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Consequences
The set of composite numbers can be expressed, save for 1 and 4, as:

.{n ∈ � : n2 | n!}
The prime counting function can be expressed for all  as:n ≥ 4

π (n) =
4
3

+ ∑
n − 1

j = 3

j + 1
j { j!

j + 1} .

Discussion
The number 4, which is the smallest composite number, is exceptional

as ‘it is the only composite  that does not divide ’[2]. This is the
reason  indicates all primes and composites apart from 4. If  is used as
a measure of primeness, then  indicates that 4 is the ‘least
composite’ composite in that measure.

n (n − 1)!
C (n) C

C (4) = 2 / 3

The behaviour of  for large  can be considered through the
following plausibility argument. First, note that  is a prime number
only if  has no divisor that is a multiple of . ����� et al. [3] have shown
that the number of divisors of  grows faster than any power of  for large
. This entails that the probability that  has no divisor that is a multiple of
, which is the probability that  is prime, tends to 0 as .

C (n) n
n ≠ 4

n! n2

n! n
n n!
n2 n n → ∞
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107.17 Two curios related to lattice polygons

A lattice polygon is a planar polygon in  all of whose vertices have
integer coordinates. It is regular if its sides and angles are all equal. The
fundamental theorem in this area is:

�d

Theorem A
(i) In , the only regular lattice polygons are squares.�2

(ii) In , , the only regular lattice polygons are triangles, squares
and hexagons.

�d d ≥ 3

Theorem A is blessed with several neat proofs such as the ingenious
geometric one in [1] and the one using algebra and trigonometry in [2]. The
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latter relies on the following result, a very succinct proof of which is given
in [3]. This is reprised in [2] and in the recent article, [4].
Theorem B

If  is rational, then the only possible rational values of  are ,
, .

q cos (qπ) 0
±1

2 ±1

Curio 1
Our first curio starts with the striking construction of a regular

dodecagon given in [5] and reproduced in Figure 1.

 a

FIGURE 1

The vertices of the dodecagon are the intersection points with the lines
of the regular grid. Skipping vertices also constructs a regular hexagon,
equilateral triangle and square. Can other regular polygons be realised by
such a construction? For an -sided polygon, the triangle shown in Figure 1

would have  with  rational. In the range

, Theorem B means that the only possibilities are

with  (which is subsumed in Figure 1) and  with

, as in Figure 1. So Figure 1 is, indeed an isolated curiosity.

n

α =
π
2

−
2π
n

= π (1
2

−
2
n) cos α

4 ≤ n < ∞
1
2

−
2
n

= 0

n = 4
1
2

−
2
n

=
1
3

n = 12

Curio 2
Our second curio begins with a lovely observation from [6]: the points

whose coordinates are the six permutations of (1, 2, 3) form a regular planar
hexagon in . In what follows, the role of the underlying group is
important so, for brevity, we will say that: “the elements of the symmetric
group , thought of as points in , form a regular planar hexagon”. Clearly
the points in  lie in the plane  and, if we look down the

normal to the plane in the direction , we see the hexagon in Figure 2

with side-length  and short diagonals of length , meaning that it is
indeed regular.

�3

S3 �3

S3 x + y + z = 6

( )−1
−1
−1

2 6
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FIGURE 2: For clarity, we use have contracted the labelling of the vertices.

The alternating group  forms the equilateral triangle with vertices 123,
231, 312. The hexagon has area  and it is a nice exercise with vectors to
show that it can be realised as the mid-plane section through the cube of
side-length 2 with vertices as in Figure 3.
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FIGURE 3

What about  for ?Sn n ≥ 4
Theorem A shows that the elements of , thought of as points in , do

not form a regular planar -gon for . An alternative proof of this is to
show that  is non-planar: it follows, by embedding  in , that  is non-
planar for  as well.

Sn �n

n! n ≥ 4
S4 S4 Sn Sn
n > 4
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4

P0 : 1234

P3 : 3412 12

P2 : 4123

P1 : 2341

FIGURE 4

To do this, we show that the cyclic subgroup of  of order 4 given by
the permutations  is non-planar, Figure 4. One
way to see this is to find the volume, , of  from the 6 inter-vertex
distances, calculated using Pythagoras in Figure 4. The Cayley-Menger
determinant discussed in the Appendix shows that

