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Abstract. Periodic points of piecewise monotonic transformations are investigated
using an oriented graph, whose closed paths represent the periodic orbits of the
transformation. In the first part it is shown that the inverse of the f- function is a
kind of characteristic polynomial of this graph, which is a power series if the graph
is infinite. In the second part, the sets are determined, which can occur as {n e N: 3x
with T"(x) = x and T'(x)^x for 0<i"<n}, where I is a monotonic mod one
transformation.

0. Introduction
The aim of this paper is the investigation of periodic points of piecewise monotonic
transformations ([0, 1], T). One calls Tpiecewise monotonic if [0, 1 ] = LJfl j Jiy where
the Jj are non-trivial disjoint intervals and T\J( is continuous and monotone.
Sometimes it is more appropriate to consider the shift space (££, o") o n e 8ets from
([0, 1], T) by/-expansion, especially if ([0, 1], T) has infinitely many periodic points
of a fixed period (cf. lemma 1 of § 1).

The method we use is that of an oriented graph, called a Markov diagram, which
reflects the orbit structure of 1r- The first part of the paper investigates the £-function
of IT given by

D(x) = exp( 'Z — Pk

where pk denotes the number of fixed points of o-k:1T->'LT. In § 2 we define a
characteristic power series C(x) of the Markov diagram considered as 0-1-matrix,
which is an analogy to the characteristic polynomial of a matrix. We then show that
C(x)~' essentially equals the ^-function. From this it follows that the kneading
invariant, defined in [8] for the special case of continuous piecewise monotonic
transformations, is the characteristic power series of the Markov diagram. This sheds
light on the fact that both methods, the Mafkov diagram and the kneading invariant,
have been used to determine the topological structure of piecewise monotonic
transformations. In the first case the Markov diagram is split up into irreducible
submatrices (cf. [2]-[6]) and in the second case the kneading invariant, i.e. the
characteristic power series of the Markov diagram, is split up into the corresponding
product (cf. [7]).

Then we turn to the investigation of the set

Z(T) = {n: 3XG[0, 1] with T"(x) = x and T(x)*x for l < i < n - l } .
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238 F. Hojbauer

For continuous T, the theorem of Sarkovskii (cf. [1]) gives a nice characterization
of all possible sets Z(T). For general piecewise monotonic transformations T many
more sets can occur as Z( T), as we shall see at the end of § 2. In § 3 we investigate
monotonic mod 1 transformations T on [0, 1), i.e. there is a continuous increasing
function h:[0, \)->U such that T(x) = h(x) mod 1. If we consider 1 as a periodic
point, if lim,T| Tk(l) = 1 for some k, and if L is a maximal topologically transitive
subset of ([0, 1], T), we get the following result for Z(T\L):

There are integers p, q and real numbers A, fj. with 0 < A < l < / i < o o such that

{vp + wq: \<w/v<fj. and v, we N}c Z(T\L)<^ {vp + wq: A < W/U</A and v, weN}.

We also determine

Z(T\L)n {vp + wq: w/v = a and v,weN] for a = A and a = /x,

(cf. theorem 2). From this one can deduce which sets can occur as Z(T) for
monotonic mod 1 transformations T (cf. theorem 3).

1. Preliminaries
Let ([0, 1], T) be piecewise monotonic and let /, for 1 < i< N be the intervals on
which T is monotone and continuous. The f-expansion <p:[0, 1]-»{1,..., N}N is
defined by

(p(x) = x = x0XiX2,..., where x,; is such that T'(x)eJx.. (1.1)

One sees easily that a°(p = <p°T. We define

] ) (1-2)
If u and v are the left and right endpoints of Jx respectively, we set

and ft'=li

A characterization of S | in terms of a' and b' is given in [2]. If

(1.3)
k=O

then 2T\<P([0, 1])<= Y (cf. [2]). For xe <p([0, 1]), one easily checks that <p~\{x}) is
either a single point or an interval. We compare the periodic points of (2^, a) a n ^
of ([0,1], T). We say an xe[0,1] has period n if T"(x) = x and T\x)*x for
1 < i< n - 1. We use the same definition for (2 j , o-). The proof of the following
lemma is easy.

LEMMA 1. Ifxeir is not periodic, then <p ~'({x}) contains no periodic point.
Y contains at most finitely many periodic points. Suppose j e 2 x \ V has

period n.

(i) If <p~\{y}) is a single point ye[0, 1], then y has period n.
(ii) If <p~'{{y}) is an interval /, then T"(I) c / and / contains at least one periodic

point. If T" | / is increasing, all these periodic points in / have period n. If T" \ I is
decreasing, one of them has period n and all others have period 2«.

Lemma 1 shows the following: to investigate (2}, a) instead of ([0, 1], T) means
to consider equivalence classes of periodic points, where x and je [0 , 1] are called
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Piecewise monotonic transformations 239

equivalent if <p(x) = <p{y), and to add finitely many periodic points, which are in Y.
For the investigation of (2^, a) we use the Markov diagram, which we define now.

The Markov diagram is a finite or countable oriented graph, whose vertices are
subsets of IT- Set [xox, • • • xk_{] = {ye 1^: yt = x, for 0< i < k- 1}. If D<= [i] for
some i with l s i s N , we call the non-empty sets among [j]na(D) for 1 <jf< TV
the successors of D. Let 2 be the set which contains [i] for 1 < i< TV, and which
contains all successors of D if it contains D. To get the oriented graph, which we
call Markov diagram, we insert an arrow from every D e 3> to all its successors. We
write D -» C to denote that C is a successor of D.

A sequence D0DtD2 • • • with D,e 3) is called a paf/i if D,-> A+i- Remark that
all De 2 satisfy Dc[i~\ for some i. Hence we can define t/>(D) = i, if Dc[ i ] . We
say that the path D0DtD2 • • • represents x, if x = I/»(D0)I/'(D1)I/'(D2) • • • .Thefollow-
ing two important facts about the representation of points x e l } are proved in [5]:
If D 6 2, then

D = {xeS | : X = I//(D0)I/'(D1) • • • for some path D0D\ • • -with Do= D} (1.4)

If x e S ; \ Z , where Z = {ak(gi), o-k(fe"'): l ^ i ' ^ N , k>0}, and x is represented by
the paths C0CiC2 • • • and DQD{D2 • • •, then:

there is a t e N with C, = D, for i > t. (1.5)

We call an ordered n-tuple D0D\ • • • Dn_, with D,e 3) a closed path of length n if
we have D, -» Dj+1 for 0 < i ^ n — 2 and Dn_! -» Do, and if there is no divisor m of
n with Dt = Di+km for 0 < i ^ m - l and l < f c < ( n / m ) - l . Such a path represents
the periodic point x = I/»(D0)I/'(£>1) • • • i/»(Dn_,)(/>(D0)i/((D,) • • • . The properties
(1.4) and (1.5) have the following consequence. Let x e S r be of period n. As
xe[xo]e 3), x is represented by a path D0DxD2 • • • with D0 = [x0], by (1.4). Since
°~"(x) - x, x is also represented by the path DnDn+iDn+2 • • •. If xi. Z, there is a t
with Dn+i = Dj for i&f, by (1.5). Hence x is represented by the closed path
DSDS+1 • • • Ds+n_i, where s =jn s ?, which has length n. If it had length < n, it would
follow that D, = Di+r for all i s s and some r<n, and x = il/(Ds)tl/(Ds+l) • • • would
have period r< n. It follows also from (1.5) that the representation of x i. Z by a
closed path is unique. For x e Z and piecewise increasing T, the same result except
for the uniqueness of the closed path representing x is shown in the proof of lemma
7 in [5]. Such an x has finitely many representations as a closed path (cf. lemma 4
below). By the methods of part II of [2], this last result for x e Z holds also in the
general case, but the length of the closed path can also be In. We summarize this
in the following lemma.

LEMMA 2. (i) Every x £ 2^-\Z of period n is uniquely represented by a closed path in
the Markov diagram, which has length n.

(ii) Ifx 6 Z has period n, then x is represented by a closed path finitely many times.
These closed paths have length n, if T is piecewise increasing. If T is decreasing on
some Jh some of them can have length In.

