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Summary

Quadratic indices are a general approach for the joint management of genetic gain and inbreeding in
artificial selection programmes. They provide the optimal contributions that selection candidates
should have to obtain the maximum gain when the rate of inbreeding is constrained to a predefined
value. This study shows that, when using quadratic indices, the selective advantage is a function of
the Mendelian sampling terms. That is, at all times, contributions of selected candidates are
allocated according to the best available information about their Mendelian sampling terms
(i.e. about their superiority over their parental average) and not on their breeding values. By
contrast, under standard truncation selection, both estimated breeding values and Mendelian
sampling terms play a major role in determining contributions. A measure of the effectiveness
of using genetic variation to achieve genetic gain is presented and benchmark values of 0.92 for
quadratic optimisation and 0.5 for truncation selection are found for a rate of inbreeding of 0.01
and a heritability of 0.25.

1. Introduction

Dynamic selection algorithms for simultaneouslyman-
aging genetic gain and inbreeding have been developed
during the past decade (Wray & Goddard, 1994;
Brisbane & Gibson, 1995; Meuwissen, 1997; Grundy
et al., 1998b). The general framework can be described
as constrained quadratic optimization of the usage
of selection candidates. Although different objective
functions have been used, they all had the form cTg –
lcTAc, where c is the vector of mating proportions
(usage) of selection candidates, g is the vector of esti-
mated breeding values (EBVs) of selection candidates,
A is the numerator relationship matrix among selec-
tion candidates and the factor l represents a penalty
on the increase in inbreeding. A key property of such
an objective function is that it keeps the method used
for genetic evaluation and the restriction in inbreed-
ing separated. Thus, EBVs can be estimated with the
best available technique (i.e. best linear unbiased

predictions (BLUP)) and the selection policy is inde-
pendently chosen according to risk preference. Simu-
lation studies by Meuwissen (1997) and Grundy et al.
(1998b) showed that optimized selection can poten-
tially achieve at least 20% higher genetic gains than
traditional BLUP truncation selection at the same rate
of inbreeding (DF ). Moreover, when applied to real
livestock populations of beef cattle and sheep, even
higher gains were predicted (Avendaño et al., 2003).

The unified theory of genetic contributions put
forward by Woolliams & Thompson (1994) has pro-
vided the necessary framework for linking long-term
genetic contributions to rates of gain and inbreeding in
livestock populations. The long-term genetic contri-
bution (ri) of an individual i was defined by Wray &
Thompson (1990) as the proportion of genes it con-
tributes in the long-term to the population. These
authors demonstrated that the rate of inbreeding per
generation is proportional to the sum of squares of
long-term contributions, E(DF )=0.25gri

2 with the
sum taken over all ancestors. Woolliams & Thompson
(1994) showed that the rate of genetic gain can be
related to the covariance between long-term con-
tributions and the Mendelian sampling terms (ai),
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E(DG)=griai. This definition of gain makes explicit
that genetic gain arises from ‘good’ ancestors contri-
butingmore genes and that the process of contribution
of genes is multigenerational in nature. Furthermore,
it makes explicit that sustained genetic gain relies on
the exploitation of the Mendelian sampling variation
(i.e. the new genetic variation created each generation)
(Woolliams et al., 1999a).

There is no available framework for predicting DG
under constrained DF in the context of quadratic in-
dices. Grundy et al. (1998b) attempted such a predic-
tion but failed to provide deterministic predictions of
key parameters such as selection intensities. Under
truncation selection, genetic gain can be predicted
using simple linear regression theory and the predicted
selection differential (Ŝ ) expressed as Ŝ=bg.IisI, where
bg.I is the regression of the true breeding value on the
selection index used (e.g. BLUP), i is the selection in-
tensity and sI is the standard deviation of the selection
index. Such expressions are lacking for quadratic
optimization.

The study of Grundy et al. (1998b) showed the link
between the optimization problem of maximising DG
at fixed DF using quadratic indices and the manage-
ment of long-term genetic contributions. They showed
that the optimal solution could be achieved by linearly
allocating long-term contributions of selection candi-
dates according with their Mendelian sampling terms.
An expression for the potential ideal rate of gain
(DGideal) that would be achievable with this ideal out-
come was derived but genetic responses from stoch-
astic simulations were always substantially lower than
DGideal. This was attributed to the lack of knowledge
about r and a at selection time and that, in a multi-
generational process, long-term contributions of indi-
viduals cannot be independently managed, as pointed
out by Woolliams et al. (2002).

