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Binary nanodroplet collisions have received increasing attention, whilst the identification
of collision outcomes and the viscous dissipation mechanism have remained poorly
understood. Using molecular dynamics simulations, this study investigates binary
nanodroplet collisions over wide ranges of Weber number (We), Ohnesorge number
(Oh) and off-centre distances. Coalescence, stretching separation and shattering are
identified; however, bouncing, reflexive separation and rotational separation reported for
millimetre-sized collisions are not observed, which is attributed to the enhanced viscous
effect caused by the ‘natural’ high-viscosity characteristics of nanodroplets. Intriguingly,
as an intermediate outcome, holes form in retracting films at relatively high We, arising
from the vibration and thermal fluctuation of the films. Due to the combined effects of
inertial, capillary and viscous forces, binary nanodroplet collisions fall into the cross-over
regime, so estimating viscous dissipation becomes extremely important for distinguishing
outcome boundaries. Based on the criterion that stretching separation is triggered only
when the residual off-centre kinetic energy exceeds the surface energy required for
separation, the boundary equation between coalescence and stretching separation is
established. Here, viscous dissipation is calculated by the extracted flow feature from
simulations, showing that the ratio of viscous dissipation to the initial kinetic energy
depends only on Oh, not on We. Because of complex viscous dissipation mechanisms,
the same boundary equation in the cross-over regime has also not been satisfactorily
revealed for macroscale collisions. Therefore, the proposed equation is tested for wide
data sources from both macroscale and nanoscale collisions, and satisfying agreement is
achieved, demonstrating the universality of the equation.
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1. Introduction

Binary droplet collisions are frequently encountered in natural and industrial processes,
for example, droplets colliding in the air or in internal combustion engines (Faeth
1977). In the last three decades, binary droplet collision dynamics has been investigated
experimentally (Jiang, Umemura & Law 1992; Qian & Law 1997; Bach, Koch & Gopinath
2004; Huang, Pan & Josserand 2019; Pan et al. 2019), numerically (Pan et al. 2019;
Chaitanya, Sahu & Biswas 2021) and theoretically (Al-Dirawi et al. 2021). Particularly, the
investigation of outcome regimes is emphasised owing to their practical significance. The
binary droplet collision is controlled by the competition of inertial, capillary and viscous
forces, the off-centre distance (χ ) between two droplet centres, and gas environments.
Therefore, Weber number (We = ρD0V2

0/γ ), representing the ratio of inertial to capillary
forces, Ohnesorge number (Oh = μ/(ρD0γ )1/2), standing for the ratio of viscous to
inertial-capillary forces, and the normalised off-centre distance (B =χ /D0) are used to
describe the collision dynamics, where ρ is the density of the liquid, D0 is the initial
diameter of droplets, γ is the surface tension, μ is the viscosity of the liquid and V0 is the
impact velocity of droplets, i.e. half of the relative velocity between droplets. However, the
construction of a three-dimensional phase diagram is extremely complex, so a We–B phase
diagram is frequently drawn to present outcome regimes in a certain gas environment,
taking Oh as a parametric variable.

As shown in figure 1, the pioneering study on outcome regimes by Qian & Law (1997)
and the current literature (Pan, Chou & Tseng 2009; Pan et al. 2019) reported a total of
six outcomes, including coalescence (CO), bouncing (BO), reflexive separation (RES),
stretching separation (SS), rotational separation (ROS) and shattering (SH). In a low-We
range, Regimes CO and BO are present. Two droplets in Regime CO contact each other
and merge into a larger one, whereas those in Regime BO do not touch each other but
instead bounce off the compressed gas cushion between them. The separation regimes
(RES, SS and ROS) take place in a high-We range but in different B ranges. Regime RES
occurs in a low-B range and represents that a merged droplet after significant spreading can
be transformed back into two individual droplets moving away from each other; however,
Regime SS takes place in a high-B range, which is indicative of significant stretching
between the two droplets and then fast separation. Regime ROS, recently proposed by Pan
et al. (2019), is similar to Regime SS but in a lower B range. In addition, the merged droplet
in Regime ROS has significant rotation instead of fast separation in Regime SS. When We
is extremely large, Regime SH appears, and the merged droplet breaks into many small
daughter droplets.

