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On Stanley Depths of Certain Monomial
Factor Algebras

Zhongming Tang

Abstract. Let S = K[x1 , . . . , xn] be the polynomial ring in n-variables over a ûeld K and I a mono-
mial ideal of S. According to one standard primary decomposition of I, we get a Stanley decom-
position of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate
the Stanley depth of S/I. It is proved that sdepthS(S/I) ≥ sizeS(I). When I is squarefree and
bigsizeS(I) ≤ 2, the Stanley conjecture holds for S/I, i.e., sdepthS(S/I) ≥ depthS(S/I).

1 Introduction

LetK be a ûeld and let S = K[x1 , . . . , xn] be the polynomial ring in n-variables overK.
Let M be a ûnitely generated multigraded S-module. _en a Stanley decomposition
D of M is a ûnite direct sum of K-spaces:

D ∶ M =
r
⊕
i=1

m iK[Z i],

where m i ∈ M is homogeneous and Z i ⊆ {x1 , . . . , xn}, i = 1, . . . , r, and its Stanley
depth, sdepthS(D), is deûned as min{∣Z i ∣ ∣ i = 1, . . . , r}. _e Stanley depth of M is

sdepthS(M) = max sdepthS(D) ∣ D is a Stanley decomposition of M}.
Stanley [11] conjectured that sdepthS(M) ≥ depthS(M), which has recently become
an interesting topic in commutative algebra.

To estimate the Stanley depth, it is important to ûnd ”good” Stanley decomposi-
tions. When I is a monomial ideal of S, S/I is said to be a monomial factor algebra.
_rough one kind of Stanley decomposition of I, several interesting results about the
Stanley depth of I were obtained in [3, 6, 7].

In this paper, we are interested in whether the similar results hold for S/I. Our
approach is to ûnd a similar Stanley decomposition for S from which one can get a
Stanley decomposition for S/I. Such decompositions are presented in Section 2. Two
applications are given in the following two sections.

_e size of a monomial ideal was introduced by Lyubeznik [5], who also proved
the well-known result that depthS(I) ≥ 1 + sizeS(I). For the Stanley depth, Herzog,
Popescu and Vadoiu [3] obtained a similar result that sdepthS(I) ≥ 1+ sizeS(I). _ey
expected that it holds that sdepthS(S/I) ≥ sizeS(I). We will show that the result is
true in Section 3.
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Let I be a squarefree monomial ideal of S. When the sum of every three diòerent
minimal prime ideals of I is the maximal ideal, i.e., bigsizeS(I) ≤ 2, Popescu [8]
proved that the Stanley conjecture holds for I. In this case, we will show that the
Stanley conjecture holds also for S/I in Section 4.

2 Stanley Decompositions of Polynomial Rings

Let I be a monomial ideal of S = K[x1 , . . . , xn]. _en I has the standard primary
decomposition, i.e., the unique irredundant presentation as an intersection of irre-
ducible monomial ideals:

I = Q1 ∩⋯ ∩ Qs ,
with

√
Q i = Pi , i = 1, . . . , s, and AssS(S/I) = {P1 , . . . , Ps}.

Let r < n be a positive integer, S′ = K[x1 , . . . , xr], and S′′ = K[xr+1 , . . . , xn]. For
any τ ⊆ [s] = {1, . . . , s}, let Iτ be the K-subspace of S generated by the following set
of monomials

{uv ∣ u ∈ S′ , u ∈ (∩ j/∈τQ j) ∖ ( ∑
j∈τ

Q j) , v ∈ S′′ , v ∈ ∩ j∈τQ j}.

_en by [3, Proposition 2.1], I has a decomposition as K-spaces:

I = ⊕
τ⊆[s]

Iτ .

_is kind of decomposition was ûrst introduced by Popescu [6], where the Stanley
conjecture for squarefree monomial ideals of intersections of three monomial prime
ideals was veriûed. _e generalized forms of the decomposition were used to estimate
the Stanley depth of I in [3, 7].