As a step towards understanding the important el-
ements in the predictive models, the objective of this
study was to demonstrate that quadratic optimization
manages individual contributions in relation to the
best available information on Mendelian sampling
terms rather than breeding values. This step is required
for the development of usable and tractable predic-
tions of genetic gain for selection tools that maximizes
progress with constrained rates of inbreeding. An em-
pirical route was followed through the use of stoch-
astic simulations and comparisons with traditional
truncation selection.

2. Methods

(i) Genetic model and simulation procedure

Selection over multiple generations was modelled
using stochastic computer simulations. An additive
infinitesimal model (Bulmer, 1971) was considered for

the trait under selection. The true breeding values for
animals in the base population were obtained from a
normal distribution with mean zero and variance
equal to the heritability (h2) of the trait. Thus, the
phenotypic variance (sp

2) was assumed to be equal to
one. In subsequent generations, the true breeding
value of the progeny was obtained as half the sum of
the true breeding values of their parents plus a random
Mendelian sampling term. The Mendelian sampling
term of an individual was sampled from a normal dis-
tribution with mean zero and variance sa

2=0.5[1x0.5
(FS+FD)]h

2, where FS and FD are the inbreeding
coefficients of the sire and dam, respectively. The
phenotypic value was obtained by adding to the true
breeding value an environmental component sampled
from a normal distribution with mean zero and vari-
ance 1xh2. A BLUP animal model was used to obtain
estimated breeding values. Populations with discrete
generations were evaluated over ten generations of
selection. In the base generation (t=0),N (100 or 200)
individuals (N/2 males and N/2 females) with full-sib
family structure were generated. The first generation
of selectionwas obtained frommating of animals selec-
ted at t=0. Mating amongst selected candidates was
at random. A total of 100 replicates were performed.

(ii) Selection methods

(a) Optimized selection

The optimization algorithm described by Meuwissen
(1997) for obtaining maximum genetic gain while con-
straining the inbreeding rate to a specific value was
used. This algorithmgives the optimal number of selec-
ted candidates and their optimal mating proportions
or contributions to the next generation. The constant
rate of inbreeding in the long term was achieved by
setting the constraint on the average coancestry of
selected candidates (cTAc/2) to 1x(1xDF )t, where t
is the generation number (Grundy et al., 1998b). The
output of this optimization procedure is the vector, c,
of contributions to the next generation for candidates
at any particular generation (i.e. mating proportions).
The optimal number of offspring for an individual i
is 2Nci (a real number), and the actual (integer) num-
ber of offspring per parent was obtained following
Grundy et al. (1998b). The term ‘selected candidates’
in the text refers to those individuals with ci>0.

(b) Truncation selection

In standard truncation selection, a fixed number of
candidates from each sex (those with the highest
EBVs) were selected each generation. The population
structure was chosen to enable comparisons with
optimized selection at the same DF. An optimized
scheme with a restriction of DF=0.01 per generation
was first run and then a truncation scheme with
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numbers of sires and dams giving the same DF was
chosen. Only schemes with a mating ratio of 1 were
considered because this was the typical optimal value
found by Villanueva & Woolliams (1997) for small
schemes. For N=100, the desired DF under trunc-
ation selection was achieved after selecting 25 males
and 25 females. Mating pairs were randomly allocated
and every female had two offspring of each sex. Thus,
in contrast to optimized selection, a fixed contribution
to the next generation of 0.02 was allocated to each
selected candidate.

(iii) Long-term genetic contributions and estimated
Mendelian sampling terms at selection time and
at convergence

