k=R,,; for some i, j>0 by (3.3) and (3.4). We have

Ag+1=Ag,,«1 and of(a)= o +i(a). (3.6)
A similar statement holds if B, = B, for some m#n. If r,,; = and s;,, =0, it
follows from (3.1) and (3.2) that o%"'a=b and 0°*'b=a and from this that (cf.
(1.7) of [6])
ARi+s,+2 = Bs,+1, Bs,-+R,.+2 = AR,-+1- (3-7)
After this preparation we now begin the investigation of Z (1) for some topologically
transitive subset ) of £F. For a subset % of & set
Z(F)={n: there is a closed path of length n in F}.
A maximal irreducible subset @' of & determines ) (cf. [5]). We consider first
Z(9') (cf. lemma 2). By (3.5) we have either
{Ei:2=k=N-1}c¥ (3.8)
or
{E;:2<=k=N-1}n9'=0. 3.9)
We consider first the easier case (3.8). If N=4, then Z({E;:2=k=N-1})=N,
hence Z(2')=Z(D)=N. If N=3 and @' ={E,}, then Z(2')={1}. If @' is larger
than {E,}, let m be the smallest integer with A,, > E, or B,, > E,. Suppose A,,~> E,.
By lemma 9 of [4] we have a=122---21- .- and the Markov diagram looks like
this (s, =3):
A2 A A oA, DA,
T

C

{
B,>B,»>B;>---

We need the following. Set &/ =N’uU{(1,0), (0, 1)}. Suppose @’ contains two closed
paths of length k and I with non-empty intersection. Then

vk+wle Z(9") for (v, w)e W. (3.10)
One gets a closed path of length vk + wi, if one runs v times through the path of
length k and then w times through the path of length L In the above diagram the
paths E;» A, »>---> A, > E, and E,— E, are not disjoint, hence {1, m+1, m+2,
.. .}= Z(D') by (3.10). If 5, < m, the closed path B,>: - > B, > A > A= >
A;~ By has length i+1 for s,<i=m~1. Hence we get (for ng Z(9), if 2=n<
min {m, s,}, we use (i) of lemma 4, (3.6) and lemma 5 below)

Z(D)=Z(D)={1}u{n: n>min {m, s}}.

We can write this as {vp+wq: (v, w)e N} with p=1 and g =min {m, 5,} +1. Then
it fits into the notation of theorem 2 below. In the case B,,»> E, we get the same
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result with p=min {m, r;}+1 and g = 1. This completes the case (3.8), since there
are no E; in the case N =2.

It remains to investigate (3.9). To this end we need two more lemmas about the
numbers r; and s; proved in [3] and [4].

LemmMma 5. Setting Ry= S,=0 and R, = S, =0, there is for every m=1 a P(m) and
a Q(m) with 0= P(m), Q(m) =00 such that r,, = 1+ Sp(m) and s, = 1+ Ro(m).

By (3.3) for a @’ satisfying (3.9) there exist q,p, q',p’ with 1=g<g'=00 and
1=p<p'=o such that @'={A, B:q=i<gq,p<j<p’}. Set 9={A, B;: q=i,
p=j}. The set F= X7 of all one-sided paths in 9 is a o-invariant finite union of
intervals containing Q (cf. [5], [6]).

LEMMA 6. Suppose @' satisfies (3.9). Let m be such that Ag_€ 9 (Bs_€ 9) and that
Im>p (8> q). Then there is a j, 1 <j =00 With rp.; = ropimy+i (Smei = Sp(o(m))+i)
for 1=<i <] and Fm+j > YQ(P(m))+j (sm+j > sQ(P(m))+j)-

We use lemma 6 to find a closed path in @'. By the irreducibility of &’, there must
be a De @' with D> A, Hence by (3.4), g=s, for some h. Similarly p=r, for
some g. We choose g and h minimal. By lemma 5, we have g =s,=1+R,, i = Q(h).
We consider rio. As 9 ={A, B;: 1= gq, j=p}, and @' is irreducible, r,., > p implies
1+ Spi+y>p and Q(P(i+1))=i, hence r,.,>p by lemma 6. The same argument
gives that r,.,> p implies r,.;>p and so on, a contradiction to r,=p and g>i,
which holds as Ag € 9. Hence r,,;=p and g=i+1,ie. s,=1+R,_, = q Similarly
one gets r, = 1+ S,_, = p (cf. [6]). We have the following closed path (cf. (3.3) and
(3.4)).

(3.11)

We say that a pair (i, j) gives rise to a closed path in &, if r,<1+S§, and 5; <1+R,
The closed path is given by A, > - > Ag ~> B, > --> Bs > A, and has length
R,_,+S;_;+2. Hence the pair (g, h) gives rise to the above closed path of length
pt+aq. If
D'={A,B:q=i<pt+q,p=j<ptgq} (3.12)
then Z(2")={p+q}.
If (3.12) is not satisfied, then we have

2'2{A, B:q=i<p+gq,p<j<p+gq}l

By (3.4) there must thenbea k>gwithp=r,<ptg,orak>hwithg=s,<p+gq,
since @' is irreducible. By lemma 5, we have then r, = p or s, = g respectively. Let
t be such that n<p+gq for g=i<tand r,>p+q. If r=p+gq for all i=g, we set
t=00. Let u be such that s;<p+gq for h=i<u and s,>p+q. If n=p+gq for
g<i<tand s;=p+q for h<i<u, it follows from lemma 6 by induction (m such
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that r,,>p+gq ors,>p+gq)that r,=p+gq for all i>g and s;,=p+gq for all i>h,
which implies (3.12). As (3.12) does not hold, at least one of the following two
statements occurs:

rr=p+qforg<i<g and r;=p for some g with g<g<t; (3.13)

s;=q+p for h<i<h and s;= q for some hwithh<h<u (3.14)
In order to investigate Z(%'), we define a vector d; for every i with r,;,_,<p+gq.
For i=1set d;=(1,0),if ry;-, = p, and d; = (1, 1), if r,,,_, = p+ q. Furthermore set
co=(0,1) and for 1=i<st—g set ¢;=(0,1)+d,+---+d. As g+i— 1<y these ¢
are defined. We have 1 + R,,;_; = vp+wq for 0= i =1t~ g where (v, w) = ¢, We need
this for the following reason: If r,.;_, = p, the pair (g +i— 1, h) gives rise to a closed
path R, in @’ of length 1+ R,;_; =vp+ wq.