(iii) A point represented by a closed path is periodic.
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240 E Hofbauer

Remark. Using (1.4) and (1.5), it is shown in [5] that there is a 1-1 correspondence
between maximal topological transitive subsets ft of S | containing a periodic point
and maximal irreducible subsets 3)' of 3). The results of [5] imply that lemma 2
holds also for ft instead of S7 and 3)' instead of 3).

2. (-functions
In this section we consider the Markov diagram as a 3) x3>- matrix M with entries
0 and 1. For C . D e S w e define MCD = 1, if and only if C-» D. Since every C e 3)
has at most N successors, M>—>MM is an /'(2>)-operator, whose spectral radius r(M)
satisfies r(M)< ||M||,< JV. It is shown in [2] that exp fctop(2^)< r(M). Letpfc denote
the number of fixed points of / I S ^ S T - The ^-function is defined by

/ zD(z) = exp y ^ -

This power series converges for |z|<exp ( — fitop(X|)) and hence for \z\<\/r(M),
since pk < card {[x0 • • • xfc_,]: [x0 • • • xk_i] i* 0}. If Z contains no periodic point, we
have by lemma 2 that pk = tr Mk, which denotes the trace of the matrix Mk. Instead
of D(z) we consider

To add a periodic point of period n to 2^ means to multiply D(z) by (1 — z")~'.
Since each of the finitely many periodic points in Z is represented by finitely many
closed paths (cf. lemma 2), we get D(z) = D{z) • H(z), where H and Hl are
holomorphic on {z: \z\ < 1}. Our goal is to define a characteristic power series C(z)
of M and to show C(z) = D(z)~\

To this end set 2>, = {[/]: 1 < i < N} <= ®. If Q>k c S is defined, let 2k+l be the set
which contains 2)k and all successors of elements of 3)k. We have 2ka 3>k+l and
U«°=i 3)k = 2) by the definition of ®. As every DeQ) has at most TV successors, the
sets Q>k are finite. Set Mk = M\3sk. We call a closed path D0D\ • • • Dn_, self-avoiding
if D^Dj for 0 < i < j < n - l . For L=Mk or L = M let feU^) be the number of
i-tuples of self-avoiding closed paths in L, which are pairwise disjoint and the sum
of whose lengths is n. Set ao(L) = l and for n > 1 set an(L) = £"=1 (-l)''bj,(L). The
following lemma is easy to prove.

LEMMA 3. For the characteristic polynomial Ck{z) = det (/ — zMk) of Mk, I the unit
matrix, one has

Ck(z)= I an(Mk)z".
n=rO

We define the characteristic power series of M by C(z) = £r=o an(M)z" which is
justified by theorem 1, for which we need the following lemma.

LEMMA 4. (i) There is a finite or empty set of closed paths in the Markov diagram,
each of which represents an xeZ, such that a closed path of length n, which is not in
this set, is contained in 3J2n-\- If Tis piecewise increasing, it is even contained in 3n-,.
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(ii) There is a k0 such that k > /CQ and k > In - 1 imply b'n(Mk) = fc|,(M), an(Mfc) =
an(M) and t rM£ = t rM".

Proof. We show (i) only if T is piecewise increasing. From this one easily gets the
general result using the method of part II of [2].

It is shown by lemma 12 of [2], that 2) can be written as

2= {(A, i, k), (B, i, k): 1 < i< N, fe> 1},

where some of the elements of this set are identified. In particular, (A, i, 1) and
(B, i, 1) are identified and represent [i]e S>. Furthermore (A, i, k) and (B, i, k) have
the successors (A,i,k+l) and (B,i,k+l) respectively. All other successors of
(A, i, k) or (B, i, k) are in {[i]: 1 < /< A/} except possibly one, which is (B,j, I) or
(A,j, I) respectively, where l<j"<N and /<fc. This shows that 3)n = {(A, i, k),
(B,i,k): 1 < I < N , l<fc<n}.

If a closed path is contained in sdt = {(A, i, k): fc> 1} for some i, then (A, i, /) =
(A, i, m) for some / * m and (A, i, / +j) = (A, i, m +j) for j > 0 (cf. [2]). The path
represents a''(g') = o-m~'(g')eZ and no other closed path can be contained in
M^ We collect the closed paths contained in some s^t or in some 53, = {(B, i,k): k > 1}
as the exceptional set, which has then at most 2N elements and suppose now that
the path is not contained in an si, or 38,-.

Let (A, /, k) be that element of the closed path of length n, which has the largest
k. Let / < k be the smallest integer, such that (A, i", /) -»(A, i, I + 1) -> • • • -»(A, i, k)
is contained in the path. As (A, /, / — 1) is not the predecessor of (A, /', /) in the path,
there is a (B,j, m) in the path with {BJ, m)-*(A, i, I). It follows from lemma 12 of
[2] that then (B, j , t) has only the predecessor (B, j , t -1) for m - / +1< t < m, so that

(B,j,m-l+ l)-»- • - + (BJ, m)-*(A, i, / ) - • • • - ^ (A , i, fc),

which has length k +1, is contained in the closed path of length n. This implies
fcs n - 1 . As (A, i, k) had the largest fc of all elements of the path and as 3)n =
{(A, i, k), (B, i, k): 1 < i < A/, 1 < fc< M}, we get (i).

Now (ii) follows from (i) and the definitions, where we choose k0 such that the
exceptional paths of (i) are in 3)^. •

THEOREM 1. The convergence radius of C(z) is at least l / r (M) . For \z\< l / r (M)
we have l im, ,^ Cn(z) = C(z) and C(z) = D(z)"1.

/Voo/ We apply the formula det exp K = exp tr K to K = log (/ - zMk) and get

Cfc(z) = exp( - I - t r A f l ) (2.1)

for | z | < l / r ( M ) and fc>l using the Taylor series of log(l— x). By (ii) of lemma
4, the coefficients of z" on both sides of (2.1) converge for fc-> oo to the coefficients
of z" in C(z) and D(zy] respectively. Hence C(z) has the same convergence radius
as D(z)~' and the desired results follow. D

Remarks, (i) Theorem 1 together with results of [8] shows that the kneading invariant,
defined in [8] for continuous T, is the characteristic power series of the Markov
diagram.
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(ii) One can show that theorem 1 also holds for topologically transitive subsets
ft of 2£.

We turn now to a different question. For a cr-invariant subset X of 2 T set Z(X) =
{«: 3xeX with period n}. We want to find out what subsets of f**J can occur as
Z(S^) or Z(ft), where ft is a topologically transitive subset of S | . One easily sees
that every finite type subshift (S, a) can occur as ( S | , cr) for some piecewise
monotonic transformation T: Introduce the lexicographic ordering in S. Then
cylinder sets become closed intervals, on which a is increasing. Identifying endpoints
of cylinder sets, S becomes isomorphic to [0, 1] and cr becomes a piecewise increasing
T on [0, 1], whose £ r is S. On the other hand, one can show that the set Z(ft), if
it is non-empty, always equals a set Z(S), where S is a finite type subshift contained
in ft. Hence the sets Z(ft), which occur for topologically transitive subsets ft of
some 2 j , are exactly the sets Z(S), which occur for finite type subshifts S.

In the next section, we consider this problem for a special class of piecewise
increasing T.

3. Monotonic mod 1 transformations
We call T:[0, l)->[0, 1) monotonic mod 1 if T(x) = h(x) mod 1, where Ji:[0,1)->R
is continuous and increasing. Suppose h(0)e[0,\) and choose TV such that
lim,^! h(t)e(N-\, TV], We can split [0, 1) up into TV half open intervals /f with
T\Ji continuous and increasing. The shift space S7 is defined by (1.2). We consider
1 as a periodic point, if lim,T1 T

k(t) = 1 for some k. Let X <= S^- be cr-invariant and
L = q>~\X). Set a = <p(0) and b = lim,T, (p(t). For monotonic mod 1 transformations
one has Y = \Jt=o o-~k{g, b}, hence Z{L) = Z{X) by lemma 1, where Z{X) and
Z(L) are the sets of n such that points of period n exist in X or L respectively.