We plan to consider the Stanley depth of S/I. To obtain a suitable Stanley decom-
position for S/I, it is necessary to decompose S.
For any τ ⊆ [s], set Sτ as the K-subspace of S generated by the following set of

monomials
{uv ∣ u ∈ S′ , u ∈ (∩ j/∈τQ j) ∖ ( ∑

j∈τ
Q j) , v ∈ S′′}.

Note that S∅ = (I ∩ S′)S and S[s] = ((S ∖ (∑s
j=1 Q j)) ∩ S′)[xr+1 , . . . , xn].

_en, as a K-space, S has the following decomposition.

Proposition 2.1 S = ⊕τ⊆[s] Sτ .

Proof Any monomial w ∈ S can be written as w = uv with u ∈ S′ and v ∈ S′′. Set
τ = { j ∈ [s] ∣ u /∈ Q j}. _en w ∈ Sτ . Hence S = ∑τ⊆[s] Sτ .

We still need to show that the sum is direct. Suppose that τ /= σ ⊆ [s], j ∈ τ∖ σ and
w = uv ∈ Sτ ∩ Sσ . By j ∈ τ, we have that u /∈ Q j , but by j /∈ σ , we have that u ∈ Q j , a
contradiction. _e result follows.

Note that Iτ ⊆ Sτ . _en from Proposition 2.1, we get a decomposition of S/I.

Corollary 2.2 S/I = ⊕τ⊆[s] Sτ/Iτ .
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Example 2.3 Let S = K[x1 , x2 , x3], m = (x1 , x2 , x3) and I = m2. _en I has the
following standard primary decomposition:

I = (x2
1 , x2 , x3) ∩ (x1 , x2

2 , x3) ∩ (x1 , x2 , x2
3).

Put r = 1. _en, according to [3, Example 2.2], I has the decomposition

I = x2
1 K[x1 , x2 , x3] ⊕ (x1x2 , x1x3)K[x2 , x3] ⊕ (x2

2 , x2x3 , x2
3)K[x2 , x3].

In this case, the decomposition of S in Proposition 2.1 is

S = x2
1 K[x1 , x2 , x3] ⊕ x1K[x2 , x3] ⊕ K[x2 , x3].

For the Stanley depth of an S-module, we have the following lemma.

Lemma 2.4 ([1, _m. 1.4]) Let M be a multigraded S-module. If depthS(M) > 0,
then sdepthS(M) > 0.

Let H be a multigraded S′-module and let L be a multigraded S′′-module. _en
they have natural multigraded S-module structures. As noted in the proof of [3, _e-
orem 3.1], one has that

sdepthS(H ⊗K L) ≥ sdepthS′(H) + sdepthS′′(L).

Now, we use Corollary 2.2 to estimate the Stanley depth of S/I. We will see that
each Sτ/Iτ has a structure of multigraded S-module. It turns out that sdepthS(S/I) is
not less than the minimum of all sdepthS(Sτ/Iτ), τ ⊆ [s].

_eorem 2.5 Let the situation be as above and assume that one of Pi is (x1 , . . . , xr).
_en

sdepthS(S/I) ≥ min{n − r, sdepthS′(Hτ) + sdepthS′′(S′′/(∩ j∈τQ j) ∩ S′′)},

where the minimum is taken over all nonempty proper subsets τ ⊂ [s] such that Hτ /= 0
with

Hτ = ((∩ j/∈τQ j) ∩ S′ + ( ∑
j∈τ

Q j) ∩ S′)/( ∑
j∈τ

Q j) ∩ S′ .

Proof Let Lτ = (∩ j∈τQ j) ∩ S′′. _en, as K-spaces,

Sτ = Hτ ⊗K S′′ , Iτ = Hτ ⊗K Lτ ,

and

Sτ/Iτ = (Hτ ⊗K S′′)/(Hτ ⊗K Lτ) = Hτ ⊗K (S′′/Lτ).