The slope of a vector (v, w) is defined as w/v. We write ¢ < ¢ if the slope of ¢ is
less than or equal to the slope of ¢, and ¢ < ¢ if the slope of ¢ is less than the slope
of & Set A=inf{slope of ¢: 1=i<t—g} and H={(n,w)eN: A<w/v<l1}.
Remark that A <1 if and only if (3.13) holds, otherwise A = 1. We want to show
{op+wq: (v, w)e H} = Z(2'). To this end we need some lemmas.

LEMMA 7. Choose i such that d; is defined and let m be the largest element of N U {0},
such that d; and d,.; are defined for 1 < j<<m. Then either d,,;=d; for | =j<<m or
there is a k<<m with d,,;=d, for | =j<k and d, > d,, ie. diyx=(1,1) and d, =
(1,0).

Proof. As d,=(1,0), we have k=1 if d;,,=(1, 1). Hence suppose d;,,=(1,0). If
d; = (1, 0) the result follows, because the largest integer ! with r,.;,_,=p for 1 =j=I
is greater than or equal to the largest integer n with r.,,.;_,=p for 1=j=n, by
lemma 6. If d;=(1,1) then r,,;,_,=p+q and Q(P(g+i—1))=g—1, so that the
result follows again from lemma 6. O

LeEMMA 8. If ¢ satisfies ¢,;=¢;_,+(1,1), ie. di=(1,1), and ¢;_,+(1,0)=¢;, where
J<iis such that c,=¢; forn=i—1, thenc,=¢ foralln=1t-g.

Proof. By lemma 7, there exists a k with d;,,=d, forl=n<k and, if i+k<t—g,
divi>di,ie. div=(1,1) and d, =(1,0). Hence ¢, = ¢, +(1,1) +d, ++ - - +d,_; for
i=n<i+tk hence ¢,=¢_,+(1,0)+¢c,_;. Suppose ¢, <g¢. As ¢_,+(1,0)=¢, this
implies ¢, ; <¢;. If n—i=1i, we get by the same argument that ¢, ,; <¢ and so on.
Let I be such that 0=n—1Ili=i—1 and we get c,_; <, a contradiction to our
assumptions. Hence ¢, =¢; for i=n<i+k If i+k=1t—g, the lemma is proved.
Otherwise ¢y +(1,0)=¢_+(1,1)+d,+---+d=¢ follows as above for ¢,
since di, = (1, 0). As d;.« = (1, 1), the assumptions of the lemma are satisfied for i + k
instead of i. Hence induction finishes the proof. O

LEMMA 9. (i) Let i<j. If ¢;> ¢, then ¢;—¢; <¢. If c;=<¢; then ¢;—¢; = ¢,

(ii) Let m < n. Suppose that c,,> ¢, and ¢;=c,, for i<n—1. If there is a k with
l=k=n—-m—1 such that d,,;=d,.; for |<j<kand d,, > d,. then ¢c;=c, for
alli=t—g

(iii) Let n be such that ¢;=c, for all i <n. If there is a k with 1=k=<n-1, such
that d,.,=(1,1), d.;=d; for 1 <j<k, and d, > di, then ¢,;=c, foralli<t—g.
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Proof. As ¢, ¢; and ¢; — ¢; are vectors with non-negative entries, (i) follows from the
definition of the order relation.

We show (ii). For j <k we have

gn+j=_cn+dn+l+' : ’+dn+j:_cn+dm+l+' ) '+dm+j
=Cn +_Cm+j —Cm > Cny

because Cm+;—Cm =Cn by (i). The same computation for j=k—1 gives ¢,y +
(1,0) = ¢u+ Cmsk — Em since dpy =(1,0). Using ik = ¢ and (i), we get €1+
(1,0)> ¢,. Now (ii) follows from lemma 8 for j=n and i=n+k, as d,,, =(1, 1).

The proof of (iii) is the same as that of (ii) setting m = 0. One gets ¢,.; = ¢, + ¢ = ¢,
for 1=j<k and ¢ 4i_;+(1,0)=¢c, + > Cn O

We call a vector ¢; minimal if ¢;> ¢, for 0=j<i Let gg=co>e1=¢,> e, > e3> -
be the finite or countable subsequence of (¢;) consisting of minimal vectors. Then
we have:

ProrosiTioN 1. Let i =1 be such that e;,, exists. Then there is an integer m; =2 with

€iv1=mg; —e;_,. Furthermore for 1=k=<m;—1 there is a j with ke, = c; where
_djz(lao)s l‘lez.
Proof. Let v and w be such that ¢,_, = ¢, and ¢; = ¢,. We show by induction that for
i=2:

(i) e=me,_,— e, for some m=2 and d,=(1,0);

(il) i>2,2=sk=m—1=k ¢, =¢ for some j with d;=(1,0);

(iii) dw_,=(1, 1), if w—v>1, and d,,_,.;=d; for 1 =j=v;

(iv) dpr=(1, 1), if w—v>1,and d,,;=d, for 1 <j<w-un
We check first (i)-(iv) for i=2. Let m be such that d,=(1,1) for 1 <i<m and
d,=(1,0). Then ¢;=¢, for i<m and ¢, <c,. Hence e, =c¢,, = m e, — ¢,. If no such
m exists, we have also no ¢,. As v =1 and w = m, (iii) and (iv) follow from d; = (1, 1)
for 1 <i<m and d,,=(1,0).