The relationships between long-term genetic con-
tributions (r), estimatedMendelian sampling terms (â)
and EBVs were studied for different values of h2 (0.01,
0.25, 0.50 and 0.99) and three levels of constraint on
DF (0.005, 0.01 and 0.02). The long-term contribution
of an ancestor i to a descendent j is defined as the
proportion of genes of j that are expected to derive
by descend from the ancestor i (Wray & Thompson,
1990; Woolliams et al., 1999a). The contributions
converge over several generations to be the same for
all descendants in the population. The long-term gen-
etic contributions of ancestors born in generation 3 to
descendants born in generation 8 were calculated by
tracing back the pedigree from descendants to ances-
tors using the algorithm described by Woolliams &
Mäntysaari (1995). The term ‘at convergence’ used
throughout this paper refers to generation 8. The
estimated Mendelian sampling term for selection
candidate i was obtained as âi=EBVix[0.5(EBVS+
EBVD)], where EBVi, EBVS and EBVD are the BLUP
estimated breeding values for the individual, its sire
and its dam, respectively. The EBVs used to calculate
âi were either those at the time of selection (i.e. EBVsel

obtained at generation 3 to estimate âsel) or at con-
vergence of long-term contributions of selected can-
didates (i.e. EBVconv obtained at generation 8 to
estimate âconv).

(iv) Comparison between potential selective
advantages and between selection methods

Linear regression models were used to compare â and
EBV as potential selective advantages for optimal and
truncation selection. Bivariate regressions were con-
ducted for (i) c on âsel and EBVsel, and (ii) r on âconv
and EBVconv. Only selected individuals (i.e. those with
ci>0) were included in the analysis.

We will now illustrate procedures and notation
using the example of r on âconv and EBVconv. Initially,
partial correlations rr,âconv and rr,EBVconv

were calculated
using standard formulae. The following regression

models were then fitted:

ri=u+br, â conv
âconvi+br, EBVconv

EBVconvi+ei (1)

ri=u+br, â conv
âconvi+ei (2)

ri=u+br, EBVconv
EBVconvi+ei (3)

ri=u+ei, (4)

where u is the intercept, br,âconv and br,EBVconv
are re-

gression coefficients in the models, and ei is the re-
sidual term with variance ser

2 ( j) for regression model j.
The impacts of âconv and EBVconv, and their joint
impact, were calculated as, respectively:

Vr, â conv
=[s2

er
(3)xs2

er
(1)]=s2

er
(4)

Vr, EBVconv
=[s2

er
(2)xs2

er
(1)]=s2

er
(4)

Vr, tot=1xs2
er
(1)=s2

er
(4):

The corresponding analysis of c using rc,âconv,
rc,EBVconv

, Vc,âsel
, Vc,EBVsel

and Vc,tot follows by analogy.
A measure of efficiency, c, was also calculated for

the selection schemes. This was based on the rep-
resentation of genetic gain given by Woolliams &
Thompson (1994) (i.e. DG=griai). Because the pre-
diction error of the Mendelian sampling term would
be expected to be independent of r, this can be ex-
pressed as E[DG]=E[griâconvi]. Therefore, gei

2, where
ei is the residual deviation from the regression model
2 for r, represents a component of gri

2 that has not
contributed to gain, and therefore it follows that
c=1–0.25gei

2/DF can be regarded as a measure of
efficiency for the selection scheme in generating gain
effectively from the available variation.

An additional comparison between quadratic opti-
mization and truncation selection was established
from the distributions of â and EBV of selected and
unselected individuals. The frequency distributions of
both groups were plotted after arbitrarily defining
32 bin classes for âsel and 64 bin classes for EBVsel.
Summary distribution statistics were calculated. For
âsel and EBVsel under quadratic optimization, and for
âsel under truncation selection, there is an overlap
in the frequency distribution of those selected and
unselected candidates. The degree of overlap between
distributions was measured as the probability that
the potential selective advantage (âsel or EBVsel) of a
randomly taken individual from the selected group
being equal or greater than the potential selective ad-
vantage of a randomly taken individual from the un-
selected group. For instance, for âsel this probability
was approximated as

p(âi SELECToâjUNSELECT)

=
Xmax bin

k=1

p(âi SELECT)k
Xbinl=bink

l=1

p(âj UNSELECT)l

 !" #
,
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where p(âi SELECT)k is the probability of an individual i
from bin k being selected and p(âj UNSELECT)l is the
probability of an individual j from bin l being not
selected. Likewise, the corresponding probability was
calculated for EBVsel.