In order to investigate Z(X) we need more information about the Markov diagram
of a monotonic mod 1 transformation, proved in [3], [4] and [6]. For a = a^axa2 • • •
and b = b0bib2 • • • define integers ru r2, . . . , ( r , > l ) and su s2, •. •, (s, > 1) inductively
such that

where Rk = r, + • • • + rk and Ro = 0, and

where Sk = st + - • - + sk and So = 0. Set £,-=[i], A , = [ l ] , B, = [TV] and
-4;+i = cr(A/)

n[aj]> Bj+l = o-{Bj)n[bj] for J > 1 . It is shown in [3] and [6], that
2> = {£,, Aj, By. 2 s i < TV — \,j > 1} and that there are the following arrows in the
Markov diagram.

Am^Am+u Bm^Bm+l formal, (3.3)

ARk-*B AR^E, (aR < /<6 r k _ , ) fo r / c> l ,
(3.4)

£ f c ^ £ , ( 2 < / < T V - l ) , £f c-*A,,B, f o r 2 < f c < 7 V - l . (3.5)

We have Am c [am_,], Bm <= [fcm_,] and Em = [m], hence ip(Am) = am_,, iA(Bm) = bm_,
and ip(Em) = m (cf. § 1). If Am = An for m<n, then Am+fc = An+k for fc>0, since

https://doi.org/10.1017/S014338570000287X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000287X


Piecewise monotonic transformations 243

A/+, is uniquely determined as that successor of A, to which ip assigns the minimal
number. As </>(A,) = a(_,, we get a-m~\a) = o-"~'(g). If r, <oo for all /, then there is
a fc>0 such that Am+k = An+k has more than one successor and hence WI + /C = JR,
and n + k = Ri+j for some i,j>0 by (3.3) and (3.4). We have

AR,.+1 = AR l + r M and aR'(a) = crR>+'(g). (3.6)

A similar statement holds if Bm = Bn for some mi^n. If r1+1 =oo and sj+^ =oo, it
follows from (3.1) and (3.2) that aR'+'g = b and <rsj+1£> = a and from this that (cf.
(1.7) of [6])

AR1+SJ+2= BSJ+\I BSJ + R.,+2 ~ A R . + 1 . (3.7)

After this preparation we now begin the investigation of Z((l) for some topologically
transitive subset £1 of 2^-. For a subset cF of S> set

= {«: there is a closed path of length n in ^ } .

A maximal irreducible subset 3)' of 2 determines £1 (cf. [5]). We consider first
Z(®') (cf. lemma 2). By (3.5) we have either

{Ek:2<k<N-l}c2' (3.8)
or

{ £ t : 2 < ) c < J V - l ) n § ' = 0 . (3.9)

We consider first the easier case (3.8). If JV>4, then Z({Ek: 2< fc< N- 1}) = N,
hence Z(@') = .Z(2>)=N. If JV = 3 and 3)' = {E2}, then Z(®') = {1}- If S1'is larger
than {E2}, let w be the smallest integer with Am -> £2 or Bm -» £2- Suppose Am -> £2-
By lemma 9 of [4] we have a = 122 • • • 21 • • • and the Markov diagram looks like
this (s, =3):

A,-*A->-*A-,-*

We need the following. Set JV = N 2 U { ( 1 , 0 ) , (0, 1)}. Suppose 3)' contains two closed
paths of length k and / with non-empty intersection. Then

vk+wleZ(3)') for (v, w)eJ{. (3.10)

One gets a closed path of length vk + wl, if one runs v times through the path of
length k and then w times through the path of length /. In the above diagram the
paths £2-> A,-»• • •-» Am^E2 and E2^> E2 are not disjoint, hence {l,m + l ,m + 2,
. . . } c Z ( f ) by (3.10). If s,< w, the closed path B , ^ - • - ^ SSi^ As,-» A, I + 1 H. • • •->
A,->B, has length i+1 for s , < i < m - l . Hence we get (for n&Z(2)), if 2 < n <
min {m, s,}, we use (i) of lemma 4, (3.6) and lemma 5 below)

We can write this as {vp + wq: (v, w)eJ>f} with p = 1 and q = min {m, sy}+ 1. Then
it fits into the notation of theorem 2 below. In the case Bm -» £2 we get the same
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result with p = min {m, r,}+ 1 and q=\. This completes the case (3.8), since there
are no Ek in the case N = 2.

It remains to investigate (3.9). To this end we need two more lemmas about the
numbers r, and s, proved in [3] and [4].

LEMMA 5. Setting Ro = So = 0 and Rx = Sx = oo, there is for every m > 1 a P(m) and
a Q(m) with 0 < P ( m ) , <?(m)<oo such that rm = \ + SP(m) and sm = I + RQ(m).

By (3.3) for a 2>' satisfying (3.9) there exist q,p,q',p' with \< q<q'<cc and
1</?< /> '<OO such that 3)' = {Ah By. qr< i< q', p<j <p'}. Set 3)={AhBy. q<i,
p^j}. The set F c 2 | of all one-sided paths in 3) is a cr-invariant finite union of
intervals containing Q, (cf. [5], [6]).

L E M M A 6. Suppose 3)' satisfies (3.9). Lef w fee SMC/I ffcaf ARm e 2 (BSm e 3)) and that

rm>P (sm>q)- Then there is a j , l < y < o o with rm+l• = rQ(P(m))+l (sm+i = sP(Q(m))+i)

for 1 < i <j and rm+j > rQ(P(m))+j (sm+J > sQ{P{m))+J).

We use lemma 6 to find a closed path in 3)'. By the irreducibility of 3)', there must
be a De3)' with D^>Aq. Hence by (3.4), q = sh for some h. Similarly p = rg for
some g. We choose g and h minimal. By lemma 5, we have q = sh = 1 + Rh i = Q(h).
We consider ri+l. As 2> = {A(, B,-: /> i j , jszp}, and 2)' is irreducible, r,+, > p implies
1 + SP( 1+l)>/> and Q(P(i+1)) >/ , hence ri+2>p by lemma 6. The same argument
gives that ri+2 > p implies r,+3 > p and so on, a contradiction to rg = p and g > /,
which holds as AR^ e 3). Hence ri+l= p and g = /+ 1, i.e. sh = 1 + Rg-\ = q. Similarly
one gets rg = 1 + Sh_i = p (cf. [6]). We have the following closed path (cf. (3.3) and
(3.4)).

(3.11)

We say that a pair (i,j) gives rise to a closed path in 3), if r, < 1 + Ŝ  and s, < 1 + Rt.
The closed path is given by As. -» • • • -» AR -» Br. -»•••-» BS( -» As and has length
Ri-i + Sj-i+2. Hence the pair (g, h) gives rise to the above closed path of length
p + q. If

3>' = {Ai,Bj:q<i<p + q,p<j<p + q} (3.12)

then Z(3>') = {p + q}.
If (3.12) is not satisfied, then we have

By (3.4) there must then be a k> g with psrk<p + q, or a k> h with q<sk<p + q,
since 2>' is irreducible. By lemma 5, we have then rk = p or sk - q respectively. Let
t be such that r{-£p + q for g< i<t and r ,>p + q. If rtsp + q for all i > g , we set
f = oo. Let u be such that s^p + q for hs i<u and su > /> + q. If rt=p + q for
g<i< t and st= p + q for h<i<u, it follows from lemma 6 by induction (m such
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that rm>p + q or sm >p + q) that rt>p + q for all / > g and s,, > p + q for all i> h,
which implies (3.12). As (3.12) does not hold, at least one of the following two
statements occurs:

r,=p + q for g < i<g and r$ = p for some g with g < g < f; (3.13)
s,; = <7 + /> for ft < i < h and sj = q for some h with /i < h < u. (3.14)

In order to investigate Z(2'), we define a vector d, for every i with rg+,_,</> + <7.
For i > 1 set d> = (1,0), if rg+,-i =p, and d,- = (1, 1), if rg+j_, = p + q. Furthermore set
co = (0,1) and for l < i < / - g set c,, = (0, l) + d, + - • - + d;. As g + i - l < f , these c,
are denned. We have 1 + Rg+,_, = up+ wq for 0 < i < t — g, where (v, w) = c,. We need
this for the following reason: If rg+,_, = p, the pair (g+ i-l,h) gives rise to a closed
path 52, in 3}' of length 1 + Rg+1_i = tp + wq.