Now suppose that (i)-(iv) hold for i. We prove them for i+ 1 supposing that e,
exists. It follows from (iii) and lemma 7, that there is a k=1 with d,.,; = d..; for
I=sj<kand,if wtk<t d,o <dpir As ¢, =€_1, ¢, = €, and ¢;,, exists, it follows
from (ii) of lemma 9 with m =1, and n=w that k= w—y, i.e.

duij=dyi; forl=j<w-uo. (3.15)
Hence ¢,+; = ¢+ Corj— € > Cu, by (i) of lemma 9. If we also have
d2w—v = dwy which is (1’ 0) by (l)a (3'16)

then ¢, ,=c¢,tcw—c,<c, by (i) of lemma 9. Hence €, =¢un_,=28—8€i_;.
Together with d,,,_, = (1, 0) this gives (i) for i + 1. As m =2, (ii) is an empty statement.
Let v, w’ be such that ¢, =¢, and ¢;,,=¢,,i.e. v =wand w'=2w—v. As w' —0v'=
w —uy, (iii) and (iv) for i+ 1 follow from (iii) and (iv) for i, (3.15) and (3.16).
Now we consider the case where (3.16) does not hold. Suppose that for some /=1
le.=¢,., c¢=c, fori=lw,

(3.17)
dlw+j:du+j for 15j<W—U, dlw-f—wfv:(l, 1)
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For I =1 this is (3.15) and the converse of (3.16). It follows from lemma 7 that there
is a k=1 with
uwrnmvis =y For 1<K, dugurevesc™ di (3.18)
Now we get
di1=(01,1), di+;=d; for 1 <j<min 2w-v, w—v+k}. (3.19)
For j=w—v this follows from (3.17) and (iv), for w—v<j=<w from (3.18) and
(iii) and for j> w from (3.18) and (3.15). It follows from (iii) of lemma 9 with
n=lw, (3.18) and the existence of e¢;,,, that k= w. Hence we get from (3.19) that
Cw+j = Gt g = ¢ for j<wand ¢+ = e + ¢, = (I +1) €. Furthermore dy 4\ = d\ =
(1, 0), which shows (ii). As k = w, we have by (3.19) that d,,,.; = d; for w <j<2w—u.
If dirw_p = (1, 1), all requirements of (3.17) are satisfied for I+ 1 instead of / and
we can perform the whole argument again. Otherwise d;,,_5,,_, = (1, 0) and ¢j420—» =
(I+1) e,+e;—e_, (cf (3.19) and (3.15)). By (i) of lemma 9, we get €;1| = Cror2w—»
Hence (i) is shown with m =1+2. If v’ and w' are such that ¢, =¢; and ¢, = e;,|,
then v'=w, w=mw—y, and
w—v'=(m—-1)w-u. (3.20)
As k= w, we get (iii) for i + 1 from (3.18) and (3.20). If w—v =1, then d,._ = djps1 =
(1,1) by (3.19). We get (iv) for i+ 1 from (3.19) for I=1,2,..., m —2. This finishes
the induction step. O

As we have defined d; for r..,_,, we define d;=(0,1) if 5,0, =¢, di=(1,1) if
Sprici=q+p, and ¢i=(1,0)+di{+---+d; for O0si=u-—h Again we have
1+ S, =vp+wg with (v, w)=¢}. Using lemma 5 and induction, we also get
representations of 1+ R;.,_, for i>t—g and of 1+ S,,,_, for i>u—h as vp+wq.
We use these representations in the sequel. Set u =max {slope of ¢j: 1=i<u—h}
and H'={(v,w): 1<w/v<u}. We set K={(v,w): A <w/v<u}. As either (3.13)
or (3.14) occurs, we have either A <1 or u > 1, so that K # . We shall show that
{vpt+wq: (v, w)e K}c Z(D').
We consider first K, = {(v, w)eN*: w/v=a} for a =1.

LEMMA 10. If u>1, ie (3.14) holds, and r, ., =1+ S,,; with ~1=j< ﬁ—h, then
k(p+q)e Z (D) fork=z=j+2.
Proof. As r,.<1+S; and s;=gq, the pair (g+1, h) gives rise to a closed path in
@' of length 1+ R, + 1+ S;_, = p+ g+ (h— h)(p+q) (cf. (3.14)), which is not disjoint
from the closed path of length p+ g given by (g, h). By (3.10), we have k(p+q) e
Z(D') for k=h—h+1.

As s,,;=p+gq for l<i<h—h and rev1=1+8,., the pair (g+1, h+i) gives
rise to a closed path of length 1+ R, +1+S,,,_,=p+q+i(p+gq) if i>j, hence
k(p+q)e Z(9') for z<=k=<h—h. 0

PropPOSITION 2. {vp+wgq: (v, w)e K} Z(D')

Proof. We consider first (v, w) € H. Suppose that (v, w) is in an angle spanned by ¢,
and ¢, fori=1. As ¢;=(1,0) and ¢, = (1, 1), it follows by induction from proposi-
tion 1 that det (e, ;1) =1. Hence (v, w) =je; + ke;,, with j, keN. Suppose ¢ = c,,
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and e, = ¢,.. By proposition 1, we have d,, = d, =(1, 0). Hence the closed paths %&,,
and %, of lengths v'p+w'q with (v', w')=¢, and v'p+w'q with (v, w)=¢, are
not disjoint, so that we get a closed path of length vp+ wq by (3.10), i.e. vp+wge
Z(9").