3. Results

(i) Relationships between contributions and potential
selective advantages

The regression coefficients of ri (the long-term genetic
contributions) and ci (the contributions to the next
generation) were close to 1 for all combinations of h2

and DF (Table 1). This indicates that, for quadratic
indices, ci values are unbiased or nearly unbiased pre-
dictors of ri, as previously demonstrated by Grundy
et al. (1998b). Table 1 also shows the partial corre-
lations between the contribution and estimates of
Mendelian sampling term (â) and breeding value
(EBV) for the quadratic index on two occasions, after
selection and after contributions have converged. The
correlation between â and the contribution, after ad-
justment for EBV, was consistently much greater than
the correlation between EBV and the contribution,
after adjustment for â. The partial correlations for â
were all >0.50, with values as large as 0.90, whereas
the partial correlations with EBV were rarely >0.15
and always <0.20.

However, judging the impact of each of the poten-
tial selective advantages from the partial correlations
is complex, because â and EBV are themselves corre-
lated, and the reduction in variance of the dependent
variate ri or ci is related to the square of the corre-

lations. For the range of parameters considered,
Table 2 shows that regression on EBV, following re-
gression on â, reduced the residual variance by at most
4% of the unadjusted variance of ci, and by at most
1% of the unadjusted variance of ri. However, re-
gression on â, following regression on EBV, reduced
the unadjusted variance by at least 20% and as much
as 60% of the unadjusted variance. Table 2 also shows
patterns in the proportion of the variance in con-
tributions explained by the regressions on â and EBV.
This proportion declined as the value of the constraint
onDF increased. For ri, the proportion of the variance
explained by the joint regression was notably lower for
h2=0.99 than for other heritabilities simulated, but
this pattern was not evident for ci.

In summary, the simple regressions of ri (ci) on âconv
(âsel) was almost as effective as the joint regression for
predicting contributions. However, enough data were
generated to show that the regressions on EBV were of
statistical significance, even though their impact on the
residual variance of the contributions was small. The
empirical relationship between long-term contri-
butions and âconv or EBVconv is illustrated in Fig. 1,
which includes all the observations generated across
replicates for h2=0.25 and DF=0.01 or 0.02.

The efficiency for the schemes in Table 2, described
by c, depended most strongly on DF with only small
differences between h2=0.01, 0.25 and 0.50, with
c=0.96, 0.84 and 0.55, approximately, for DF=
0.005, 0.01 and 0.02. For h2=0.99, c was always
slightly lower than the corresponding values of c ob-
served for other values of h2 for the sameDF. Thus, the
lowest c observed for quadratic optimization in this
study was 0.47 for DF=0.02 and h2=0.99.

Table 1. Regression of ri on ci for quadratic optimization (br,c, with s.e. in
parentheses), together with partial correlation coefficients from a bivariate
regression of ci on the initial estimate of Mendelian sampling term (âsel)
and breeding value (EBVsel), and of ri on the ultimate estimates, âconv and
EBVconv, after convergence of ri, for a range of heritabilities (h2) and
different constraints on DF, for N=100

DF h2

ri on ci ci on âsel & EBVsel ri on âconv & EBVconv

br,c rc,âsel rc,EBVsel
rr,âconv rr,EBVconv

0.01* 0.01 1.003 (0.017) 0.89 0.21 0.85 0.07
0.25 1.015 (0.015) 0.90 0.05 0.85 0.05
0.50 1.026 (0.013) 0.89 x0.01 0.81 0.01
0.99 1.054 (0.023) 0.74 0.07 0.54 0.04

0.02$ 0.01 0.962 (0.026) 0.78 0.19 0.79 0.00
0.25 0.970 (0.022) 0.80 0.19 0.75 0.10
0.50 1.002 (0.019) 0.81 0.13 0.71 0.10
0.99 1.018 (0.015) 0.70 0.05 0.52 0.03

*Approximate significance levels for r : 0.027, P<0.05; 0.036, P<0.01; 0.046,
P<0.001.
$Approximate significance levels for r : 0.037, P<0.05; 0.049, P<0.01; 0.063,
P<0.001.
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Fig. 2 compares the relationships between r and
âconv, and between c and âsel for h2=0.25 and
DF=0.01 or 0.02. The c value was plotted against âsel
(i.e. at generation 3) and superimposed on the plot
of r against âconv. For DF=0.01, the regression lines
of c and âsel, and of r and âconv are very similar
(bc,âsel=0.132¡0.0007; br,âconv=0.129¡0.0007), al-
though, forDF=0.02, there was a greater discrepancy
(bc,âsel=0.247¡0.0027; br,âconv=0.213¡0.0023). For
the broader range of parameters for DF and h2 con-
sidered in this study, the results (not shown) suggest
that bc,âsel is a reasonable estimator of br,âconv for the

quadratic index. Discrepancies were largest for h2=
0.01 where bc,âsel was more clearly greater than br,âconv.