By the natural multigraded S′-module structure of Hτ and S′′-module structure of
Lτ , we get a multigraded S-module structure on Sτ/Iτ . By virtue of Corollary 2.2, we
have

sdepthS(S/I) ≥ min
τ⊆[s]

{sdepthS(Sτ/Iτ) ∣ Sτ/Iτ /= 0}.
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Note that S∅ = (I∩S′)S = I∅, S[s] = ((S∖(∑s
j=1 Q j))∩S′)[xr+1 , . . . , xn], and I[s] = 0,

as L[s] = 0 by the assumption that one of Pi is (x1 , . . . , xr). It follows that

sdepthS(S[s]/I[s]) = sdepthS(((S ∖ (
s
∑
j=1

Q j)) ∩ S′)[xr+1 , . . . , xn])

≥ n − r.

For any nonempty proper subset τ ⊂ [s] such that Hτ /= 0,
sdepthS(Sτ/Iτ) = sdepthS(Hτ ⊗K (S′′/Lτ))

≥ sdepthS′(Hτ) + sdepthS′′(S′′/Lτ).
_e result follows.

3 Stanley Depth and Size

Let I be a monomial ideal of S and notations as in Section 2. _e size of I is deûned
as

sizeS(I) = υ + n − height(
s
∑
j=1

Pj) − 1,

where
υ = min{t ∣ ∃i1 < i2 < ⋯ < it such that

t
∑
k=1

Pik =
s
∑
j=1

Pj}.

It was showed by Lyubeznik [5] that depthS(S/I) ≥ sizeS(I). Let us discuss the
Stanley depth of S/I by using _eorem 2.5. We need the following lemma.

Lemma 3.1 ([3, Lemma 3.2]) Assume that P1 = (x1 , . . . , xr) and (∩ j∈τQ j) ∩ S′′ /= 0.
_en

sizeS(I) ≤ sizeS′′((∩ j∈τQ j) ∩ S′′) + 1.
Furthermore, if P1 ⊆ ∑ j∈τ Pj , then

sizeS(I) ≤ sizeS′′((∩ j∈τQ j) ∩ S′′).

Herzog, Popescu, and Vadoiu [3] showed that sdepthS(I) ≥ 1 + sizeS(I) for any
monomial ideal I of S. _ey expected that sdepthS(S/I) ≥ sizeS(I) also holds. Let us
prove this result. Note that its squarefree case was shown in [12].

_eorem 3.2 Let I be a monomial ideal of S. _en
sdepthS(S/I) ≥ sizeS(I).

Proof Let I = Q1 ∩ ⋯ ∩ Qs be the standard primary decomposition of I. Set√
Q i = Pi , i = 1, . . . , s. In order to prove the result, we may assume that

∑s
i=1 Pi = m = (x1 , . . . , xn).
We use induction on s. If s = 1, then I is m-primary. By deûnition, we see imme-

diately that sizeS(I) = 0, so the result is clear. Now assume that s > 1, and the result
is true for any positive integer less than s. We may assume that P1 = (x1 , . . . , xr). If
r = n, then the result is also clear, as sizeS(I) = 0 by deûnition. Let us assume that
r < n and use this r to estimate sdepthS(S/I) by _eorem 2.5.
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Note that
n − r = dim(S/P1) ≥ depthS(S/I) ≥ sizeS(I).

For any nonempty proper subset τ ⊂ [s] such that Hτ /= 0, let us show that
sdepthS′(Hτ) + sdepthS′′(S′′/(∩ j∈τQ j) ∩ S′′) ≥ sizeS(I).

By induction hypothesis, sdepthS′′(S′′/(∩ j∈τQ j)∩S′′) ≥ sizeS′′((∩ j∈τQ j)∩S′′). _en,
by Lemma 3.1, it is enough to show that sdepthS′(Hτ) > 0 provided P1 /⊆ ∑ j∈τ Pj .
According to Lemma 2.4, it is enough to show that depthS′(Hτ) > 0 in this case.
Assume, on the contrary, that depthS′(Hτ) = 0; then Hτ is a torsion S′-module.