Now suppose (v, w) =je; for some i> 1, such that ¢, exists. It follows from
proposition 1 that je, = ¢, for 1 =j<m, with d,=(1,0). Hence %, is a closed path
of length vp+ wq. Suppose ¢,_,=¢, and e, =c. As d, =d;=(1,0), the paths &,
and %, are not disjoint. As ¢;_,+ ¢;,; = m,e; by proposition 1, we get a closed path
of length vp+ wq for j=m, by (3.10). This closed path is not disjoint from %,
where ¢, = e, 5o that we get again by (3.10) a closed path of length vp+ wq for all
j>m

If (v, w)e H' the same proof works. If A <1< pu, we have K, < K. We have to
show k (p+q)e Z (2’) for k=1. For k=1 we have the closed path given by the
pair (g, h), which has length p+q. For k> 1, k(p+q)e Z(9') follows from lemma
10, because A <1 implies (3.13), which gives j=—1 or 0 in lemma 10. 0

We want to prove an inclusion in the other direction as in proposition 2. To this
end we need some lemmas about 1+ R, for i=g and 1+ S, for i=h.

LEMMA 11. Suppose that r; <0 and s; <0 for all i.

(i) 1+ R, =vp+wq with (v,w)e K, forg=i<g (r,w)e KUK, forg=<i<tand
(v,w)e K fori=t if u>1, ie (3.14) holds, and with (v,w)e K u K, for i=h, if
A=1.If i is such that r,;> p+q we have R,,;— R,_, = vp+wq with (v,w)e KU K,
Jorj=1 and (v,w)e KUK, UK, for j=0, where p =1 and (v, w)e K, for some
j=1 imply (v, w)e K, for j=0.

(ii) 1+ S; = vp + wq with (v, w)eK,forhsi<};, (v, w)eKuK“forﬁsi<u, and
(v,w)e K fori=u, if u>1, ie. (3.14) holds, and with (v, w)e K U K, for i=h, if
w=1. If i is such that s,> p+ q we have S,; — S;_, = vp+ wq with (v, w)e K U K, for
j=1land (v,w)e KUK, UK, forj=0, where A =1 and (v, w) € K, for some j=1
imply (v, w)e K, for j=0.

Proof. We use induction. Let t,=t1<t,<--- and u,=u<u,<--- be such that
r.,>p+gq, s, >p+qfori=1and y=p+q for j#1, s;=p+q for j# u. Suppose
the result is shown for | + R, with g=i<t, and 1+ S; with h=i<u. For k=1[=1
this follows from the definitions of A, u, g, I;, t and u. We have either r, <1+ S,
or s,, <1+ R,, because otherwise r, =s, =0 by lemma 5. Suppose r, <1+S,. We
show that

R,.;j—R,_,=vp+wq with (v, w)e KUK,UK, if j=0
and (v, w)e Ku K, if 0<j<ti, —t (3.21)

This implies (i) for 1+ R; with f, <i<t,,, since |+ R, ,;=1+R, _+ R, ;— R, _,
and 1+ R, _,=vp+wg with (v, w)e Ku K, by the induction hypothesis. It also
implies the second assertion of (i). If w =1, we get from (3.21) and from (v, w) € K|
for some j, that (v, w) e K, for j =0, since r, ,; for | =j <, — t, is either por p+gq,
ie. R, .j—R,=v'p+wqwith w/v' =1
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The proof is finished once we have shown (3.21). By lemma 5, r, =1+, with
h <i< u, hence for j =0 (3.21) is satisfied by the induction hypothesis. Furthermore
r,—s=1+8,_, and h=i—1<u, hence, again by the induction hypothesis,
r,— 8 =uptwg with (p, w)e Ku K ,u K,,. (3.22)
By lemma 5, 5; = 1+ Ry(;), and by lemma 6 we have an m=1 with r, ;= rg;).; for
I=sj<mand r > rouem As
Rrk+j - R:k—l =Ty, — S +1+ Ro(i)+j,
we get (3.21) for 1=j<m by (3.22) and induction, since g—1<Q(i)<1t, by
definition of Q(i), (3.4) and the irreducibility of &'. If t, + m = 1, the induction
step is finished. Otherwise r, ., <p+q, and we get from r, ., > ro(i)+ m, that
rnrm=p+q and  rouyem=p. (3.23)
Hence it follows by induction as above that
Ryimoy—R,_i+p=vp+wq with (v, w)e KU K,. (3.24)
We remark that r,,; is p or p+gq for 1 =j<t,,—, hence d,,; is defined for
Lh=ti,+m—g+land0=<j<t,,—t,—m Now define I, ,, . . . inductively, such that
disty4vn,+;=4d; for 1=j<l,y and dys...py,,, =(1,1)>d; , = (1,0) (cf. lemma 7).
For 0=j<|,,, we have then

n+1

Ry smrty+ttj~ Rysm—1=vp+twq
with
(w)=(L, D+d+-+d_+ -+, )+d+ -+
=(1,0)+_Cl,+' o, tg,

since d, =(1, 1) by (3.23), 4, =(1,0) and d,+...,,=(1,1) for i=1, and ¢,= (0, 1).
Together with (3.24), from this we get (3.21) form=j <., —f,as e Ku K,U K,
by induction. This completes the proof. O