(ii) Estimated Mendelian sampling terms of
selected and unselected candidates under
quadratic optimization

The frequency distribution of the estimated Mende-
lian sampling at the time of selection (âsel) of selected
and unselected candidates born in generation 3 across
the 100 replicates for N=100 is presented in Fig. 3.
For DF=0.01, the proportion of selected candidates

Table 2. The proportion of variance explained by multivariate regression of
ci and ri on â and EBV at selection and convergence of ri, respectively, for a
range of heritabilities (h2) and different constraints on DF, for N=200

DF h2

ci on âsel & EBVsel ri on âconv & EBVconv

Vc,âsel
Vc,EBVsel

Vc,tot Vr,âconv
Vr,EBVconv

Vr,tot

0.005 0.01 0.60 0.01 0.88 0.40 0.00 0.87
0.25 0.57 0.00 0.89 0.40 0.00 0.85
0.50 0.53 0.00 0.88 0.39 0.00 0.80
0.99 0.35 0.00 0.75 0.23 0.00 0.49

0.010 0.01 0.56 0.03 0.71 0.41 0.00 0.77
0.25 0.52 0.02 0.76 0.35 0.01 0.75
0.50 0.50 0.01 0.77 0.33 0.00 0.70
0.99 0.34 0.00 0.71 0.22 0.00 0.47

0.020 0.01 0.47 0.02 0.51 0.47 0.00 0.69
0.25 0.43 0.04 0.58 0.30 0.01 0.63
0.50 0.41 0.03 0.62 0.26 0.01 0.59
0.99 0.37 0.00 0.69 0.25 0.00 0.47

0.2

0.1r

0.2
∆F=0.01

∆F=0.02

0.1

00

0.2

0.1r r

0

0.2

0.1

0

r

–0.5 0.0 0.5 1.0
âconv

–0.5 0.0 0.5 1.0
âconv

–0.5 0.5 1.5 2.5
EBVconv

–0.5 0.5 1.5 2.5
EBVconv

Fig. 1. Relationship between long-term contributions (r) and estimated Mendelian sampling terms (âconv) or estimated
breeding values (EBVconv) at the convergence of the long-term contributions under quadratic optimization for N=100,
h2=0.25 and two DF constraints.
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(p) was 0.5943. For DF=0.02, p was reduced to
0.3584. The mean âsel was higher for selected candi-
dates than for unselected candidates, and the differ-
ence in âsel between the groups was similar for bothDF
constraints (i.e. about 0.56 standard deviations of the
trueMendelian sampling term in the base population).

The coefficient of right skewness of the distribution
of âsel for selected candidates was about 0.7 for both
levels of inbreeding constraint. However, the degree of
left skewness of the distribution of non-selected can-
didates changed with the DF restriction (x0.77 for
DF=0.01 and x0.58 for DF=0.02). Thus, a greater
DF resulted in a more symmetric distribution of those
individuals that remained unselected.

(iii) Qualitative comparison between optimal
selection and truncation selection

Table 3 shows a comparison of the relationship of ri
with the potential selective advantages for selection
using quadratic optimization and for truncation. It
shows that the joint regression on the potential selec-
tive advantages explained a much greater proportion
of the unadjusted variance when selection used quad-
ratic optimization (0.841 as against 0.486). Further-
more, although this was almost entirely explained by

âconv for quadratic optimization, both selective ad-
vantages contributed to the reduction for truncation
selection, with EBVconv making slightly more impact.

The relationship between long-term contributions
and estimatedMendelian sampling terms or estimated
breeding values at convergence of r (i.e. generation 8)
across replicates are shown for truncation selection in
Fig. 4 for h2=0.25 and DF=0.01. The simple corre-
lations between r and âconv, and between r and EBVconv

were 0.63 and 0.69, respectively, whereas the corre-
sponding values for quadratic optimization were 0.92
and 0.65. The efficiencies c for selection using quad-
ratic optimization and for truncation were also very
different (0.95 and 0.50, respectively) (Table 3). This
was reflected in 1.13-fold greater DG using quadratic
optimization.