By P1 /⊆ ∑ j∈τ Pj , we may assume that (∑ j∈τ Q j)∩ S′ = (xakk , . . . , x
ar
r )with k > 1. _en

Hτ = ((∩ j/∈τQ j) ∩ S′ + (xakk , . . . , x
ar
r ))/(xakk , . . . , x

ar
r ).

Since Hτ is torsion, 0 ∶Hτ x t
1 /= 0 for some t > 0. But this is impossible by the above

presentation of Hτ , a contradiction. _is completes the proof.

4 The Stanley Conjecture on Monomial Factor Algebras

We will show that the Stanley conjecture holds for certain monomial factor algebras
S/I. Notice that, by [4, Corollary 4.5], one can reduce the situation to the case where
I is squarefree.

Suppose that I is a squarefree monomial ideal of S. _en I = P1 ∩ ⋯ ∩ Ps , where
the monomial prime ideals Pk , k = 1, . . . , s have the form (x i1 , . . . , x i t) and are not
included one in other. In this case, _eorem 2.5 has a simpler form.

Suppose that∑s
i=1 Pi = m and one of the monomial prime ideals in the decompo-

sition of I is (x1 , . . . , xr). For any nonempty proper subset τ ⊂ [s], set
Sτ = K[{x i ∣ 1 ≤ i ≤ r, x i /∈ ∑

j∈τ
Pj}]

and Hτ = (∩ j∈[s]∖τPj) ∩ Sτ , then

S = S′′ ⊕ (⊕τ⊂[s]HτSτ[xr+1 , . . . , xn]),

S/I = S′′ ⊕ (⊕τ⊂[s]
HτSτ[xr+1 , . . . , xn]

HτSτ[xr+1 , . . . , xn] ∩ ((∩ j∈τPj) ∩ S′′)Sτ[xr+1 , . . . , xn])
) ,

and_eorem 2.5 has the form

sdepthS(S/I) ≥

min{n − r, sdepthSτ
((∩ j∈[s]∖τPj) ∩ Sτ) + sdepthS′′(S′′/(∩ j∈τPj) ∩ S′′)} ,

where the minimum is taken over all nonempty proper subsets τ ⊂ [s] such that
(∩ j∈[s]∖τPj) ∩ Sτ /= 0.

Note that, here, there are also decompositions for (x1 , . . . , xr) and (x1 , . . . , xr)/I:
(x1 , . . . , xr) = ⊕

τ⊂[s]
HτSτ[xr+1 , . . . , xn]),

(x1 , . . . , xr)/I = ⊕
τ⊂[s]

HτSτ[xr+1 , . . . , xn]
HτSτ[xr+1 , . . . , xn] ∩ ((∩ j∈τPj) ∩ S′′)Sτ[xr+1 , . . . , xn])

.
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_en similarly, we have

sdepthS((x1 , . . . , xr)/I) ≥

min
τ⊂[s]

{ sdepthSτ
(( ⋂

j∈[s]∖τ
Pj) ∩ Sτ) + sdepthS′′(S′′/( ⋂

j∈τ
Pj) ∩ S′′)} ,

where the minimum is taken over all nonempty proper subsets τ ⊂ [s] such that
(⋂ j∈[s]∖τ Pj) ∩ Sτ /= 0.

In this section, we will show two results that the Stanley conjecture hold for S/I
under certain conditions, while the results for I have been proved by Popescu [7, 8].
We ûrst show the following theorem.

_eorem 4.1 Let I be a squarefree monomial ideal of S. Let I = P1 ∩ ⋯ ∩ Ps be a
reduced intersection of monomial prime ideals of S. If Pi /⊆ ∑ j/=i Pj , i = 1, . . . , s, then
sdepthS(S/I) ≥ depthS(S/I).

Proof Under the assumption of the theorem, it was shown in [7, _eorem 2.3] that
depthS(I) = s and sdepthS(I) ≥ depthS(I). We will use some of the arguments from
the proof of [7, _eorem 2.3].

Use induction on s. _e case s = 1 is clear. Now assume that s > 1 and P1 =
(x1 , . . . , xr). As P1 ∈ AssS(S/I), we have

n − r = dimS(S/P1) ≥ depthS(S/I).

