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On Stanley Depths of Certain Monomial
Factor Algebras

Zhongming Tang

Abstract. Let S = K[x1,...,%n] be the polynomial ring in n-variables over a field K and I a mono-
mial ideal of S. According to one standard primary decomposition of I, we get a Stanley decom-
position of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate
the Stanley depth of S/I. It is proved that sdepthg(S/I) > sizes(I). When I is squarefree and
bigsizeg (I) < 2, the Stanley conjecture holds for S/1, i.e., sdepthg (S/I) > depthg(S/I).

1 Introduction

Let KbeafieldandletS = K[xi, ..., x, ] be the polynomial ring in n-variables over K.
Let M be a finitely generated multigraded S-module. Then a Stanley decomposition
D of M is a finite direct sum of K-spaces:

D:M= é m,-K[Z,-],
i=1

where m; € M is homogeneous and Z; € {x;,...,x,}, i = 1,...,7, and its Stanley
depth, sdepthg (D), is defined as min{|Z;| | i =1,...,r}. The Stanley depth of M is

sdepthg (M) = maxsdepthg(D) | D is a Stanley decomposition of M }.

Stanley [11] conjectured that sdepth, (M) > depthy (M), which has recently become
an interesting topic in commutative algebra.

To estimate the Stanley depth, it is important to find "good” Stanley decomposi-
tions. When I is a monomial ideal of S, S/I is said to be a monomial factor algebra.
Through one kind of Stanley decomposition of I, several interesting results about the
Stanley depth of I were obtained in [3,6,7].

In this paper, we are interested in whether the similar results hold for S/I. Our
approach is to find a similar Stanley decomposition for S from which one can get a
Stanley decomposition for S/I. Such decompositions are presented in Section 2. Two
applications are given in the following two sections.

The size of a monomial ideal was introduced by Lyubeznik [5], who also proved
the well-known result that depthg(I) > 1 + sizeg(I). For the Stanley depth, Herzog,
Popescu and Vadoiu [3] obtained a similar result that sdepthg(I) > 1+ sizeg(I). They
expected that it holds that sdepthg(S/I) > sizes(I). We will show that the result is
true in Section 3.

Received by the editors September 25, 2013; revised December 29, 2014.
Published electronically February 24, 2015.

Supported by the National Natural Science Foundation of China (No. 11471234).
AMS subject classification: 13F20, 13C15.

Keywords: monomial, ideal size, Stanley depth.

393

https://doi.org/10.4153/CMB-2015-001-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-001-x

394 Z. Tang

Let I be a squarefree monomial ideal of S. When the sum of every three different
minimal prime ideals of I is the maximal ideal, i.e., bigsizes(I) < 2, Popescu [8]
proved that the Stanley conjecture holds for I. In this case, we will show that the
Stanley conjecture holds also for S/I in Section 4.

2 Stanley Decompositions of Polynomial Rings

Let I be a monomial ideal of S = K[x1,...,x,]. Then I has the standard primary
decomposition, i.e., the unique irredundant presentation as an intersection of irre-
ducible monomial ideals:

I=Qin--nQs,
with \/Q; = P;,i=1,...,s,and Assg(S/I) = {Py,..., Ps}.
Let r < n be a positive integer, S’ = K[x;,...,x,], and 8" = K[%,41,...,%,]. For
any 7 € [s] = {1,...,s}, let I, be the K-subspace of S generated by the following set

of monomials

{w|ueS ue(ngQ) (T Qj),ves",veni.Q;}.
jet

Then by [3, Proposition 2.1], I has a decomposition as K-spaces:

I= & I,.
7<[s]

This kind of decomposition was first introduced by Popescu [6], where the Stanley
conjecture for squarefree monomial ideals of intersections of three monomial prime
ideals was verified. The generalized forms of the decomposition were used to estimate
the Stanley depth of I in [3,7].

We plan to consider the Stanley depth of S/I. To obtain a suitable Stanley decom-
position for /1, it is necessary to decompose S.