The comparison between the frequency distribu-
tions of âsel and EBVsel for selected and non-selected
candidates under quadratic optimization and trunc-
ation selection across generations and replicates is
presented in Fig. 5 for DF=0.01. Distributional
parameters are given in Table 4. It should be realized
that the overlap between the frequency distributions
of EBVsel for selected and unselected candidates for
truncation selection is purely an artefact created from
the use of pooled data across replicates because, in
a single replicate, every selected candidate will have
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Fig. 2. Relationship between long-term contributions (r)
and estimated Mendelian sampling terms at convergence
(âconv) (solid line) and between mating proportions (c) and
estimated Mendelian sampling term at selection time (âsel)
(broken line) under quadratic optimization for N=100,
h2=0.25 and two DF constraints.
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terms at selection time (âsel) for selected and unselected
candidates under quadratic optimization for N=100,
h2=0.25 and two DF constraints.

S. Avendaño et al. 60

https://doi.org/10.1017/S0016672303006566 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672303006566


higher EBVsel than every unselected candidate. How-
ever, this is not the case for the frequency distributions
of âsel, for which, even under truncation selection,
some overlapping can occur between selected and
unselected candidates. For quadratic optimization the
overlapping between selected and unselected candi-
dates is a property of the method and can occur for
both âsel and the EBVsel within a single replicate.

The degree of overlap between frequency distri-
butions of selected and unselected candidates differed
between selection methods and depended on the
selective advantage used by the selection method.
For quadratic optimization, p(âi SELoâj UNSEL) was
0.988, whereas p(EBVi SELoEBVj UNSEL) was 0.839.
By contrast, for truncation selection, using pooled

observations, p(âi SELoâj UNSEL) was 0.832, whereas
p(EBVi SELoEBVj UNSEL) was 0.955. Thus, at selec-
tion time, the probability that the selective advantage
of a selected candidate will be equal to or greater than
that of an unselected candidate was higher when the
selective advantage was âsel under quadratic opti-
mization and when it was EBVsel under truncation
selection. Other definitions of this probability (e.g.
excluding the same selective advantage bin, thus
p(âi SELoâj UNSEL)) made no qualitative difference to
the result presented.

4. Discussion

This study has empirically demonstrated that, when
selection uses quadratic optimization, the selection
advantage for candidates is the estimated Mendelian
sampling term. From initial selection to convergence
of genetic contributions, quadratic optimization at-
tempts to allocate contributions of selected candidates
according to the best available information on their
estimated Mendelian sampling term, not their breed-
ing value. Therefore, with quadratic optimization,
candidates are selected or culled according with the
estimate of their independent and unique superiority
or inferiority with respect to the parental average. This
contrasts with BLUP truncation selection, in which
the fate of candidates depends upon their EBVs and so
their selective advantage is not independent of the
parental average.

Grundy et al. (1998b) postulated the relationship
between long-term contributions and Mendelian
sampling terms under constrained inbreeding from a
theoretical standpoint, and stated that the maximum
gain could be obtained with an exact linear allocation
of long-term contributions of selected candidates ac-
cording to their Mendelian sampling terms (Fig. 6). In
the ideal outcome, a candidate will have a long-term
contribution greater than zero only if its a is greater
than the value (u) at the intercept of the regression line
of r on a, and its converged contribution will be given
by the regression equation (i.e. for a candidate i, ri=
b(aixu), where b is the regression slope). For a tight
DF constraint, both u and b will be lower than for a
more relaxed constraint.

Table 3. Comparison of the parameters describing the relationship of r
with âconv and EBVconv for selection using quadratic optimization and
truncation, for h2=0.25, DF=0.01 and N=100. Significance levels are
those for the corresponding parameters in Table 1