For any nonempty proper subset τ ⊂ [s] such that (⋂ j∈[s]∖τ Pj)∩Sτ /= 0, it was proved
in the proof of [7, _eorem 2.3] that

sdepthSτ
(( ⋂

j∈[s]∖τ
Pj) ∩ Sτ) ≥ s − ∣τ∣ − dimS(S/(P1 + ∑

i∈τ
Pi)) ,

depthS′′(S′′/( ⋂
j∈τ

Pj) ∩ S′′) ≥ ∣τ∣ − 1 + dimS(S/(P1 + ∑
i∈τ

Pi)) .

By induction hypothesis, we get that

sdepthS′′(S′′/( ⋂
j∈τ

Pj) ∩ S′′) ≥ depthS′′(S′′/( ⋂
j∈τ

Pj) ∩ S′′) .

Hence,

sdepthSτ
(( ⋂

j∈[s]∖τ
Pj) ∩ Sτ) + sdepthS′′(S′′/( ⋂

j∈τ
Pj) ∩ S′′) ≥ s − 1

= depthS(S/I).

It follows that sdepthS(S/I) ≥ depthS(S/I).

Let I be a squarefree monomial ideal of S and let I = P1 ∩ ⋯ ∩ Ps be a reduced
intersection of monomial prime ideals. Popescu [7] deûned the bigsize of I, denoted
by bigsizeS(I), as t + n − height(∑s

j=1 Pj) − 1, where t is the minimum of the in-
tegers e such that ∑e

k=1 Pik = ∑s
j=1 Pj for all i1 < ⋯ < ie . _e main result in [8]

states that sdepthS(I) ≥ depthS(I) provided bigsizeS(I) = 2. Our aim is to show that
sdepthS(S/I) ≥ depthS(S/I) in this case. We need certain results from [8].
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Lemma 4.2 ([8, Proposition 2.7]) Let I be a squarefree monomial ideal and let I =
P1∩⋯∩Ps be a reduced intersection ofmonomial prime ideals. Suppose that∑s

i=1 Pi = m,
bigsizeS(I) = 2, sizeS(I) = 1, and depthS(I) > 3. _en, a�er renumbering (Pi), there
exists 1 < r ≤ s − 2 such that for I1 = P1 ∩ ⋯ ∩ Pr and I2 = Pr ∩ ⋯ ∩ Ps , one has that
Pi + Pj = m, 1 ≤ i < r, r < j ≤ s, and

depthS(I) = min{depthS(I1), depthS(I2)}.

We know that sdepthS(S/I) ≥ depthS(S/I) for s ≤ 4; cf. [10,12]. In the proof of the
next theorem, we also need the following lemma.

Lemma 4.3 If s ≤ 4, then

sdepthS(Pk/I) ≥ depthS(S/I), k = 1, . . . , s.

Proof Assume that Pk = (x1 , . . . , xr). Let us recall the argument for sdepthS(S/I) ≥
depthS(S/I). For s ≤ 4, according to the proof in [12], one must verify each

sdepthSτ
((∩ j∈[s]∖τPj) ∩ Sτ) + sdepthS′′(S′′/(∩ j∈τPj) ∩ S′′) ≥ depthS(S/I).

On the other hand, from the decomposition of Pk/I in the third paragraph of this
section, it turns out also that sdepthS(Pk/I) ≥ depthS(S/I).

Lemma 4.4 ([3, _eorem 1.2]) Let I be a monomial ideal of S. If bigsizeS(I) =
sizeS(I), then depthS(S/I) = sizeS(I).

Lemma 4.5 If depthS(I) ≤ 3, then sdepthS(S/I) ≥ depthS(S/I).

Proof If depthS(I) ≤ 2, that is depthS(S/I) ≤ 1, then, by _eorem 3.2,

sdepthS(S/I) ≥ sizeS(I) ≥ 1 ≥ depthS(S/I).