When comparing We–B phase diagrams with different Oh and gas environments, several
intriguing phenomena are found. First, with decreasing gas pressure (p), the gas cushion
becomes difficult to form so that two droplets prefer to be in direct contact with each
other, and the region of Regime BO is reduced (Qian & Law 1997). Second, increasing
Oh impedes Regimes ROS and RES; therefore, the boundaries between these separation
regimes and coalescence regime shift towards higher Weber numbers in We–B phase
diagrams (Sommerfeld & Kuschel 2016; Pan et al. 2019). This is attributed to the fact that
a strong viscous effect can lead to remarkable viscous dissipation, impeding the transition
from coalescence to these separations. Third, the boundary between Regimes CO and SS
also shows the same feature in most Oh ranges; however, intriguingly, in a special Oh
range (0.02 < Oh < 0.14), this boundary collapses into a single curve, showing an inertial
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Figure 1. (a) A phase diagram of binary droplet collisions (Oh = 0.0044 and D0 = 0.6 mm) in an atmospheric
environment (Pan et al. 2019). (b) Schematics of outcomes, including coalescence (CO), bouncing (BO),
reflexive separation (RES), stretching separation (SS), rotational separation (ROS) and shattering (SH). The
Weber numbers in the original figure of Pan et al. (2019) are four times the Weber numbers in panel (a)
because the relative velocity, 2V0, between two droplets is used by Pan et al. (2019) for calculating Weber
numbers, whereas the velocity, V0, of one droplet is considered in this work.

boundary (Al-Dirawi et al. 2021). Moreover, in this Oh range, the maximum stretching
factor (lmax) in Regime CO is not sensitive to Oh as well, indicating inertial behaviours
(Al-Dirawi et al. 2021). Because of the inertial boundary and the inertial behaviours, the
inertial regime (viscous force is ignorable compared with inertial and capillary forces) can
be defined in this special Oh range from 0.02 to 0.14. Once Oh falls below or increases
above this range, the boundary between Regimes CO and SS and behaviours in Regime CO
become viscosity dependent, and they transition from the inertial regime to the cross-over
regime (viscous force is no longer negligible).

Compared with collisions in the inertial regime (0.02 < Oh < 0.14), collisions in
the cross-over regime (Oh > 0.14) are also practically required. In internal combustion
engines, reducing droplet diameters can significantly enhance combustion efficiency. As
the diameter of an alkane (hexadecane) droplet reduces to O(μm), its Ohnesorge number
can be increased to approximately 0.26, showing that the collision of such droplets falls
into the cross-over regime. Unfortunately, despite the progress in the inertial regime
(0.02< Oh <0.14), the viscosity-dependent dynamics of collisions in the cross-over regime
(Oh > 0.14) has not been explored in detail. Owing to the enhanced viscous effect in such
a high-Oh range, Regimes RES and ROS are significantly impeded, while Regime SS
remains (Sommerfeld & Kuschel 2016). Identifying the boundary between Regimes CO
and SS becomes important for understanding outcome regimes. Nonetheless, since the
separation dynamics is no longer inertial, the viscous dissipation mechanism is altered,
rendering describing the boundary extremely challenging.