Selection
method rr,âconv rr,EBVconv

Vr,âconv
Vr,EBVconv

Vr,tot c

Optimization 0.85 0.05 0.415 0.000 0.841 0.92
Truncation 0.33 0.38 0.063 0.087 0.486 0.50
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Fig. 4. Relationship between long-term contributions (r)
and estimated Mendelian sampling terms (âconv) or
estimated breeding values (EBVconv) at convergence of the
long-term contributions under truncation selection for
N=100, h2=0.25 and DF=0.01.
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The present study is the first presenting empirical
evidence of relationship between long-term contri-
butions andMendelian sampling terms with quadratic

optimization. The primary evidence that, under quad-
ratic optimization, the selective advantage is the
Mendelian sampling comes from the analysis of the
relationships between contributions (i.e. either c or r),
âconv and EBVconv. Not only were the partial correla-
tions coefficients involving âconv much greater than
those involving the EBVconv irrespective of the DF
constraint but also a simple regression of contri-
butions on âconv performed as well as the bivariate
regression on both potential selective advantages. By
contrast, under truncation selection, there was no clear
distinction between selective advantages in their re-
lationship with contributions. Additionally, at selec-
tion time, the probability that a selected candidate had
an equal or greater âsel than an unselected candidate
was greater with quadratic optimization than under
truncation selection. However, the opposite was true
for EBVsel, supporting the hypothesis that the two
approaches to selection work on different underlying
selective advantages. The observation that the joint
regression of âconv and EBVconv predicted r notably
better than EBVconv alone is not surprising given the
results of Woolliams et al. (1999b). They showed
that the regression coefficients of r on EBVsel and
(EBVconvxEBVsel) were different and so the two vari-
ables âconv and EBVconv give better a opportunity to
approximate this complex relationship than EBVconv

alone.
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Fig. 5. Frequency distributions of estimated Mendelian sampling terms (âsel) and estimated breeding value at selection
time (EBVsel) for selected and unselected candidates under quadratic optimization and truncation selection for N=100,
h2=0.25 and DF=0.01.

Table 4. Distributional parameters of âsel and EBVsel

for selected and unselected candidates when selection
uses quadratic optimization and truncation. All
parameters are calculated after pooling data over
replicates

Parameter

Optimization Truncation

Unselected Selected Unselected Selected

âsel
Mean x0.119 0.080 x0.076 0.078
Mode x0.077 0.046 x0.069 0.051
Variance 0.006 0.007 0.010 0.011
Quartiles
25% x0.164 0.015 x0.143 0.007
Median x0.106 0.067 x0.071 0.075
75% x0.063 0.132 x0.009 0.143

EBVsel

Mean 0.462 0.772 0.442 0.833
Mode 0.427 0.734 0.495 0.743
Variance 0.051 0.057 0.029 0.030
Quartiles
25% 0.309 0.604 0.334 0.711
Median 0.452 0.758 0.462 0.813
75% 0.610 0.931 0.515 0.942
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The expression for genetic gain of Woolliams &
Thompson (1994) made explicit that sustained genetic
gain arises from creating a covariance between the r
and a (i.e. E(DG)=griai), exploiting the Mendelian
sampling term variance (i.e. the new genetic variation
created each generation). It is therefore reasonable
that an algorithm for maximizing gain should relate
contributions to the Mendelian sampling terms or at
least to the their best available estimate. Figs 1 and 2
explicitly show that quadratic optimization attempts
to maximize this covariance from selection time to the
convergence of the long-term contributions.

The most obvious qualitative difference between
truncation selection and quadratic optimization arises
from the usage of selected candidates. Whereas, in
truncation selection, all individuals with anEBVabove
a certain truncation point are allocated the same
mating proportions, in quadratic optimization, the
usage is allowed to vary among selected candidates.
Toro & Nieto (1984) first proposed the idea of al-
lowing unequal contributions of selected candidates as
an alternative to truncation selection under mass
selection. By using a quadratic optimization approach
they minimized the sum of squares of contributions of
selected candidates while maintaining a predefined
selection intensity. This approach allowed the maxi-
mization of the effective population size (judged

by the mating proportions), by allocating optimal
contributions according to ranking scores. The allo-
cation of higher contributions to individuals with
higher selective advantage is an important property of
quadratic optimization with predefined levels of DF.