For any 7 ¢ [s], set S; as the K-subspace of S generated by the following set of
monomials

{uv|ueS ue(ngEQ)( ) Q;),veS"}.
jer

Note that Sg; = (In 8")S and S = (S (X521 Q1)) n S [Xrs15 -+ X |-
Then, as a K-space, S has the following decomposition.

Proposition 2.1 S = @) St

Proof Any monomial w € S can be written as w = uv with u € §" and v € §”. Set
t={je[s]|u¢Q;}. Thenw e S.. Hence S = ¥ [ St

We still need to show that the sum is direct. Suppose that 7 # ¢ € [s], j€ 7~ 0 and
w=uv € S;NS,. By j € 7, we have that u ¢ Qj, but by j ¢ o, we have that u € Q;, a
contradiction. The result follows. ]

Note that I; € S;. Then from Proposition 2.1, we get a decomposition of S/I.

Corollary 2.2 S[I = @c[5] S</I+
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Example 2.3 LetS = K[x;,%2, %3], m = (x1,%2,x3) and I = m?. Then I has the
following standard primary decomposition:

I=(x7,%2,x3) 0 (x1,%3, %3) N (1, X2, X3).
Put r = 1. Then, according to [3, Example 2.2], I has the decomposition
I = x7K[x1, X2, x3] @ (X162, 613 ) K[ X2, X3] @ (%3, x2%3, x3 ) K[ %2, X3].
In this case, the decomposition of S in Proposition 2.1 is
S = x2K[x1, X2, X3] ® x1K[ %2, %3] & K[x2, x3].
For the Stanley depth of an S-module, we have the following lemma.

Lemma 2.4 ([1, Thm. 1.4]) Let M be a multigraded S-module. If depthg(M) > 0,
then sdepthg (M) > 0.

Let H be a multigraded S’-module and let L be a multigraded S”-module. Then
they have natural multigraded S-module structures. As noted in the proof of [3, The-
orem 3.1], one has that

sdepthg(H ® L) > sdepthg, (H) + sdepthg, (L).

Now, we use Corollary 2.2 to estimate the Stanley depth of S/I. We will see that
each S;/I; has a structure of multigraded S-module. It turns out that sdepthg(S/I) is
not less than the minimum of all sdepthg(S./I;), 7 € [s].

Theorem 2.5  Let the situation be as above and assume that one of P; is (x1, ..., X, ).
Then

sdepthg(S/I) > min{n — r, sdepthg, (H) + sdepthg, (S"/(n;exQ;) N ")},

where the minimum is taken over all nonempty proper subsets T c [s] such that H, # 0
with

Hy=((njg:Q))n 8" + (X Q))ns) /(X Qj) ns".

jer jer
Proof LetL;=(Nje;Q;) N S". Then, as K-spaces,
S:=H;®S", I,=H;®kL,,
and
S:/I,=(H,®x S")/(H; ®¢ L;) = H, ®x (S"/L,).

By the natural multigraded S’-module structure of H, and S§”’-module structure of
L., we get a multigraded S-module structure on S;/I,. By virtue of Corollary 2.2, we
have

sdepthg(S/I) > m%r}{sdepths(ST/IT) | S;/1; # 0}.
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Note that Sg; = (InS")S = I, Spgp = ((S™ (Zj‘:l Qj))NS")[Xr41s ..., Xn],and I = 0,
as L[] = 0 by the assumption that one of P; is (x1,. .., x;). It follows that

sdepthg (Spq1/Ifs)) = sdepths( ((s~ (ng Q;)) nS') [xrs1- .- ,x,,])
2n-—r.
For any nonempty proper subset 7 c [s] such that H, # 0,
sdepthg(S;/I;) = sdepthg(H, ®k (S"/L:))
> sdepthy, (H;) + sdepthg, (S”/L.).
The result follows. u

3 Stanley Depth and Size

Let I be a monomial ideal of S and notations as in Section 2. The size of I is defined
as

Mo

sizes(I) =v+n- height( Pj) -1,

j=1
where
t S
v=min{t|3i <i <--<i;suchthat ¥ P; = Y P;}.
k=1 =1
It was showed by Lyubeznik [5] that depthg(S/I) > sizes(I). Let us discuss the
Stanley depth of S/I by using Theorem 2.5. We need the following lemma.