LEMMA 12. IfA =1 then 1+ R,.,=vp+ wq with (v, w)€ K fori=1 or there are k= 1
andz =2 suchthat 1+ R, = vp+wqgwith (v, w)e Kfor 1 =i<kand (v,w)=(z,z)¢e
K, fori=k. Then j(p+q)e Z(D') forj=z

Proof. Suppose that there is a k=1 with 1+ R, ., = vp + wq with (v, w) € K,. Other-
wise we get (v, w)e K for all k=1 by lemma 11. If k=1 then the requirements of
lemma 10 are satisfied (cf. lemma 11) and the desired result follows. Otherwise let
k>1 be minimal. By lemma 11, we have 1+ R,_,=vp+wgq with (v, w)e K and
r=1+Spu,=vp+wg with (v, w)e Ku K, UK, if r,=p+gq. This gives |+ R, =
vp+ wq with (v, w)e K, a contradiction, hence r, = p. But then we have a closed
path of length 1+ R, = zp + zq, which is not disjoint from the closed path given by
(g, h). By (3.10) the desired result follows. |

A similar lemma holds for S, instead of R, .. We denote the number corresponding
to z by z".

Lemma 13. (i) If r,,=o0 for some i and s;<co for all j, then Z(9)=
Z(D\{Ax: k> R}).
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(ii) If ryy=0 and s, =, then Z(2)={R;+S;+2}u Z(D\{A,, B;: k>R,
1> S;}H.
Proof. (i) It follows from (3.1) that r,, =c0 implies c™a =b, where m=1+R,. If
one cancels {A.: k=m} from 9, one loses a representation of ¢™a =b. But b is

also represented by the path A,-A,, > --->A,, »B,>B,,,»>  in
P\{Ax: k> R}.

(ii) If one cancels {Ay, B;: k> R, 1> S;} from @', one loses the closed path given
by (3.7). It has length 1+ R;+1+S; ]

LEMMA 14. Suppose that (3.6) occurs. Then we have a closed path 4=
(Ax: Ri<k=R,,;) of length U= R,,;~ R.. Suppose there is no other closed path of
length U in @'. Then U = vp + wq with f = (v, w) € K, and one of the following holds:

(i) t=00 and there is a ¢, € K, such that ¢ is not disjoint from R,,;

(ii) ¢t =00 and the entries of f have no common divisor;

(i) A=1,i=g, z oflemma—12 exists and f=(z—1, z—1).

Proof. 1t follows from (3.1) and (3.6) that

Tiem = livjom and U=Ri,n—Rii,, for m=1. (3.25)
If f € K, then there is another closed path of length U in &’ by proposition 2. Hence
we suppose
feK (3.26)
We consider first the case that
re>p+q for some k=1, i.e. r,. =148, with m> h. (3.27)

If A <1 it follows from lemma 11 and (3.25) that fe KU K,,. By (3.26) we have
f€ K,. Again by lemma 11, we get U=1+S,, i.e. f=¢pg+1, if u>1 (cf. (ii) of
lemma 11), hence we have another closed path of length U in &', If u =1 then
U=n(pt+q)=1+S,,=n'(p+q)
(cf. the last statement of (i) of lemma 11) and n=n’'=z' by lemma 12. Hence there
is another closed path of length U in &'.
If A =1 then u>1, i.e. (3.14) holds. By lemma 11 and (3.26), we get fe K, U K,.
If fe K, the same argument as above applies. Hence we suppose feK,, ie.
=n{p+gq) for some n. If m defined in (3.27) satisfies m < h then s,, = p+gq by
(3.14) and re ;4 =1y, by lemma 6. If r,,, <1+ Sj;, then
1+ R,y =pt+qg+r,, :_l(p+‘1)
with =2z (cf. lemma 12) and U=r,,,=(z—-1)(p+4q) by (3.25). Hence we have
already U € Z(9') or (iii) occurs by lemma 12. If r,,,,,=1+S; we have the case
we consider now, with k+ 1 instead of k. Suppose now m of (3.27) satisfies m= h.
It follows then from lemma 6, that m = ﬁ, Fiixro=ptgforl=v<land ri.=p,
for some I, otherwise f£ K,. But then r,,, =1+ S, 1,41+, =p+q for 1=v <! and
Ie+1+1 =P, for some I'si by lemma 6, which gives 1+ R, ,+r=w(p+q) for some
wand z < w (cf. lemma 12). We get again U = R, ,.;— R, = (z—1)(p+ q) and either
UeZ(2'), by lemma 12, or (iii) holds.
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Next we suppose that (3.27) does not hold, i.e.
re=p+gq for all k=1. (3.28)
Then d,,, is defined for m=i—g+2and f=d, g2+ +d; ;41 by (3.25). Clearly
f=(1,1). We get that

feKuK,UK,, (3.29)
as 1+ Ry =1+ R;+k (vp+wg) with (v, w)=f, f¢ KUK, UK, would imply 1+
Ry j=v'p+wq with (v', w) & KU K, UK, forlarge k, a contradiction to lemma

11. In addition to (3.28) we suppose for some [
Fiok = Tgar for k=0,ie i=g—1. (3.30)

From this and (3.28), it follows that ¢ =00. By (3.26), (3.29) and f=(l, 1), we have
either f=(1,1) or fe K,. For f=(1,1) we have U =p+qe Z(2’), hence suppose
fe KA.-If thereisan e, =¢, € I-(A, then d, = (1, 0) by proposition 1 and the path R,
is not disjoint from % by (3.30). This is (i). If e, 2 K, for all m, then for every
minimal ¢, =e, we have ¢,+f=c..; <C, so that e,.,=c, with n’=n+j Then
there is a k such that m; =2 for i = k (cf. proposition 1), because otherwise the gaps
between the minimal ¢, are not bounded by (3.20). By proposition 1, ey, =
e t+vle —e) forv=1, and ¢, — e € K,, since the slope of .., decreases to A.
The sequence (d,) has period j and ¢,.;— ¢, = €x+1— & SO that f=¢. —e. By
proposition 1, the entries of ¢,., — e, have no common divisor (cf. the proof of
proposition 2) and (ii) occurs.