The true Mendelian sampling term of selected can-
didates is unknown and so the quadratic optimization
relies on the use of their best estimates at the time of
selection. Thus, at selection time contributions to the
next generation are allocated according to the initial
a estimates (Woolliams et al., 2002). This means that
the accuracy of the estimate of the Mendelian sam-
pling term is one of the relevant parameters in de-
termining the degree of ‘noise ’ in the optimization
system (i.e. the amount of departure from the ideal
solution (Fig. 6)). Departures from the ideal solution,
represented by the scatter around the straight lines in
Fig. 1, have been regarded by Woolliams et al. (2002)
as unavoidable ‘contribution errors ’. As indicated in
the Methods, these can be used to give a measure of
efficiency for a selection scheme, describing with what
efficiency the loss of genetic variance is harnessed to
produce desired gain. Benchmark efficiency values of
0.917 and 0.837 were obtained for h2=0.25 with
schemes constrained to DF of 0.01 and 0.02, respect-
ively. These are indeed high efficiencies and the results
suggest that schemes with more relaxed constraints
(i.e. higher DF ) might be less efficient in the exploi-
tation of genetic variation even when using quadratic
indices. This indicates that the degree to which DF is
constrained controls the amount of departure from
the ideal solution, which was expected as the theor-
etical ideal outcome was derived under a constrained
assumption. By contrast, under truncation selection,
an efficiency of only 0.50 was found for DF=0.01 and
h2=0.25.

We have shown that the outcome of the quadratic
optimization at selection time, summarized by bc,âsel,
is a good estimator of the optimization outcome that
would be obtained if converged long-term contri-
butions and the best estimate of the Mendelian sam-
pling term (br,âconv) were available. Greater deviations
from the ideal outcome observed for the relationship
of r on âconv reduces the ability to manage individual
contributions independently in a dynamic multiple
generational selection process. As stressed by Wool-
liams et al. (2002), changing an individual’s contri-
bution will affect the contribution of all its ancestors
and changing the contribution of a male or female
parent through its offspring will affect the contribution
of its mates. Therefore, although the estimate of the
Mendelian sampling term will be more accurate as
information accumulates, the management of an in-
dividual contribution becomes less and less indepen-
dent as selection progresses.

An alternative way of assessing the impact of ra, the
accuracy of the estimate of the Mendelian sampling

a

r

u1

Slope b1

Slope b2

a

r

u2

Tight ∆F
constraint

Relaxed ∆F
constraint

Fig. 6. Ideal outcome for the optimization of genetic gain
for constrained rate of inbreeding (DF) according with
Grundy et al. (1998a), adapted fromWoolliams et al. (2002).
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term, on the outcome of the optimization process is by
observing the change in the ‘effective number of par-
ents ’ from selection to convergence of contributions.
The sum of squares ofmating proportions and the sum
of squares of the long-term contributions of selected
candidates can be regarded as the ‘effective number of
parents ’ of equal contribution (e.g. Robertson, 1965)
at selection time, Nc=[gc2]x1, and at convergence,
Nr=[gr2]x1, respectively. For instance, for DF=0.01
and h2=0.01, Nc was 43.2, Nr was 26.7 and ra in-
creased from 0.052 at selection time to 0.103 at con-
vergence. By contrast, for DF=0.01 and h2=0.99, Nc

was 33.1, Nr was 26.4 and ra was 0.968 both at selec-
tion time and at convergence. This indicates that, for a
given DF constraint, the process of building up of ra
(thus, the agreement between the initial and the con-
verged solution) is controlled by the heritability of
the trait.

Our results provide the relevant empirical validation
for the theoretical optimal solution of Grundy et al.
(1998b) for the optimization problem under con-
strained DF formulated in terms of r and a. It should
be emphasized that our observations on the outcome
and mechanics of quadratic optimization are drawn
from an ongoing use of dynamic selection in the
breeding scheme, and the same outcome might not be
achieved after only a single generation application of
the method. Importantly, this study clearly provides
evidence that the outcome of the quadratic optimiz-
ation relies on the accuracy of the knowledge of the
Mendelian sampling terms at the time of selection.
Therefore, there is a need for developing such de-
terministic predictions for the accuracy of predicted
Mendelian sampling terms in order to obtain predic-
tions of gain in a constrained optimization context.

Mendelian linear indices were proposed by Wool-
liams & Thompson (1994) as a way of explicitly alter-
ing the amount of weight given to family information
for the flexible management of genetic gain and in-
breeding. These indices rely on the decomposition of
EBVs and the reweighing of the estimated Mendelian
terms, progressively reducing weights given to more
distant ancestors. Grundy et al. (1998a) found them to
be useful for managing gain and inbreeding. Although
the concept of using Mendelian sampling terms as a
selective advantage was a step in the right direction,
the implementation of the concept is most effectively
done through the quadratic index rather than the
linear index described by Grundy et al. (1998a).
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