Lemma 3.1 ([3, Lemma 3.2]) Assume that Py = (xi,...,%,) and (NjezQ;) NS # 0.
Then

sizes(I) < sizesr ((NjerQj) N S") + 1.
Furthermore, if Py € 3. ;.. P;, then

sizeg(I) < sizesr ((NjerQ;) N'S").

Herzog, Popescu, and Vadoiu [3] showed that sdepthg(I) > 1 + sizeg(I) for any
monomial ideal I of S. They expected that sdepth(S/I) > sizeg(I) also holds. Let us
prove this result. Note that its squarefree case was shown in [12].

Theorem 3.2  Let I be a monomial ideal of S. Then
sdepthg (S/I) > sizeg(I).

Proof LetI = Q; n - n Q, be the standard primary decomposition of I. Set
VQ; = P, i = 1,...,s. In order to prove the result, we may assume that
YiaPi=m=(x1,...,%,).

We use induction on s. If s = 1, then I is m-primary. By definition, we see imme-
diately that sizeg(I) = 0, so the result is clear. Now assume that s > 1, and the result
is true for any positive integer less than s. We may assume that P; = (xp,...,x,). If
r = n, then the result is also clear, as sizeg(I) = 0 by definition. Let us assume that
r < n and use this r to estimate sdepth¢(S/I) by Theorem 2.5.
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Note that
n—r=dim(S/P;) > depthg(S/I) > sizes(I).
For any nonempty proper subset T ¢ [s] such that H; # 0, let us show that
sdepthg, (H;) + sdepthg, (8" /(Nn;e:Q;) N 8”) > sizes(I).

By induction hypothesis, sdepthg, (8" /(NjezQ;)NS") > sizes ((NjerQ;)NS”). Then,
by Lemma 3.1, it is enough to show that sdepthg, (H,) > 0 provided P ¢ ¥, P;.
According to Lemma 2.4, it is enough to show that depthg, (H;) > 0 in this case.
Assume, on the contrary, that depthg, (H;) = 0; then H, is a torsion §’-module.
By Py ¢ 3 ;. Pj, we may assume that (3 ;c, Q;) NS’ = (x*, ..., x/) with k > 1. Then

Hy = ((njgr Q) NS + (g%, ) (x5, x).

Since H; is torsion, 0 :g, x{ # 0 for some ¢ > 0. But this is impossible by the above
presentation of H,, a contradiction. This completes the proof. ]

4 The Stanley Conjecture on Monomial Factor Algebras

We will show that the Stanley conjecture holds for certain monomial factor algebras
S/I. Notice that, by [4, Corollary 4.5], one can reduce the situation to the case where
I is squarefree.

Suppose that I is a squarefree monomial ideal of S. Then I = P, n --- n P, where
the monomial prime ideals Py, k = 1,...,s have the form (x;,,...,x;,) and are not
included one in other. In this case, Theorem 2.5 has a simpler form.

Suppose that 3>;_; P; = m and one of the monomial prime ideals in the decompo-
sition of I is (x1, ..., x,). For any nonempty proper subset 7 c [s], set

§T=K[{xi|1$i§r,xi¢zpj}]
jetr

and H, = (mje[s]\rpj) ﬂ§1, then
§=5"@ (®TC[S]HT§T['xT+1’ . ,xn])>
Hrgr[xr-#l)-u)xn] )
HeSe[%ri1s -5 %] 0 ((NjerPj) N S") S (X415 -5 X))
and Theorem 2.5 has the form

S/I =5"e (®rc[s]

>

sdepthg(S/I) >

min{ n - r,sdepthg ((NjersgecPj) N Sy) + sdepthg, (S”/(NjerPj) N S") },

where the minimum is taken over all nonempty proper subsets 7 c [s] such that
(mje[s]\‘rpj) N ST # 0.
Note that, here, there are also decompositions for (xi,...,x,) and (x1,...,x,)/:

(X1,. --:-xr) = @]HTgT'[xr‘Fl)' . -;xn]))

Tc[s

(xl o X )/I: ) _ HTET[xr+1)--.,Xn]7 .
rels] HeSe[xran oo %] 0 (MerP)) 08"l %))
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Then similarly, we have
sdepthg((x1,...,x,)/I) >
?Sfﬁ{ sdepth§7( (je[(j]\TPj) N g,) + sdepths,,( S"/( ]DTPj) N S") } ,

where the minimum is taken over all nonempty proper subsets T c [s] such that
(mje[s]\-rpj) NSz ?é 0.

In this section, we will show two results that the Stanley conjecture hold for S/I
under certain conditions, while the results for I have been proved by Popescu [7, 8].
We first show the following theorem.

Theorem 4.1 Let I be a squarefree monomial ideal of S. Let I = Pyn---n P bea
reduced intersection of monomial prime ideals of S. If P; ¢ ¥.;4; Pj, i = 1,...,s, then
sdepthg(S/I) > depthg(S/I).

Proof Under the assumption of the theorem, it was shown in [7, Theorem 2.3] that
depthg(I) = s and sdepthg(I) > depthg(I). We will use some of the arguments from
the proof of [7, Theorem 2.3].

Use induction on s. The case s = 1is clear. Now assume that s > 1and P, =
(x15+.,%,). As P € Asss(S/I), we have

n—r=dimg(S/P) > depthy(S/I).

For any nonempty proper subset 7 ¢ [s] such that (Ne[s}«+ Pj) NS¢ # 0, it was proved
in the proof of [7, Theorem 2.3] that

sdepthgf(( N P]-) mgf)25—|T|—dims(8/(P1+ZPi)),

jelsIs ieT

depths,,(S"/(]DTPj) nS") 2|t~ 1+dims(S/(P+ £ P))).

ieT

By induction hypothesis, we get that

sdepths,,( S"/(JDT Pj) n S") > depths,,( S"/(]Or Pj) n S") :

Hence,
sdepth< N P;j)nS;) +sdepthg,(S”/( N P;) nS") >s-1
(7)) st (7))
= depthg(S/I).
It follows that sdepthg(S/I) > depthg(S/I). [ |

Let I be a squarefree monomial ideal of S and let I = P, n--- n P, be a reduced
intersection of monomial prime ideals. Popescu [7] defined the bigsize of I, denoted
by bigsizeg(I), as t + n — height(¥;; P;) — 1, where t is the minimum of the in-
tegers e such that Yi_, P;, = Y}, Pj forall ij < -+ < i,. The main result in [8]
states that sdepthg (1) > depthg(I) provided bigsize(I) = 2. Our aim is to show that
sdepthg(S/I) > depthg(S/I) in this case. We need certain results from [8].
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Lemma 4.2 ([8, Proposition 2.7]) Let I be a squarefree monomial ideal and let I =
Pyn---nP; be a reduced intersection of monomial prime ideals. Suppose that ¥;_, P; = m,
bigsizeg(I) = 2, sizes(I) = 1, and depthg(I) > 3. Then, after renumbering (P;), there
exists 1 < r < s — 2 such that forI; = L0 ---n P, and I, = P, 0 --- N Py, one has that
Pi+Pj=m,1<i<r,r<j<s, and

depthg(I) = min{depthg(I;), depthg(1>)}.

We know that sdepth (S/I) > depthg(S/I) for s < 4; cf. [10,12]. In the proof of the
next theorem, we also need the following lemma.

Lemma 4.3 Ifs <4, then
sdepthg (P/I) > depthg(S/I),k=1,...,s.

Proof Assume that Py = (xi,...,x,). Let us recall the argument for sdepth (S/I) >
depthg(S/I). For s < 4, according to the proof in [12], one must verify each

sdepthg ((NjefseP)) nS;) +sdepthg, (8" /(NjesPj) N S”) > depthg (S/I).