The slope of a vector {v, w) is defined as w/v. We write c<c if the slope of c is
less than or equal to the slope of c, and c < c if the slope of c is less than the slope
of c. Set A=inf{slope of c,: l < i < r - g } and H = {(v, w)eN2: A < w/v< 1}.
Remark that A < 1 if and only if (3.13) holds, otherwise A = 1. We want to show
{vp+wq: (v, w)e H } c Z(3>'). To this end we need some lemmas.

LEMMA 7. Choose i such that d{ is defined and let m be the largest element ofN<j {oo},
such that dj and di+j are defined for 1 sj < m. Then either di+j = dj for 1 <j <m or
there is a k<m with di+j = dj for 1 <_/ < k and di+k > dk, i.e. di+k = (1, 1) and dk =
(1,0) .

Proof. As di = ( l , 0 ) , we have k=\ if di+1 = ( l , 1). Hence suppose di+1 = ( l , 0 ) . If
dj; = (1,0) the result follows, because the largest integer / with rg+j_x = p for 1 < j < /
is greater than or equal to the largest integer n with rg+i+J-2 — P for 1 s j < n, by
lemma 6. If d, = ( l , l ) then rg+i.x=p + q and Q ( P ( g + i - l ) ) = g - l , so that the
result follows again from lemma 6. •

L E M M A 8. If ct satisfies c, = Cj_, + ( l , 1), i.e. dt = (l, 1), and cf_, + ( l ,0 )>c , - , where
j < i is such that cn a c, for n < i — 1, then cn s: c, /or all n<t — g.

Proof. By lemma 7, there exists a k with dj+n = dn for 1 < M < fc and, if i + fe < t — g,
dj+fc > dfc, i.e. d,+jfc = (1,1) and dk = (1,0). Hence cn = c,_, + (l , l) + d, + -•• + &_, for
j < n < i " + /c, hence cn = cj_1 + (l ,0) + cn_,. Suppose cn<Cj. As c,_, + (1, 0)>c,, this
implies cn_, < c,. If n - i > i, we get by the same argument that cn_2i < Cj and so on.
Let / be such that 0 < / i - / i < i - l and we get cn_;,<c,, a contradiction to our
assumptions. Hence cn>Cj for i < n < / + fc. If i+k=t — g, the lemma is proved.
Otherwise cj+fc_, + ( l ,0) = c,_, + (l , l) + d, + - • • + i > c j follows as above for cn,
since dfc = (1,0). As di+k = (1,1), the assumptions of the lemma are satisfied for i + k
instead of i. Hence induction finishes the proof. El

LEMMA 9. (i) Let i <j. If ct> Cj, then Cj - ct < Cj. If c> s c, then c, - c, > ct.
(ii) Let m<n. Suppose that cm > cn and ct> cm for i<n-\. If there is a k with

l < B n - m - l such that dn+j = dm+j for 1 < j < fc and dn+k > dm+k, then ct > cn for
all i<t-g.

(iii) Let n be such that ct > cn for all i < n. If there is a k with 1 < fc s n - 1, such
that dn+i = (l,l),dn+j = djfor Kj<k, and dn+k> dk, then ct>cn for all i^t-g.
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Proof. As c,, Cj and Cj-Cj are vectors with non-negative entries, (i) follows from the

definition of the order relation.

We show (ii). For jf < k we have

cn+j = cn + dn+l + • • • + dn+j = cn + dm+l + • • • + dm+j

because cm+j-cm>cm by (i). The same computation for j = k-\ gives cn+k-t +

(1,0) = cn + cm+k-cm since dm+k = (l,0). Using cm+k>cm and (i), we get cn+k_,+

( l , 0 )>c n . Now (ii) follows from lemma 8 forj = n and i = n + k, as dn+k = {\,\).

The proof of (iii) is the same as that of (ii) setting m = 0. One gets cn+j = cn + c, > cn

for 1 <j < k and cn+k_, + (1, 0) = cn + ck > cn. D

We call a vector c, minimal if Cj > c, for 0 £j < i. Let e0 = c0 > e, = c, > e2 > e3 > • • •

be the finite or countable subsequence of (c,) consisting of minimal vectors. Then

we have:

PROPOSITION 1. Let i > 1 be such that ei+1 exists. Then there is an integer m, > 2 with

e1+1 = m,e, — e,_,. Furthermore for l < ) c < m , - l there is aj with ke^Cj, where

dj = (1,0), « / i>2.

Proo/ Let v and w be such that £,-_, = cu and fi = c .̂ We show by induction that for

i > 2 :

(i) e, = m e;_! — e,_2 for some m > 2 and dw = (1,0);

(ii) i > 2 , 2 s f c < m - l=>fc e,^, = c, for some; with ^ = (1,0);

(iii) dw_v = (1, 1), if w- v> 1, and dw_v+J = dt for 1 <_/< u;

(iv) d,,-,., = (1, 1), if w - v> 1, and du+J = dj for 1 < j < w-u .

We check first (i)-(iv) for i = 2. Let m be such that d,- = (l , 1) for \<i<m and

dm = (1,0). Then c^c, for i < m and cm<cu Hence §2= cm = m e, - e 0 . If no such

m exists, we have also no e2. As u = 1 and w = m, (iii) and (iv) follow from d,, = (1,1)

for 1< i < w and dm = (1,0).

Now suppose that (i)-(iv) hold for i. We prove them for i + 1 supposing that ei+1

exists. It follows from (iii) and lemma 7, that there is a k > 1 with dv+j = dw+j for

1 <j < k and, if w + k < t, dv+k < dw+k. As cv = e,-_,, cw = e,, and e1+1 exists, it follows

from (ii) of lemma 9 with m = v, and n = w that fc > w - v, i.e.

dw+j = dv+j for 1 <7 < w - v. (3.15)

Hence c^+j = cw + cv+j-cv > cw, by (i) of lemma 9. If we also have

d2w-v = dM which is (1,0) by (i), (3.16)

then c2w-v = cw + cw — cv < cw by (i) of lemma 9. Hence ei+l = c2vi,-v = 2ei — ei-l.

Together with d2w « = 0 , 0) this gives (i) for/+ 1. As m =2, (ii) is an empty statement.

Let v', w' be such that et = £„• and e1+, = £„•, i.e. t>' = w and w' = 2w - u. As w'-v' =

w — v, (iii) and (iv) for i+ 1 follow from (iii) and (iv) for i, (3.15) and (3.16).

Now we consider the case where (3.16) does not hold. Suppose that for some / a 1

hi = ctw, c, > cw for i s lw,
(3.17)

d,w+j = dv+j for l s j < w - v , d,w+w_v = ( 1 , 1 )
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For / = 1 this is (3.15) and the converse of (3.16). It follows from lemma 7 that there
is a k > 1 with

di».+w~v+j = dji for \<j<k, d,w+w_v+k> dk (3.18)

Now we get

d/w+i = (l, 1), d,w+j = dj for Kj<min{2w-v, w-v+k}. (3.19)
For j<w-v this follows from (3.17) and (iv), for W - U < J S H ' from (3.18) and
(iii) and for j> w from (3.18) and (3.15). It follows from (iii) of lemma 9 with
n = Iw, (3.18) and the existence of e1+1, that fc> w. Hence we get from (3.19) that
Qiw+j — £iw + Cj — 9*> forj< w a n d c , w + w = ctw + cw = (1+ 1) e,. F u r t h e r m o r e diw+w = dw =
(1,0), which shows (ii). As k> w, we have by (3.19) that dlw+J = d, for w <j<2w-v.
If diw+2w-v = (1, 1), all requirements of (3.17) are satisfied for /+ 1 instead of / and
we can perform the whole argument again. Otherwise dlw_2w-v = (1,0) and clw+2w-v =
(/+1) ej + e j -e j - , (cf (3.19) and (3.15)). By (i) of lemma 9, we get e1+l = c,w+2w_v.
Hence (i) is shown with m = 1 + 2. If v' and w' are such that cv- = e, and cw. = ei+l,
then v' = w, w' = mw - v, and

w ' - u ' = ( m - l ) w - t > . (3.20)

