CERTAIN EXPANSIONS INVOLVING E-FUNCTIONS
by V. N. SINGH
(Received 8th October, 1956)

1. Introduction. The E-functions were defined by MacRobert [3] in 1937 ; they are
denoted by E(p; «,:q; ps:2).

In § 3 of this paper, I prove a new expansion for E(p; «,:q; p,:2) which is similar to
an expansion due to MacRobert [2], viz.,
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where (@; r)=I(a+7)/I"(a), (a; 0)=1.
In §4 I give a simple direct proof of the formula
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which was deduced by MacRobert [2] from a certain integral. Later in the same section a
very general expansion involving a product of a generalized confluent hypergeometric series
and a general E-function in terms of a multiple series of E-functions is given.

2. The following known formulae ([1], pp. 203-206) are used.
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=E(a;+1, 09,05, .., 05195 psi2)+27E(D; a,+1:q; p,+1:2), T (3)
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3. We now prove that
(oy; R)E(p; @p:q; ps:2)
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Eliminating the E-function on the left of (3) and (4) and finally replacing p, by p, +1,
we have

alE(p; % g5 p312)=p1E(a1+l,a2,a3,...,ozp:pl-i-l, Pz:Pa:---:Pq:z)
+(pr—a)e P E(p; a,+1:ip +2, pa+1, pa+1, oo, potliz) . (M

Now multiply (6) by («, +n) and apply (7) to every term on its right-hand side. Then,
since
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<?)(p1+7'; n—r)(pl+n+r)+(r?l>(pl+r—l; n—-r+l)=(n':1)(p1+7'; n+1-7),
we get
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which is (6) with » replaced by n +1. Putting n=1 in (6) we get (7), the truth of which has
been established directly. For n=2 one can easily verify (6) by multiplying (7) by (a, +1)
and applying (7) itself to both the terms on the right-hand side of the equation thus obtained.
Hence, by virtue of (8), (6) is true by induction.

4. In this section I give a generalization of (2). We first note a Taylor’s expansion for
the E-function, as it will be needed later. Taylor’s multiplication theorem

o0 )\_l)n n an

f(/\.’c)=n=0 Tl Y e ®)
gives, with the help of (5), that
A 2+h\a & (Zh)r (a1+n,a2,a3,...,a,,:z
E(p; a,:q; py:z+h)= (z ) P A > ...... )
Now we prove that
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We deduce, from (1), that
(@; n) Ea, B::y)
=(-1)" Z < ) (1-8; YA +a=B+r; n=ny=" " B+, B=7::9) ccrren.n. (11)
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n
Multiply both sides of (11) by (l+_xﬁ7w and sum from n=0 to co. Then we get
a—-p; !
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Put n =7+t on the right and re-armnge. The repeated series then becomes
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r=0
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(

2) can be seen to be equivalent to (10).

J

by (9); whence (10) follows.
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Next we prove
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which reduces to (10) when y=p. For this we need the following expansion :
(1+ot—p; t)E(x+t, B,y+t:p+t:2)

= Z ()(—1) (I+oe—y+s;t—8)(p—-y; S)E(x+t+s,B,y:p+s:2) ....... (13)

8=0

With p =3, ¢=1, we can easily derive from (3) and (4) that
M+y-p)E(x, B, y:p:2)=E(«,B,y+1:p:2)-E(a,B,v:p-1:2).
And, from (3), we have
(y-o) E{e, B, y:p:2)=E(e, B, y+1:p:2)—E(a+1, B, y:p:2).
Eliminating the E-function on the left from the above two relations and finally replacing
«, p by @ +1, p+1 respectively, we get

(I+ox-p)E(x+1,8,y+1l:p+1:2)
=(y-p) E@+2, B y:p+l:2)+(l+ta-y) E(x+], B, y:p:2);

(13) then follows by induction by an argument similar to that used in (6).
Now, from (1),
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where n=u +7. And, from (13),

u=0
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§=0
Therefore, on writing u =s +¢, the u-series in (14) is equal to
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by (9) ; whence, on simplification, we get (12).
1 G.M.A,
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Now, generalizing (13), we have, by an exactly similar argument,

(I4oy—py; n) Efay+m, 0 +0, g, g -+7, 05 +0,y vv, 0 +0 1G5 p+7:2)
n n
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Using this and proceeding just as for (12), we get the general expansion

qul:ocl,l+oc1—p1,1+a1—p2,...,1+a1—pq_1; x E(g+1; a,:q-1; py:9)
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where

Sp=T1+Tg+...+7,, a,=s,-1, (n=1,2,...9)

and the empty product (for ¢ =1) is unity.

It may be noted that the rearrangement of the foregoing double series are valid since
the E-functions involved are integral functions and, consequently, the series are absolutely
convergent.

I am grateful to Dr R. P. Agarwal for his kind help in the preparation of this paper.
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