Now suppose that (3.28) holds and (3.30) does not hold. For m=i—g+1 define
I, L,,...inductively by

dm+ll+~-+lk+n:dn for t=n<l.,,

dmitrvprn,, =, D) >d, =(1,0).
These vectors are defined by (3.28) (cf. lemmas 5 and 7). Because {3.30) does not

hold, I, <o for all k. By (3.25) we have f=d,,+- - -+d,.;_,. Let a=1 be such that
L+---+1,_,<j=sl+---+1. We show that

(3.31)

L+--+L—j=L+- -+, for some b with 0=b<a. (3.32)
Set V=1I,,,+--+1,—j and suppose 0= V < [,,,. We have to show V =0. By (3.25)
we have
i = dm+j+k for k=1. (3.33)
Hence it follows from (3.31) that
[ Y for 1=k<l,,,. (3.34)
Again by (3.31) for k=a—1 and n=n'+k, where n'=j—~ I, —- - -—1,,, we get

dm+j+ll+< etk T 2 for I=k<YV,
(3.35)

Qrvjityr v dpevy
As V<l,,,, wegetfrom (3.34) and (3.35) that d,.., =di for i<k < Vand d,.y <dy,
a contradiction to lemma 7, unless V =0. Hence (3.32) is shown.
Set m'=m+1,+---+1,. By (3.33) and (3.32) we get

__f: dwtdpyt:--t+ éim'+l,,+l+~ ol

https://doi.org/10.1017/5014338570000287X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000287X

252 F. Hofbauer

By (3.31) we get f=(1,1)+¢,, -1—cot---+(1,1)+¢,_,—c Whichis ¢, +- -+
¢, since d,, =(1,0). As d, =(1,0) the closed paths &, of lengths vp+wq with
(v, w)=¢, are not disjoint, so that we have a closed path of length U in @' by
(3.10.). This finishes the proof. O

If the second assertion of (3.6) is valid, a lemma similar to lemma 14 holds. Now
we can show:

PrOPOSITION 3. Z(D) < {vp+wq: (v,w)e KUK, UK,} and Z(D)=Z(D").
Proof. Let P be a closed path in & and denote its length by L. We have to show
L=vp+wg with (v, w)e KUK, UK, ; (3.36)
L=vp+wq with (v, w)e K, =>Le Z(9'). (3.37)
Then a result analogous to (3.37) also holds for (v, w)e K, and Z(9')=Z(9)
follows from proposition 2.

If # does not contain an A; and a B; then (3.6) holds and @ is the path 4 of
lemma 14, or one which contains only B, Then the case considered below and
lemma 14 imply (3.36) and (3.37). If (i) or (ii) holds, then =00 implies ¥< P’
which gives (3.37). If (iii) holds, this follows from i= g and (v, w) € K,.

Now we suppose that A, B;e? for some i,j. We divide 2 into segments
Ar-> Ay —»---> Ay and By > By~ - - = By. Because B, > Ay for some k and
Ay - B, for some I, we have T=s; for some i and U = R; for some j by (3.4).
Similar results hold for V and W. Hence there is an n and k; =g, ;= h with [, =1,
such that

g}:U {Avs Bw: s,HSvSRk‘_, rk.SWSS,‘_} (338)
i=1
Hence

L= z (Rk._—s,H-i" l)+(S,,_—rk,_+ 1) = z (Rki_l+ 1)+(Sl,—l+ 1)
i=1 i=1

If k;=g, then s, =q=R,_,+1, since s5,_ <R,, hence R_+1+8§,__,+1=
S;_,+1. A similar result holds if I, = h. Hence we get (cf. also lemma 13):

Lisasumof 1+R; and 1+, with i=g and j=h. (3.39)
Now (3.36) follows from lemma 11. If A >1 (3.37) also follows, since then there
are only 1+ R;=vp+wgq with (v, w)=¢,€ K, in (3.39). This gives d,=(1,0),
because d,, =(1, 1) implies that c,,_, has a slope smaller than A. Then % is a union
of paths &, = @'. If A =1 then either L = p+ ¢, or (3.39) contains an 1+ R; = vp+wq
with i>g and (v, w)e K,. By lemma 12, we get v=w=z and L=m(p+q) with
m=z ie. Le Z(2'). This shows (3.37) and finishes the proof. |
Recall that the set F of all x represented as one-sided paths in & is o-invariant
and a finite union of intervals, which contains Q (cf. [6]). Hence Z(F) = Z(9) (cf.
§1).
THEOREM 2. Let Q) be a topologically transitive subset of %7. Then there are integers
p and q and real numbers A and u, such that

{vptwg: A <w/o<ulc Z(Q)c{vp+twg: A=w/v=p}.
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For a = A or u we have Z(Q}) n{vp+wq: w/v=a} is empty, or {kp+lq} or {m(kp+
lg): m=1 or m = z} for some z=2, where the integers k and | have no common divisor
and satisfy 1/ k = a.