As fc > w, we get (iii) for i+l from (3.18) and (3.20). If w-v= l,then dw^v=d,w+l =
(1,1) by (3.19). We get (iv) for i + 1 from (3.19) for /= 1, 2 , . . . , m - 2 . This finishes
the induction step. •

As we have defined dt for rg+1_,, we define d't = (0, 1) if 5h+,_, = qr, d\ = {\, 1) if
sh+I_, = ̂  + p, and c'i = {\,0) + d[ + - • • +d', for 0 < i < u - ) i . Again we have
\ + Si+h-\ = vp + wq with (D, w) = c\. Using lemma 5 and induction, we also get
representations of 1 + Ri+g-\ for i> t-g and of 1 + 51+h_, for i> u-h as up + wq.
We use these representations in the sequel. Set n = max {slope of cj: l < i < u - f i }
and H' = {(i;, w): \<w/v<ix). We set K={(i>, w): A < W / U < / A } . AS either (3.13)
or (3.14) occurs, we have either A < 1 or /J, > 1, so that K # 0 . We shall show that

{tp + wq: (v, w)e X } c Z(2>')-

We consider first Ka = {(v, w)e(^2: w/v = a} for a = 1.

LEMMA 10. If fi>\, i.e. (3.14) holds, and rg+l = l + Sh+j with - l < y < f c - / i , then
k(p + q)eZ {2)')fork>z:=j + 2.

Proof. As rg+l<l + Sa and sa = q, the pair ( g + 1 , ft) gives rise to a closed path in
2' of length 1 + Rg +1 + Sh-_i = p + q + (h- h)(p + q) (cf. (3.14)), which is not disjoint
from the closed path of length p + q given by (g, h). By (3.10), we have k(p + q)e
Z(3>') for k>h-h + l.

As sh+i=p + q for l<i<h-h and rg+, = l + Sh+;, the pair ( g+ l , / i + i) gives
rise to a closed path of length 1 +Rg+l +Sh+i-,=p + q+i(p + q) if i>j, hence

for z<k<h~-h. •

PROPOSITION 2. {i;p +wq: (u, w)e X}cz Z(2)')

fVoo/ We consider first (v, w) e H. Suppose that (v, w) is in an angle spanned by et

and eI+, for i s: 1. As eo = (1,0) and e, = (1,1), it follows by induction from proposi-
tion 1 that det (#,-, ei+1)= 1. Hence (v, w)=;e1 + fce1+1 with j , feeN. Suppose e, = cm
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and ei+1 = cn. By proposition 1, we have dm = dn = (1, 0). Hence the closed paths 2/lm

and 9ln of lengths v'p + w'q with (V, w') = cm and u'p+w'q with (t>', w') = cn are
not disjoint, so that we get a closed path of length vp+wq by (3.10), i.e. vp+wqe
Z(3')

Now suppose (t>, w)=j§i for some / > 1, such that ei+l exists. It follows from
proposition 1 that jet = cn for 1 <y < m, with dn = (1,0). Hence £%„ is a closed path
of length vp + wq. Suppose e,_, = cfc and f,+l = c,. As dfc = a", = (1,0), the paths Skk

and Sk, are not disjoint. As e^, + £,-+, = wi,e, by proposition 1, we get a closed path
of length vp+wq for j = mh by (3.10). This closed path is not disjoint from &ln,
where cn = eh so that we get again by (3.10) a closed path of length vp+ wq for all

j > mi-
If {v, w) e H' the same proof works. If A < 1 < /x, we have K, <= /£ We have to

show /c {p + q)eZ {3)') for fc> 1. For fe= 1 we have the closed path given by the
pair (g, h), which has length p + q. For k> 1, k(p + q)e Z(3>') follows from lemma
10, because A < 1 implies (3.13), which gives j = — 1 or 0 in lemma 10. •

We want to prove an inclusion in the other direction as in proposition 2. To this
end we need some lemmas about 1 + Rt for i > g and 1 + St for i > h.

LEMMA 11. Suppose that r, < oo and st < oo for all i.
(i) 1 + R,• = vp+ wq with (v, w)e Kt for g < j < g, (v,w)e Ku Kxfar g < i"< t and

(v, w)e K for i > t, if /J. > 1, i.e. (3.14) holds, and with (v, w j e X u K , for i > h, if
A = 1. If i is such that r, > p + q we have Ri+j - /?,__, = vp + wq with (v,w)eK\jK,
for j > 1 and (v, w) e K u Kx u K^ for j = 0, where /J, = 1 and (v, w)e Kf for some
j 2 1 imply (v, w) e Kt for j = 0.

(ii) 1 + Si: = vp + wq with (v, w) e Kx for / i<i</ i , ( i ) ,w)eKu t^^for h < i < w, and
(D,tf)€K/ori>u, if/x>l, i.e. (3.14) HOWS, and with (v, w)e K <j K^ for i>h, if
H = l. Ifi is such that s, > p + q we have Si+j - S^, -vp+wq with (v,w)eKuK, for
j > 1 a«d (v, w) e K u K, u KA /or j = 0, where A = 1 and (v,w)e Kt for some j 2 1
imply (v, w)e /C, for j = 0.

Proof. We use induction. Let t, = / < t2 < • • • and w, = u < «2 < • • • be such that
r,. > p + q, sUj> p + q for i > 1 and rj<p + q for j ^ tt, Sj<p + q for j ^ Mj. Suppose
the result is shown for 1 + R, with g<i<tk and 1 + 5, with h < i< u,. For k = I = 1
this follows from the definitions of A, n, g, h, t and u. We have either rh<\+ Su,
or sU/ < 1 + R,k, because otherwise r,k = su, = oo by lemma 5. Suppose r,k < 1 + Sur We
show that

R,k+j - R,k , = vp+wq with (u, w) e /^ u K, u K^ if j = 0

and (u, w ) e K u K , if 0 < 7 < tk+l - tk. (3.21)

This implies (i) for 1 + fl, with tk<i< tk+u since 1 + R,k+j =\ + R,k-i + R,k+j-Rlk-.l
and 1 + R,k-i = vp+ wq with {v, w)eKuK}i by the induction hypothesis. It also
implies the second assertion of (i). If /J. = 1, we get from (3.21) and from (v,w)e X,
for some j , that (v, w)e K, for7 = 0, since r,k+j for 1 ^j< tk+l - tk is either p or p + q,
i.e. R,k+j-Rlk = v'p+w'q with w ' / i / s l .
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The proof is finished once we have shown (3.21). By lemma 5, r,k = 1+5, with
h<i< u,, hence for j = 0 (3.21) is satisfied by the induction hypothesis. Furthermore
r,k — s,- = 1 + Sj_! and h s i — 1 < uh hence, again by the induction hypothesis,

r,k - Si = vp+wq with (v,w)eKuKlu KM. (3.22)

By lemma 5, s, = 1 + RQU), and by lemma 6 we have a n m > l with r,k+j = rQ(i)+j for
1 < ; < m and r,k+m > rQU)+m. As

R-tk+j ~ Rtk-\
 = rik —s{ + \ + RQii)+j,

we get (3.21) for l<j<m by (3.22) and induction, since g - l < Q ( i ) < f f e by
definition of Q(i), (3.4) and the irreducibility of 3)'. If tk + m > tk+l, the induction
step is finished. Otherwise r,k+msp + q, and we get from r,k+m> rO(l)+m, that

r,k+m=P + q and rQ(i)+m = p. (3.23)

Hence it follows by induction as above that

R,k+m.l-R,k_l+p = vp+wq with (v, w)eKuKl. (3.24)

We remark that r,k+j is p or p + q for l<7<f k + 1 - t f c , hence dh+j is defined for
/0= tk + m-g+ 1 andO<7< ffc+, -tk-m. Now define /,, /2, • • • inductively, such that
d,0+h+...+ln+J = dj for l < j < / n + 1 and d,0+...+/ri+] = (1, 1)> dlti+1 = (1,0) (cf. lemma 7).
For 0<y < /„+, we have then

Rtk+m+ll+...+lii+j- R,k+m-i = vp+wq

with

(v, w) = (l , l) + d, + • • • + d/|_, + - • - + (1,

since db = ( l , l ) by (3.23), d,, = (l ,0) and d,0+...+(, = (1, 1) for i a 1, and co= (0, 1).
Together with (3.24), from this we get (3.21) for m <_/ < rk+1 - tk, as c(. E X U K , U K ,

by induction. This completes the proof. •

LEMMA 12. //A = 1 then 1 + Rg+i = vp+wq with {v, w)e Kfori> 1 or there arek> 1
andz>2 such that 1 + i?g+, = vp+ wq with (v, w) e /C/or 1 < i < kand (v, w) = (z, z) e
X, /or i = k. Then j(p + q) e Z(®') for j > z.