S4
{1234,  2341,  3412,  4123}

V P0P1P2P3

V2 =
1

288 | |2P0P 2
1 P0P 2

1 + P0P 2
2 − P1P 2

2 P0P 2
1 + P0P 2

3 − P1P 2
3

P0P 2
1 + P0P 2

2 − P1P 2
2 2P0P 2

2 P0P 2
2 + P0P 2

3 − P2P 2
3

P0P2
1 + P0P2

3 − P1P2
3 P0P2

2 + P0P2
3 − P2P2

3 2P0P2
3

=
1

288 | | =
256
9

≠ 0.
24 8 16
8 24 16
16 16 32

Alternatively, we may readily show that the vectors 

P0P1

⎯⎯→
= ( ) , P0P3

⎯⎯→
= ( ) , P0P2

⎯⎯→
= ( )1

1
1

−3

2
2

−2
−2

3
−1
−1
−1

are linearly independent. This, together with the fact that the points of  lie
in the 3-dimensional hyperplane , means that they form
a 3-dimensional figure in . The same argument using the cyclic subgroup
given by the permutations
shows that the points of  form an -dimensional figure in .

S4
x1 + x2 + x3 + x4 = 10

�4

{123… n, 23… n1, 34… n12, … , n12… (n − 1)}
Sn (n − 1) �n

The tetrahedron in Figure 4 is a ‘humbug’ shape with two  dihedral
angles and four congruent isosceles triangle faces. It can be constructed by
bringing together two copies of the folded rhombus made from an A4-
shaped sheet of paper as shown in Figure 5.

90°
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12

� 4

FIGURE 5: Two copies of the rhombus formed from midpoints of an A4-shaped
rectangle, when folded through  along , join to form the tetrahedron in Figure 4.90° �

As an aside, we remark that Klein's 4-group can be realised as the
subgroup of 4 given by the permutations 1234, 2143, 3412, 4321. This is
also the symmetry group of a rectangle with vertices labelled 1, 2, 3, 4 and,
rather agreeably, the four permutations involved themselves form a planar
rectangle in  as shown in Figure 6.�4
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2
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2, 5

2, 5
2, 5

2)

FIGURE 6

Appendix
The Cayley-Menger determinant gives the -dimensional volume of a

simplex formed by  points  in . For , it
produces Heron's formula: for  it gives Euler's tetrahedron formula
for the volume, , of a tetrahedron. The vector cognate of the latter is the
formula , where , , . If the
matrix  has columns  then , where the elements of
are dot products. Replacing, say,  by , gives
Euler's tetrahedron formula and a good feel for the form of the general
Cayley-Menger determinant in higher dimensions, as described in [7].

n
n + 1 P0, P1, … , Pn �d (d ≥ n) n = 2

n = 3
V

V = 1
6 |a. (b × c| a = P0P1

⎯⎯→
b = P0P2

⎯⎯→
c = P0P3

⎯⎯→

A a, b, c 36V2 = |AtA| AtA
a.b 1

2 (|a|2 + |b|2 − |a − b|2)
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107.18 A two-variable approach to some standard optimisation
problems

Introduction
Problems of the following type are staples of introductory courses on

differentiation.
A solid right circular cylinder has fixed volume. Show that its
total surface area is minimised when the height is twice the
radius.

With standard notation for the attributes of the cylinder, the usual method of
solution is to use  (fixed) to eliminate  in the expression for total

surface area, . The condition  leads to

and routine algebra then identifies . In such an approach,

the pleasant minimising ratio for  appears serendipitously and almost as an
afterthought. In addition, the fact that the dual problem (of maximising the
volume of a solid cylinder of fixed surface area) is solved by the same value
of  is obscured by the algebra. This point was raised by Prithwijit De and
Des MacHale in their Note, [1]; re-reading this stimulated the reflections
that follow. Observe that we shall not formally check whether our
optimising values correspond to maxima or minima: in any specific situation
(such as the above problem), consideration of extreme cases (e.g. ,

) usually makes this clear.

πr2h = V0 h

S = 2πr2 + 2πr·
V0

πr2

dS
dr

= 0 r = 3
V0

2π

h = 3
4V0

π
= 2r

h
r

h
r

r → 0
r → ∞

An alternative approach
We will see here that a multivariable approach yields a rich insight into

this type of problem and adds to the repertoire of methods of solution.
Suppose then that  is fixed. This equation implicitly defines

 so, by the chain rule and writing , etc., we have
.

V (r, h) = V0
h = h (r) Vr = �V

�r
Vr + h′ (r) Vh = 0

Similarly, the stationary values of  occur when
.

S (r, h) = S (r, h (r))
Sr + h′ (r) Sh = 0

Eliminating  from these two equations gives what we shall refer to
as the Key Equation: .

h′ (r)
VrSh = VhSr
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