Assume that depthS(I) = 3, that is, depthS(S/I) = 2. By [9, _eorem 3.3],
sdepthS(S/I) ≥ depthS(S/I) provided S/I is Cohen–Macaulay of dimension 2. _en
it follows from [2, Corollary 2.2] that sdepthS(S/I) ≥ depthS(S/I) holds for any
monomial ideal I of S with depthS(S/I) = 2. _e lemma follows.

_eorem 4.6 Let I be a squarefree monomial ideal of S. If bigsizeS(I) ≤ 2, then
sdepthS(S/I) ≥ depthS(S/I).

Proof If bigsizeS(I) = sizeS(I), then the result follows from Lemma 4.4 and _eo-
rem 3.2. Hence we may assume that bigsizeS(I) = 2 and sizeS(I) = 1. By Lemma 4.5,
we may also assume that depthS(I) > 3.

Suppose that I = P1 ∩ ⋯ ∩ Ps is a reduced intersection of monomial prime ideals.
We use induction on s to show that

sdepthS(S/I) ≥ depthS(S/I),
sdepthS(Pk/I) ≥ depthS(S/I), k = 1, . . . , s.
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We may assume that s > 4 and ∑s
i=1 Pi = m. Applying Lemma 4.2, we get I1 and

I2 with the property that depthS(I) = min{depthS(I1), depthS(I2)}. Renumbering
(Pi) if necessary, we may assume that k ≤ r.
According to the argument in the proof of [8, Proposition 3.4], there are a decom-

position of I as K-spaces

I = (I ∩ S′) ⊕ ((x1 , . . . , xe) ∩ I)

and 1 ≤ e < n satisfying

{x1 , . . . , xe} ⊆ Pi , for i = 1, . . . , r, S′ = K[xe+1 , . . . , xn],
depthS′(I ∩ S′) = depthS(I1), depthS((x1 , . . . , xe) ∩ I) = depthS(I2),

and where

I ∩ S′ = (P1 ∩ S′) ∩⋯ ∩ (Pr ∩ S′) and (x1 , . . . , xe) ∩ I = (x1 , . . . , xe) ∩ Pr+1 ∩⋯ ∩ Ps

are reduced intersections of monomial prime ideals.
On the other hand, we have decompositions of S and Pk as K-spaces:

S = S′ ⊕ (x1 , . . . , xe),
Pk = (Pk ∩ S′) ⊕ (x1 , . . . , xe)

from which one get decompositions of S/I and Pk/I as K-spaces

S/I = S′/(I ∩ S′) ⊕ (x1 , . . . , xe)/((x1 , . . . , xe) ∩ I),
Pk/I = (Pk ∩ S′)/(I ∩ S′) ⊕ (x1 , . . . , xe)/((x1 , . . . , xe) ∩ I).

_en

sdepthS(S/I) ≥
min{sdepthS′(S′/(I ∩ S′)), sdepthS((x1 , . . . , xe)/((x1 , . . . , xe) ∩ I))}

and

sdepthS(Pk/I) ≥
min{sdepthS′((Pk ∩ S′)/(I ∩ S′)), sdepthS((x1 , . . . , xe)/((x1 , . . . , xe) ∩ I))}.

Applying induction hypothesis to the above summands, we get

sdepthS′(S′/(I ∩ S′)) ≥ depthS′(S′/(I ∩ S′))
= depthS(S/I1),

sdepthS((x1 , . . . , xe)/((x1 , . . . , xe) ∩ I)) ≥ depthS(S/((x1 , . . . , xe) ∩ I))
= depthS(S/I2),

sdepthS′((Pk ∩ S′)/(I ∩ S′)) ≥ depthS′(S′/(I ∩ S′))
= depthS(S/I1).
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Note that, when r = 2 or s−r = 2, there are no induction hypotheses to apply; however,
the related results are known by Lemma 4.3. It follows that

sdepthS(S/I) ≥ min{depthS(S/I1), depthS(S/I2)}
= depthS(S/I),

sdepthS(Pk/I) ≥ min{depthS(S/I1), depthS(S/I2)}
= depthS(S/I).

_is completes the proof.
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