Proof. Suppose that there is a fc > 1 with 1 + Rg+k = vp+ wq with (v, w) e Kt. Other-
wise we get (v, w) G K for all /c> 1 by lemma 11. If k = 1 then the requirements of
lemma 10 are satisfied (cf. lemma 11) and the desired result follows. Otherwise let
k>\ be minimal. By lemma 11, we have 1 + Rk-\ = vp + wq with (v, w)eK and
rk = 1 + SP(k) = vp+ wq with (v, w)e K KJ K{^j K^, if rk>p + q. This gives 1 + Rk =
vp+wq with (v, w)eK, a contradiction, hence rk=p. But then we have a closed
path of length 1 + Rk = zp + zq, which is not disjoint from the closed path given by
(g, h). By (3.10) the desired result follows. •

A similar lemma holds for Sh+i instead of Rg+i- We denote the number corresponding
to z by z'.

LEMMA 13. (i) If r,+ ,=oo for some i and Sj<<x> for all j , then Z(3)) =
Z(2\{Ak: k> R,}).
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(ii) / / r,+1=oo and sJ+,=oo, then Z{3)) = {Rt + S, + 2}uZ{3s\{Ak, B,: k> Rh

Proof, (i) It follows from (3.1) that ri+l=oo implies amg = b, where m= l + Rj. If
one cancels {Ak: fc>m} from 2, one loses a representation of amg = b. But b is
also represented by the path Aq-*Aq+l-*--'-*Aq+p-x-*Bp^>Bp+x^*--- in
3)\{Ak:k>Ri}.

(ii) If one cancels {Ak, B,: k> Rh l> S,} from 3i', one loses the closed path given
by (3.7). It has length 1 + R, + 1 + Sj. •

LEMMA 14. Suppose that (3.6) occurs. Then we have a closed path (S =
(Ak: R, < k s Ri+j) of length U = Ri+J — /?,. Suppose there is no other closed path of
length U in 3)'. Then U = vp + wq withf:= (v, w) e KA and one of the following holds:

(i) t = oo and there is a cne Kx such that <$ is not disjoint from *3ln;
(ii) r = oo and the entries off have no common divisor;
(iii) A = 1, i = g, z of lemma 12 exists and f= ( z - 1, z - 1).

Proof. It follows from (3.1) and (3.6) that

ri+m = ri+j+m and U = Ri+J+m - Ri+m f o r m a l . (3.25)

I f / e K, then there is another closed path of length U in 3s' by proposition 2. Hence
we suppose

ft K. (3.26)

We consider first the case that

ri+k>p + q for some k> 1, i.e. ri+k = 1 + Sm with m> h. (3.27)

If A < 1 it follows from lemma 11 and (3.25) that fe K u XM. By (3.26) we have
fe XM. Again by lemma 11, we get U = 1 + Sm, i.e. / = c'm_g+u if /i > 1 (cf. (ii) of
lemma 11), hence we have another closed path of length U in 3)'. If /J. = 1 then

(cf. the last statement of (i) of lemma 11) and n > n ' > z ' b y lemma 12. Hence there
is another closed path of length U in 3)'.

If A = 1 then / * > 1 , i.e. (3.14) holds. By lemma 11 and (3.26), we g e t / e X , u XM.
I f / e X M the same argument as above applies. Hence we suppose feKu i.e.
U = n(p + q) for some n. If m denned in (3.27) satisfies m<h, then sm=p + q by
(3.14) and rfc+1+, > rg+1 by lemma 6. If rg+, < 1 + SR, then

with / > z (cf. lemma 12) and l /> r g + 1 > ( z - l)(p + <?) by (3.25). Hence we have
already UeZ(Sd') or (iii) occurs by lemma 12. If r I + k + 1> 1+S/; we have the case
we consider now, with k+ 1 instead of k. Suppose now m of (3.27) satisfies m>h.
It follows then from lemma 6, that m = h, ri+k+v = p + q for 1 < u < / and ri+k+l = p,
for some /, otherwise ft. Kx. But then rg+1 = 1 + Sn, rg+l+v = p + q for 1< u < /' and
rg+l+r = p, for some / ' s / by lemma 6, which gives l + .Rg+1+, = w(p + q) for some
w and z < w (cf. lemma 12). We get again t / a / ? g + 1 + ) - / ? g > ( z - l)(p + <j) and either
UeZ(3>'), by lemma 12, or (iii) holds.
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Next we suppose that (3.27) does not hold, i.e.

ri+k<p + q f o r a l l f c a l . (3.28)

Then dm is denned for m > i - g + 2 a n d / = d^g+2 + • • • + di_g+/+1 by (3.25). Clearly
/ s ( l , 1). We get that

fe K u K, u KM, (3.29)

as 1 + J?i+kj- = 1 + K, + /c (up + wg) with (u, w) =f,f£ K u K A u K , would imply 1 +
Ri+kj = u'p + w'q with (u', w') £ K u XA u KM, for large fc, a contradiction to lemma
11. In addition to (3.28) we suppose for some /

r,+k = rg+k for fc>0, i.e. i = g - l . (3.30)

From this and (3.28), it follows that l = oo. By (3.26), (3.29) a n d / < ( l , 1), we have
e i ther /= (1, 1) o r / e Kx. F o r / = ( 1 , 1 ) we have U = p + qeZ(3)'), hence suppose
/ e Kx. If there is an em = cn e KA, then dn = (1, 0) by proposition 1 and the path S/ln

is not disjoint from ^ by (3.30). This is (i). If em £ Kk for all m, then for every
minimal cn = em we have cn+f= cn+J< cm so that em+1 = cn. with n'sn+j. Then
there is a k such that m, = 2 for i" > /c (cf. proposition 1), because otherwise the gaps
between the minimal cn are not bounded by (3.20). By proposition 1, ek+v =
§k + v(ek+l — ek) for D > 1 , and ek+l — eke Kx, since the slope of ek+v decreases to A.
The sequence (dn) has period j and cn+j-cn = ek+l -ek, so that / = ek+x -ek. By
proposition 1, the entries of ek+l-ek have no common divisor (cf. the proof of
proposition 2) and (ii) occurs.

Now suppose that (3.28) holds and (3.30) does not hold. For m = i — g+ 1 define
lu l2,. • • inductively by

dm+h+...+k+n = dn for 1 < n < lk+u

(3.31)
dm+h+...+lk+lk+l = (l,l)>dl^1 = ( l , 0 ) .

These vectors are defined by (3.28) (cf. lemmas 5 and 7). Because (3.30) does not
hold, 4<oo for all k. By (3.25) we h a v e / = dm + - • • + dm+j_l. Let a>\ be such that
/, + ••• + /„_, <j</, + ••• + la. We show that

/, + •• - + la-j= /, + ••• + /,, for some b with 0<b<a. (3.32)

Set V =/(,+, + • • • + /„ -j and suppose 0< V< lb+l. We have to show V = 0. By (3.25)
we have

dm+k = dm+J+k f o r f c a l . (3.33)

Hence it follows from (3.31) that

dm+J+,l+...+/„+* = dk f o r l < f c < / b + 1 . (3.34)

Again by (3.31) for k = a - 1 and n = n'+k, where n' =j~lb+l -• • • -la-\, we get

dm+j+h+.. .+,b+k = dn+k for 1 < k< V,

As V< /fc+1, we get from (3.34) and (3.35) that dn.+k = dkfor\<k<V and dn+v<dv,
a contradiction to lemma 7, unless V = 0. Hence (3.32) is shown.