If Q does not consist of a periodic orbit only, we have Z(F)=Z(Q) and either
A<= porA=sl<pu
Proof. For the cases considered at the beginning of § 3, the theorem is easily checked.
Hence suppose the converse of (3.12). Since Z(2') = Z(£}) by lemma 2, it follows
from Z(%)= Z(F) and proposition 3 that Z(2') = Z(Q) and Z(Q) = Z(F). Since
either (3.13) or (3.14) holds, we have A <1 or x> 1. The first result of the theorem
follows from propositions 2 and 3. The second result for « = A follows for A =1
from lemmas 12 and 14 and for A > 1 either from lemma 14 or by the fact that the
entries of a minimal ¢; have no common divisor (cf. the proof of proposition 2)
and the fact that ¢, ¢, € K, implies d,, = d, = (1, 0) and hence the paths #,, and
R, are not disjoint (use (3.10)). ]

Now we look for monotonic mod 1 transformations 7, which have a given set of
integers as the set Z{T) = {n: there is an x which has period n under T}.

LemMma 15. Let T on [0, 1) be monotonic mod 1 with N =2 ( for the definition of N
see the beginning of § 3). For every integer n there is a monotonic mod 1 transformation
Son{0,1) with Z(S)={n}u{nk: ke Z(T)}. If n=2 then S has N =2.

Proof. Set a=T(0) and b =1lim,;, T(t). We consider first the case n=2 and define
SonI=[-1-b2n-1) instead of [0, 1). We consider [0, 1)=J,uJ,, on which T
is defined, as a subset of I. Set K_,=[—-1—-b,—1), K;=[i,i+1) for —1=i<2n—4,
K,, ;=[2n-3,2n—-2+a)and K,,,_,=[2n—2+a,2n—1). Now we define S on I by

x+2n—-3+b for xe K_,,
(2+a—-b)x+2n—-2+a for xe K_,,
S(x)=¢{T(x)+2n-2 for xe J,c K,, (3.40)
T(x)-1-b for xe J,< K,
x-2 for xe[l,2n—-1)=J"7* K.

One checks that S is continuous at x=—1, x=0 and x =1, so that S is monotonic
mod 1 with N =2. Furthermore S(J,)=K,,_,, S(J,)=K_,, S(K;,_,)< K;,_.,
S(K_ ;)= K,, 4sand S(K,;)=K,;, ,forn—2=i=1.Since Shasslope 1 on I\[-1, 1),
we get that S”|[0,1)=T. We have also S(K,;;;)> K, for n—2=i=0 and
S(K_;) > K,,_;. This gives the desired result about Z(S).

For n =1 we consider [0, 2) instead of [0, 1). We define f: [0, 1)>[0,2) by f(x) =
x—cforxelJ,=[c 1)and f(x)=x—c+2forxeJ,=[0, c). Set S(x)=f(T(f (x)))
for xe[0,1-c)u[2-¢2)=f([0,1)). Then we have S(2-c¢)=f(a) and
lim,_. S(2) = f(b). If ac J, and b e J,, then f(a) > f(b) and we define S to be linear
on[l-¢2—c] with S(1-¢)=f(b) and S(2—c)=f(a). If both a and b are in J,
or in J,, we define S to be linear on [1—¢, 1) and on [1,2—c] with S(1 —c¢) =f(b),
lim,, $(t)=2, S(1)=0and S(2—c¢)=f(a). If ac J, and b€ J;, we introduce in the
same way two discontinuities at x,ye(1—¢ 2—c) such that S([x, y))=[0,2),
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S(y)=0 and lim,, S(¢t)=2. In any case S is monotonic mod 1 with N=3 and §
has no periodic point in [1—¢, 2 —c) except one fixed point.
ProPOSITION 4. Let p, geN, A €{0, 1] and u € (1, ] be given, such that p and q have
no common divisor. Then there is a monotonic mod 1 transformation T on [0, 1) with
N =2 such that
{op+twg: A<w/v<ulc Z(T)c{vp+wg: A=w/v=yp}.

Furthermore T is topologically transitive.
Proof. The Markov diagram @ of T is determined by sequences r, r,,... and
$1, S5, . .. of integers (cf. the beginning of § 3). We shall construct such sequences,
sothat Z(T)= Z(%) has the desired property, and then a monotonic mod 1 transfor-
mation T giving rise to these r; and s,

Suppose p=gq and set p,=p and gq,=gq. Then there are uniquely determined
ki=1, =1, p;, and q; for i=0 such that

pi=kqi+pi with 0=p;,, <gq,
) (3.41)
g =lipirit qiv with 0= ¢, <piy;.

As p and g have no common divisor, we end with p,, =1 or g, =1 for some m.
Suppose p,, = 1. We define (if gq,, =1 one has to begin with s;)

rl.zl:pm forlsi<qm71:lm—h
5 =G forl=i<k,_,.

WesetR,=r +r,+:-+r,S;=s5,+s,+--+s,fori=zland L=+ +---+1,_,
Ki=ki+ki+---+k, forO0si=m—-1. Forj=m-2, m—-3,...,1,0 define

ri=1+8,, for L, =i<L,

s5i=1+R,, for K;., <i=K,
From (3.41) we get by induction that 1+ Sx  =p;,, and 1+ R, _, = g; Finally we
define
rg=1+S8g,=p where g =L,

s,=1+R; _1=¢q where h = K,+ 1.
Then the Markov diagram restricted to {A, B;: 1=i=p+gq}, which is determined
by r; for i< g and by s; for i< h, contains only the closed path (3.11) (cf. also [4]
and [6]).