On the other hand, from the decomposition of Pg/I in the third paragraph of this
section, it turns out also that sdepthg(Py/I) > depthg(S/I). [ |

Lemma 4.4 ([3, Theorem 1.2]) Let I be a monomial ideal of S. If bigsizey(I) =
sizeg(I), then depthg(S/I) = sizeg(I).

Lemma 4.5 If depthg(I) < 3, then sdepthg(S/I) > depthg(S/I).

Proof If depthg(I) < 2, that is depthg(S/I) <1, then, by Theorem 3.2,
sdepthg(S/I) > sizes(I) > 1> depthg(S/I).

Assume that depthg(I) = 3, that is, depthy(S/I) = 2. By [9, Theorem 3.3],
sdepthg(S/I) > depthg(S/I) provided S/I is Cohen-Macaulay of dimension 2. Then
it follows from [2, Corollary 2.2] that sdepthg(S/I) > depthg(S/I) holds for any
monomial ideal I of S with depth(S/I) = 2. The lemma follows. [ |

Theorem 4.6  Let I be a squarefree monomial ideal of S. If bigsizey(I) < 2, then
sdepthg(S/I) > depthg(S/I).

Proof If bigsizey(I) = sizeg(I), then the result follows from Lemma 4.4 and Theo-
rem 3.2. Hence we may assume that bigsizeg(I) = 2 and sizeg(I) = 1. By Lemma 4.5,
we may also assume that depth (1) > 3.

Suppose that I = Py n--- n Ps is a reduced intersection of monomial prime ideals.
We use induction on s to show that

sdepthg(S/I) > depthg(S/I),
sdepthg(Px/I) > depthg(S/I),k =1,...,s.
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We may assume that s > 4 and }.;_; P; = m. Applying Lemma 4.2, we get I; and
I, with the property that depth(I) = min{depthg(I;),depth(I)}. Renumbering
(P;) if necessary, we may assume that k < r.

According to the argument in the proof of [8, Proposition 3.4], there are a decom-
position of I as K-spaces

I=(InS)® ((x1,...,x.)NI)
and 1 < e < n satisfying

{x1,...,x.} € P;, fori=1,...,r, S =K[Xe1,...»Xn)>

depthg, (InS") = depthg(L;), depthg((xi,...,x.)N1I) = depthg(l>),
and where
InS=(PnS)n-n(P,nS)and (x1,...,x.)NI=(x1,...,%;) N Pryyn---N Py

are reduced intersections of monomial prime ideals.
On the other hand, we have decompositions of S and Py as K-spaces:

S=8 @ (x1,...,%e),
b = (PkﬂS')GB(xl,...,xe)

from which one get decompositions of S/I and Py /I as K-spaces

SII=8"J(InS)® (x1,..., %)/ ((x1,..., %) "),
P/I=(PenS)/(InS)@® (x1,.. 5% ) [ (%15, xe) N ).

Then
sdepthg(S/I) >
min{sdepthg, (S'/(InS")),sdepthg((x1,...,x)/((x1,...,x.) NI))}

and

sdepthg (Py/I) >
min{sdepthg, (P n'S")/(InS")),sdepthg((x1,...,xe)/((x1,...,x.) N I))}.

Applying induction hypothesis to the above summands, we get

sdepthg, (S'/(InS")) > depthg, (S'/(In'S"))

= depthg(S/I),
sdepthg((x1,...,%¢)/((x1,...,x.) N 1)) > depthg(S/((x1,...,%x.) N 1))
= depthy(S/LL),
sdepthg, ((Px nS")/(InS")) > depthg, (S'/(InS"))
= depthg(S/L).
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Note that, when r = 2 or s—r = 2, there are no induction hypotheses to apply; however,
the related results are known by Lemma 4.3. It follows that

sdepthg(S/I) > min{depthg(S/I;),depthg(S/I,)}

= depthg(S/I),
sdepthg(Px/I) > min{depth(S/I1), depths(S/)}
= depthg (S/I).
This completes the proof. ]
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