Set m' = m + /, + ••• + lb. By (3.33) and (3.32) we get

/ = 4m+ dm-+1 + • • • + dm-+ih+l+.. .+ia-i.
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By (3.31) we g e t / = ( l , l) + clh+1_, -co+- • - + (1, l) + c,._,-&, which is c/l>+1 + - • • +
c,o, since d, t=(l ,O). As d(/< = (l,O) the closed paths 9ttk of lengths tp + wg with
(v, w) = c,k are not disjoint, so that we have a closed path of length U in 3)' by
(3.10.). This finishes the proof. •

If the second assertion of (3.6) is valid, a lemma similar to lemma 14 holds. Now
we can show:

PROPOSITION 3. Z(®)<= {vp + wq: (v,w)e Ku KA u KJ and Z(2) =

Proof. Let SP be a closed path in 2) and denote its length by L. We have to show

L=vp+wq with (v, w)eK u KA u KM ; (3.36)

L=vp+wq with (v,w)eKi=$LeZ(3)'). (3.37)

Then a result analogous to (3.37) also holds for (v,w)eK^ and Z(®') = Z(2))
follows from proposition 2.

If £? does not contain an A, and a B, then (3.6) holds and 9 is the path $ of
lemma 14, or one which contains only B,-. Then the case considered below and
lemma 14 imply (3.36) and (3.37). If (i) or (ii) holds, then f = oo implies ^ c ® '
which gives (3.37). If (iii) holds, this follows from i = g and (v, w)e K,.

Now we suppose that A,, Bj&& for some i,j. We divide 0> into segments
AT^> AT+l -» • • • -» Ay and B v ^ B v + | ->•••-> Bw. Because Bk-+ AT for some fc and
Au^B, for some /, we have T=s , for some i and U = Rj for some j by (3.4).
Similar results hold for V and W. Hence there is an n and kt > g, /, > h with /„ = /„
such that

9 = U M w Bw: «,,_,s " s ^ , - ^ s w £ «/,} (3-38)
i = l

Hence
L= £ (**,-*,,_,+ l) + ( S / | - r t l + l ) = I (^,._1 + l) + (5,,_, + l).

i = I i = l

If A:, = g, then s,._1 = g = /Jfci_, + l, since S/._,</?fc., hence /?fc,_i+ 1 + 5,._l_, +1 =
S(._, + 1 . A similar result holds if lt = h. Henc"e we get (cf. also lemma 13):

L is a sum of 1 + R, and 1 + Sj with i > g and j > /i. (3.39)

Now (3.36) follows from lemma 11. If A > 1 (3.37) also follows, since then there
are only l + Rj = vp + wq with (v, w) = cmeXA in (3.39). This gives dm = {l,0),
because dm = (1, 1) implies that cm_, has a slope smaller than A. Then 9 is a union
of paths 3#n <= ®'. If A = 1 then either L = p + q, or (3.39) contains an 1 + R,, = t>/> + wq
with i > g and (u, w)e Kt. By lemma 12, we get v = w>z and L= m(p + q) with
m > z, i.e. L e Z ( S ' ) . This shows (3.37) and finishes the proof. •

Recall that the set F of all x represented as one-sided paths in 2> is cr-invariant
and a finite union of intervals, which contains il (cf. [6]). Hence Z(F) = Z(2>) (cf.
§1).

THEOREM 2. Let il be a topologically transitive subset ofJL^. Then there are integers
p and q and real numbers A and fi, such that

{vp+ wq: A <w/v< fi}<= Z(il)^ {vp+ wq: A s w / f S /j.}.
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For a = \ or fj, we have Z(Cl)n{vp + wq: w/v = a} is empty, or {kp + lq} or {m(kp +
Iq): m = \ or m> z} for some z > 2, where the integers k and I have no common divisor
and satisfy l/k = a.

If O does not consist of a periodic orbit only, we have Z(F) = Z(fl) and either
\<\<fjLor\<l</x.

Proof. For the cases considered at the beginning of § 3, the theorem is easily checked.
Hence suppose the converse of (3.12). Since Z(S') (= Z(ft) by lemma 2, it follows
from Z(2) = Z{F) and proposition 3 that Z(2>') = Z(il) and Z{il) = Z(F). Since
either (3.13) or (3.14) holds, we have A < 1 or /JL > 1. The first result of the theorem
follows from propositions 2 and 3. The second result for a = A follows for A = 1
from lemmas 12 and 14 and for A > 1 either from lemma 14 or by the fact that the
entries of a minimal c, have no common divisor (cf. the proof of proposition 2)
and the fact that cm, cn e KK implies dm = dn = (1, 0) and hence the paths 0lm and
9tn are not disjoint (use (3.10)). •

Now we look for monotonic mod 1 transformations T, which have a given set of
integers as the set Z(T) = {n: there is an x which has period n under T}.

LEMMA 15. Let T on [0, 1) be monotonic mod 1 with N = 2 (for the definition of N
see the beginning of § 3). For every integer n there is a monotonic mod 1 transformation
Son [0,1) withZ(S) = {n}vj{nk: fceZ(T)}. Ifn>2 then S has N = 2.

Proof. Set a = 7(0) and b = lim,t, T(t). We consider first the case n > 2 and define
S on / = [-1 - ft, 2M - 1) instead of [0, 1). We consider [0, 1) = J, u J2, on which T
is defined, as a subset of /. Set K.2 = [-1 - b, -1), K,, = [i, i + 1) for - 1 < i < 2M - 4 ,
^2n-3 = [2M - 3,2n - 2 + a) and K2n_2 = [2M - 2 + a, 2M - 1). Now we define S on / by

S{x) =

x + 2n-3 + b

(2+a-fc)x + 2M-24

T(x)-l-b

,x-2

for x 6 A!
- a for xe K

for x G 7,

for x G J2

for x G [ 1

- 2 ,

, 2 M - 1 ) =

(3.40)

One checks that 5 is continuous at x = — 1, x = 0 and x = 1, so that 5 is monotonic
modi with N = 2. Furthermore 5(7,) = K2n_2, S(J2) = K_2, S(K2n_2)c X2n_4,
S(X_2)<= K2n_4and S(K2l) = K2I_2 for n - 2 s i> 1. Since 5 has slope 1 on 7\[- l , 1),
we get that S"\[0,\)=T. We have also S(K2l+1) 3 K2l._, for M - 2 > / > 0 and
S(K-t) => X2n_3. This gives the desired result about Z(S).

For M = 1 we consider [0, 2) instead of [0, 1). We define/: [0, l)-»[0,2) by/(x) =
x - c for x e J2 = [c, 1) and/(x) = x - c + 2 for x e / , = [0, c). Set S(x) =/(T(/"'(x)))
for xe[0, l - c ) u [ 2 - c , 2)=/([0, 1)). Then we have S(2-c )= / (a ) and
lim,T1_c S(t)=f(b). If a e J, and be / 2 , then/(a)>/(b) and we define S to be linear
on [ l - c , 2 - c ] with S ( l - c )= / (b ) and S(2-c)= / (a ) . If both a and b are in / ,
or in J2, we define S to be linear on [1 — c, 1) and on [1,2— c] with S(l — c) =f(b),
lim,TI S(0 = 2, S(l) = 0 and S(2-c)=/ (a) . If ae J2 and b e / , , we introduce in the
same way two discontinuities at x, ye (1 — c, 2 — c) such that S([x, y)) = [0, 2),
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S(y) = O and lim,Tx S(t) = 2. In any case S is monotonic mod 1 with N = 3 and S

has no periodic point in [1 - c, 2 - c) except one fixed point.