The r; for i> g are determined by A, the s; for i > h are determined by u. We
consider only the r. If A =1 we set r,=p+g for all i=g. Now suppose A €[0, 1).
According to proposition 1, set e,=(0, 1) and e, =(1, 1). If ¢;_, and ¢, are defined,
such that ¢; has slope > A and ¢; —¢; , has slope < A, then define

m; =min {m=1: slope of me,—e;_, = A},
which exists since e; has slope > A. We have m; =2, since e; — ¢;_, has slope < A. Set
e = me; —e;_,. If the slope of e;.., equals A, we stop the definition of ¢;’s. Otherwise
€., has slope>A and ¢,,—¢e,=(m,—1)e,—e¢,_, has slope<A, so that we can
continue the definition of ¢’s. If there are infinitely many ¢’s, then the slope of ¢;
decreases to A, if j—»co.
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Now we define the r, for i>g. Set t,=0, t,=1 and t;;, = t;m;—t,_, for i=1. Then
set for i=1
Tevik =P T4 Towsj=rge; (1=j<t)  forlsk=m-2,

Fawthsj = Fgur_+j (0=j<ti—t_)) for k=m;—1

If there are infinitely many ¢ we have defined all r. If e, is the last ¢ which is
defined, we have defined r, for i<g+1,,,. Weset n=p+q for i=g+t,.,. In the
same way as for the r; one defines the s; using u instead of A.

Next we define a and be {1, 2}". Set ag, =1 and bg, =2 for k=0. Then one can
define a and b inductively from the r;’s and s;’s using (3.1) and (3.2). Then a and
b give rise to a Markov diagram determined by these r; and s, The proof of
proposition 1 shows that these r; and s; give rise to the e;’s constructed above, so
that, by propositions 2 and 3, Z(9) has the properties we require from Z(T). Hence
the proof is finished if we find a T on [0, 1) which is monotonic mod | with N =2
and which satisfies

¢(0)=a and liTrP e(t)=0>b. (3.42)

By results of [6], such a T is topologically transitive.
It follows from the definitions that the r; and s; above satisfy the assertions of
lemmas 5 and 6. these lemmas are proved in [3] and [4] using only the fact that

a=cash, a=oc'b=b fori=1, (3.43)

where = denotes the lexicographic ordering in {1, 2}". These proofs even show that
the assertions of lemmas 5 and 6 are equivalent to (3.43), so that (3.43) holds for
a and b defined above.

Now choose a;, b;€[0, 1] with a,=0, b,=1 such that the a; and b; are in the
same order as the o'a and o'b, where a; corresponds to o'a and b, corresponds to
o'b. This is possible by (3.43). Furthermore choose c< (0, 1) such that g, €[0, c] if
og'ac(1], and a;€[c, 1] if o'ac[2], and that b, and o'b have the same property.
Define the graph of a transformation T, connecting the points (c, a,), (¢, by) and
(ai, aivy), (b, by ) for0O=<i=jin[0, 1) x[0, 1) with straight lines. Since o is increasing
on [1] and [2], these graphs T; converge for j— oo to the graph of a transformation

T, which is continuous and increasing on [0, ¢) and on [¢, 1} and satisfies (3.42).
O

THEOREM 3. If T is a monotonic mod 1 transformation then Z(T)={n:3x€[0, 1]
such that x has period n under T} satisfies one of the following, if it is not empty.
(1) Z(T)={l: 1 = i<k}, where k=00 and I, ,> I, such that I; divides ., fori=1.
(i) Z(T)={I: 1=i<k}u Z(T), the |, as in (i) with 1=k<oco and there are
p,qeN, A €[0, 1], and p €[1, 00}, such that

{vp+wq: A<w/v<,u,}CZ(T)<:{vp+wq: A=w/v=u},

where the greatest common divisor of p and q is I,_, if k> 1, and 1 if k=1, i.e. the
set of I.’s is empty, and where either A <1 or u>1.

https://doi.org/10.1017/5014338570000287X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000287X

256 F. Hofbauer

On the other hand, all sets Z(T) described in (i) and for all k, I, p, q, A and u as
in (ii) a set Z(T) with the properties of (ii) occurs for some monotonic mod 1
transformation T.

Proof. Let 9,, 9,, 9,,... be the irreducible subsets of the Markov diagram & of
T. There are finitely or countably many of them. They can be ordered such that
there is a path from @; to @, (cf. [6]). Suppose &, consists only of a closed path,
which is then of the form (3.11). Denote p and g of (3.11) by p; and g.. As described
after lemma 6, the irreducible subset @' = 9,,, contains the closed path (3.11). Now
denote p and g of (3.11) by p;,, and g;,,. It follows from § 2 of [6], that the greatest
common divisor of p;.,; and g;.,, is I, = p; + g,, the length of the closed path 9. Hence,
if all &; consist only of closed paths, we get (i). If there is a &; which does not
consist of a closed path only, then we have (ii) by theorem 2 applied to @' =%,
where Z(T) = Z(3,) = Z(%;).

On the other hand, if we apply lemma 15 k—1 times with n=1[_,/L_,,...,
n =1L/l and n =1, to the transformation T of proposition 4, we get that all possible
cases of (ii) occur for some monotonic mod 1 transformation T. If we do the same
with T(x)=x+a (mod 1) with irrational a, which has Z(T) =, we get a T, with
Z(T)={l,L,..., L_}. The transformation S defined by (3.40) depends only on
a=T(0) and b=1im,, T(z) except for x€[0, 1). If one renorms the interval I in
each step to [0, 1), this implies that T, converges to a monotonic mod 1 transforma-
tion T, which then satisfies Z(T)={l: i=1}.
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