For understanding the viscous dissipation mechanism, modelling the maximum
spreading factor (βmax) is in demand, where βmax is the same as lmax at B = 0. Previous
studies frequently model βmax by establishing an energy conservation equation from the
initial state to the maximum spreading state to describe the viscous dissipation mechanism
during spreading. Because the droplet is spherical at the initial state with a velocity of V0
and forms a cylinder-like shape at the maximum spreading state with no remaining kinetic
energy, the kinetic and surface energy at these states can be easily calculated. However,
the calculation of the viscous dissipation during spreading is an extremely challenging
task because information on evolving shapes and flow fields within the spreading droplet
is additionally required. Early studies note that viscous dissipation concentrates in a
cylinder-like sub-region, located at the centre of merged droplets, with stagnation flow
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inside it, whereas viscous dissipation is negligible near spreading rims (Jiang et al. 1992;
Qian & Law 1997). On the basis of this point, Pan et al. (2009) assumed that the stagnation
flow region has a diameter of D0/2 and a thickness of hmin, and the internal velocity
gradients can be calculated by V0/(hmin/2), where hmin represents the minimal thickness,
i.e. the thickness of the merged droplet at the maximum spreading state. Their βmax model
includes both We and Re (or Oh = We1/2/Re), indicating that the model is applicable to the
cross-over regime. This model only qualitatively catches the dependence of βmax on both
We and Oh; however, it shows significant deviation from their experiment data at a larger
Oh. In contrast, Wildeman et al. (2016) claimed that instead of concentrating in the centre
part of merged droplets, velocity gradients principally occur near the entrance of spreading
rims, yielding an intriguing energy conversion feature where the stable proportion of
the initial kinetic energy converts to viscous dissipation during spreading. This viscous
dissipation mechanism implies that all binary droplet collisions are viscosity-independent
and hence fall into the inertial regime. Recent experiment studies (Planchette et al. 2017;
Al-Dirawi et al. 2021) proved that the constant proportion of viscous dissipation occurs
only in a special Oh range from 0.02 to 0.14, but the proportion increases with Oh
when Oh exceeds 0.14, indicating the transition from the inertial regime to the cross-over
regime. Nonetheless, the viscous dissipation in the cross-over regime was not theoretically
estimated by them. Therefore, the viscous dissipation mechanism needs to be satisfactorily
revealed in the cross-over regime.

Nanodroplet-based technologies are rising recently, such as nanoscale inkjet printing
(Galliker et al. 2012), the preparation of high-entropy materials (Glasscott et al. 2019)
and so forth. Especially in inkjet printing processes, the minimal diameter of droplets is
already reduced to 60 nm with an extremely high impact velocity of 250 m s−1, as reported
by Galliker et al. (2012), which shows practical requirements for studying the dynamics
of nanodroplets. Due to the occurrence of the scale effect, viscous force is enhanced at
the nanoscale (Li, Zhang & Chen 2015; Li, Li & Chen 2017; Wang et al. 2020a,b; Xie
et al. 2020; Wang et al. 2021a,b; Lv et al. 2022; Wang et al. 2022a,b). Even for the
typical low-viscosity liquid, water, the Ohnesorge number of a 10 nm water nanodroplet
can be larger than 0.14, implying that the collision of nanodroplets possibly falls into the
cross-over regime. Recently, there have been studies on the binary nanodroplet collision,
including outcome regimes and modelling βmax. Yin et al. (2021) investigated collisions
of nanodroplets in a vacuum and found that Regimes BO, RES and ROS do not take
place at the nanoscale in the tested We range from 0 to 300; as a result, Regimes CO,
SS and SH occupy most regions of the phase diagram at the nanoscale. The strongly
suppressed Regimes RES and ROS at the nanoscale accord with the macroscale feature
in the cross-over regime and hence confirm the speculation that the binary nanodroplet
collision falls into the cross-over regime. Zhang & Luo (2019) focused on head-on binary
nanodroplet collisions in a wide range of pressures from 0 to 800 kPa and found a
significant difference between macroscale and nanoscale droplets. At the macroscale,
increasing p can enlarge the area of Regime BO in a phase diagram and even cause
bouncing for head-on collisions. For instance, the bouncing for the head-on collision of
binary tetradecane droplets can take place at p = 100 kPa (Qian & Law 1997). However,
at the nanoscale, bouncing is not able to take place for head-on collisions unless the gas
pressure is increased to 270 kPa (Zhang & Luo 2019). Subsequently, Zhang & Luo (2019)
reported a new outcome regime at the nanoscale, i.e. a hole regime, which prefers to take
place in a high-We range for head-on collisions. In addition, they established a model of
βmax for head-on collisions in a vacuum, which shows relatively good agreement with
their MD data in a low-We range; however, the model is found not to be able to describe
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βmax in a high-p range because βmax is significantly reduced with increasing p at the
nanoscale. Furthermore, Zhang et al. (2021) compared collisions of nanodroplets with
diameters of 10, 50 and 100 nm, and reported that the hole regime takes place for 10 and
50 nm nanodroplets but vanishes for 100 nm nanodroplets. Instead of the hole regime,
Regime RES is observed for 100 nm nanodroplets, indicating the scale-dependent hole
regime.