PROPOSITION 4. Let p, q e N, A e [0, 1] and p e (1, oo] be given, such that p and q have

no common divisor. Then there is a monotonic mod 1 transformation T on [0, 1) with

N = 2 such that

{vp+wq: A < w/z; </*}<= Z(T)c {vp + wq: A<w/i)<(i}.

Furthermore T is topologically transitive.

Proof. The Markov diagram 2 of T is determined by sequences r , , r 2 , . . . and

su s2, • • • of integers (cf. the beginning of § 3). We shall construct such sequences,

so that Z(T) = Z(3)) has the desired property, and then a monotonic mod 1 transfor-

mation T giving rise to these r, and s,.

Suppose p^q and set p0 = p and q0 = q. Then there are uniquely determined

k,• > 1, / i > l , pt and q, for i > 0 such that

Pi = ktqi + pi+1 with 0 < p,+, < qh

(3.41)
Ri = lPt+1 + <7,+1 with 0 < <7,+, < p,-+1.

As p and g have no common divisor, we end with pm = 1 or qm = 1 for some m.

Suppose pm = 1. We define (if qm = 1 one has to begin with st)

ri = l=pm for \si<qm_l = lm_i,

st = qm-\ for l < i < l c m _ | .

We set Ri = r, + r2+- • • + ri,Si = sl + s2+- • • + s,- for i > 1 and L, = /, + /,+ , + • • • + /m_,,

K, = fcj + fcj+1 + - • • + km_l f o r O < i < m - l . Fo r j = m - 2 , m - 3 , . . . , 1,0 define

/ • = l + SK,+] f o r V . s . ^ ^ ,

5,• = 1 + RL , for Kj+, < (< X,,

From (3.41) we get by induction that l + S K + i =p 7 + 1 and 1 + /?L,-I = %• Finally we

define
rg = 1 + SKo = p where g = Lo,

s,, = 1 + RLo_, = ^ where h = Xo + 1.

Then the Markov diagram restricted to {A,, Bt: 1 < i<p + q}, which is determined

by r, for i '<g and by s, for I < / I , contains only the closed path (3.11) (cf. also [4]

and [6]).

The r, for i > g are determined by A, the s, for i' > h are determined by fi. We

consider only the r,. If A = 1 we set rt= p + q for all i > g. Now suppose A 6 [0, 1).

According to proposition 1, set eo = (0, 1) and e] = (1, 1). If e;_, and e, are defined,

such that e, has slope > A and e, —e, , has slope < A, then define

w, =min {w > 1: slope of me, — e, , >A},

which exists since e, has slope > A. We have m,->2, since e; — #i-1 has slope < A. Set

ei+i = mgi - e,_,. If the slope of e,+, equals A, we stop the definition of e/s. Otherwise

ei+1 has slope> A and e 1 + , -e , = ( w ; - l ) e , - e , _ , has slope< A, so that we can

continue the definition of e/s. If there are infinitely many e/s, then the slope of e;

decreases to A, if 7^00.

https://doi.org/10.1017/S014338570000287X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000287X


Piecewise monotonic transformations 255

Now we define the r, for i > g. Set t0 = 0, /, = 1 and tl+1 = t.TW, - f,-_, for i > 1. Then
set for i > 1

rg+i,k = P + q, rg+t,k+j = rg+j (\<j<ti) fox \<k<mt-2,

rg+t,k+j = rg+',-!+j ( ° - 7 < '. ~ ' f - i ) f o r k = mt-l

If there are infinitely many e, we have defined all rh If en is the last e, which is
defined, we have defined r, for i<g+tn+l. We set r{=p + q for j>g+f n + 1 . In the
same way as for the r, one defines the s, using /A instead of A.

Next we define a and b e {1, 2}N. Set aRk = 1 and bSk = 2 for k > 0. Then one can
define a and b inductively from the r/s and s,'s using (3.1) and (3.2). Then a and
b give rise to a Markov diagram determined by these r, and st. The proof of
proposition 1 shows that these r, and s, give rise to the e,'s constructed above, so
that, by propositions 2 and 3, Z(3>) has the properties we require from Z(T). Hence
the proof is finished if we find a T on [0, 1) which is monotonic mod 1 with N = 2
and which satisfies

<p(0) = a and Urn <p(t) = b. (3.42)

By results of [6], such a T is topologically transitive.
It follows from the definitions that the r, and s, above satisfy the assertions of

lemmas 5 and 6. these lemmas are proved in [3] and [4] using only the fact that

a<<x 'a<b, a<o-'b<fo f o r i > l , (3.43)

where < denotes the lexicographic ordering in {1, 2}N. These proofs even show that
the assertions of lemmas 5 and 6 are equivalent to (3.43), so that (3.43) holds for
a and b defined above.

Now choose ah b(e[0, 1] with ao = 0, bo= 1 such that the a, and ft, are in the
same order as the o-'a and a'b, where a, corresponds to a'a and bt corresponds to
a'b. This is possible by (3.43). Furthermore choose ce(0 , 1) such that a,e[0, c] if
o-'ae[l], and a^lc, 1] if a'ae[2], and that bt and a'b have the same property.
Define the graph of a transformation 7], connecting the points (c, a0), (c, b0) and
(fli, a,+i), (bh fti+1)for0< i<7'in[0, 1) x[0, 1) with straight lines. Since a is increasing
on [1] and [2], these graphs 7} converge forj-»oo to the graph of a transformation
T, which is continuous and increasing on [0, c) and on [c, 1) and satisfies (3.42).

•
THEOREM 3. / / T is a monotonic mod 1 transformation then Z(T) = {n: 3xe [0 , 1]
such that x has period n under T} satisfies one of the following, if it is not empty.

(i) Z(T) = {/,: 1 < i < k}, where k<oo and /,-+, > />, such that /, divides /,+, for i> 1.
(ii) Z ( r ) = {/f: l < i < f c } u Z ( r ) , r/ie /, as in (i) wit/i l<fc<oo and there are

p, <?eN, A e[0, 1], and/t E[1,OO], such that

{vp+ wq: A <w/v< n}<^ Z(T)cz {vp + wq: A < w / f < /x},

where the greatest common divisor of p and q is Zk_! if k> 1, and 1 if k= 1, i.e. f/ie
sef of I's is empty, and where either A < 1 or /i. > 1.
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On the other hand, all sets Z(T) described in (i) and for all k, /,, p, q, A and \L as
in (ii) a set Z(T) with the properties of (ii) occurs for some monotonic mod 1
transformation T.

Proof. Let 3>u 3)2, ®3> • • • be the irreducible subsets of the Markov diagram 3) of
T. There are finitely or countably many of them. They can be ordered such that
there is a path from 2), to ®1+1 (cf. [6]). Suppose 2j consists only of a closed path,
which is then of the form (3.11). Denote p and q of (3.11) by p, and qh As described
after lemma 6, the irreducible subset 3i'= 2>I+1 contains the closed path (3.11). Now
denote p and q of (3.11) by pi+l and qi+l. It follows from § 2 of [6], that the greatest
common divisor of pi+l and qi+l is /, =p, + qt, the length of the closed path ®,. Hence,
if all 3>i consist only of closed paths, we get (i). If there is a 3>j which does not
consist of a closed path only, then we have (ii) by theorem 2 applied to ® ' = %
where Z(T) = Z(%) = Z(3)j).

On the other hand, if we apply lemma 15 k — 1 times with n = lk-i/k-2, • • • >
n = l2/ /] and n = l{ to the transformation T of proposition 4, we get that all possible
cases of (ii) occur for some monotonic mod 1 transformation T. If we do the same
with T(x) = x + a (mod 1) with irrational a, which has Z( T) = 0 , we get a Tk with
Z(Tk) = {/,, l2,..., lk~\}- The transformation S defined by (3.40) depends only on
a = T(0) and b = lim,T, T(t) except for xe [0 , 1). If one renorms the interval / in
each step to [0, 1), this implies that Tk converges to a monotonic mod 1 transforma-
tion T, which then satisfies Z(T) = {/,: i > 1}.
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