Despite preliminary identification of outcome regimes, neither the regime boundaries
nor the viscous dissipation mechanism during spreading is satisfactorily described at the
nanoscale. Due to the naturally high Oh of nanodroplets, binary nanodroplet collisions
principally fall into the cross-over regime, indicating further difficulty in solving these
two issues. It should be emphasised that even at the macroscale, such key issues are not
well revealed in the cross-over regime. As a result, investigating the regime boundaries
and the viscous dissipation mechanism at the nanoscale is expected to not only fill the gap
at the nanoscale, but also contribute to the understanding of the collision dynamics at the
macroscale.

This study investigates binary collisions of nanodroplets that can be naturally considered
high-viscosity droplets, aiming to reveal the boundaries of outcome regimes and the
viscous dissipation mechanism in the cross-over regime. First, in a vacuum, binary
collisions of nanodroplets with different diameters and wide We and B ranges are tested in
a systematic and thorough way to identify outcome regimes. A scaling law is subsequently
derived to describe the boundary between Regimes CO and SS by considering the balance
between kinetic and surface energy, with its prefactor including the ratio (α) of the
viscous dissipation during spreading to the initial kinetic energy. Second, also in the
vacuum condition, the maximum spreading factor is modelled by establishing an energy
conservation equation, in which an assumption of velocity gradients is proposed with the
help of extracted velocity distributions in nanodroplets from MD simulations. Using the
model of βmax, α is obtained. Here, it needs to be emphasised that the scaling law of
stretching separation boundary and the model of βmax are expected to be valid for both
nanodroplets and high-viscosity macroscale droplets. Third, the collision of nanodroplets
is investigated at high gas pressures. In this part, Regime BO and the effect of gas pressure
on βmax are explored.

2. Simulation method

MD simulations, which are implemented by the LAMMPS (large-scale atomic/molecular
massively parallel simulation) package, are used to investigate the binary droplet collision
dynamics at the nanoscale. Figure 2 shows the schematic of the simulation system with
a dimension of 100 × 100 × 100 nm3, where periodic boundary conditions are applied in
all three directions. The two equal-sized water nanodroplets are produced by face-centred
cubic (fcc) crystals based on the corresponding density at 300 K. This work attempts
to reveal the collision dynamics of nanodroplets with diameters ranging from several
nanometres to hundreds of nanometres. To reduce the computational cost, the nanodroplets
with relatively low diameters of 6(±0.3), 8(±0.3) and 10(±0.4) nm are simulated,
containing water molecule numbers of 3782, 8968 and 17 517, respectively. This treatment
is valid because, throughout the nanoscale, nanodroplets should follow the same collision
dynamics, provided that the dominant dimensionless number group (We, Oh and B) is the
same. Here, the calculations of the dimensionless numbers (We and Oh) use the average
values of the diameters (i.e. 6, 8 and 10 nm), and these three diameters create a range of
Oh from 0.35 to 0.45.
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Figure 2. Schematic of the simulation system containing two nanodroplets, where two views for observing
the dynamic behaviour of nanodroplets are shown.

MD simulations solve Newton’s equations of motion to get the evolution of all particles
in the simulation system, including the information of position, ri = (xi, yi, zi), and
velocity, V i = (Vx,i, Vy,i, Vz,i), i.e.

mi
d2ri

dt2
= mi

dV i

dt
= F i =

∑
j /=i

−∇U(rij), (2.1)

where mi is the mass of particle i, F i is the force exerted on particle i by others, U(rij) is
the potential function to describe the interaction between particles i and j, and rij is the
distance between them.

Many water models have been developed to describe water within the framework of the
MD simulation method. Owing to different assumptions of water structure and potential,
the water described by these models has different physical properties from each other.
Moreover, almost all current water models for MD simulations can only partially reproduce
the key properties (ρ, γ and μ) (Molinero & Moore 2009). Therefore, the liquid described
by each water model can be treated as an artificial liquid. However, fortunately, for
the binary collision dynamics of equal-sized droplets at the nanoscale, when the values
of the dimensionless parameter group (We, Oh and B) remain constant, the collision
dynamics is uniquely determined, regardless of the choice of liquids. In other words, in
MD simulations, the investigation of the collision dynamics is independent of the choice
of potentials (see supplementary figure S1 available at https://doi.org/10.1017/jfm.2023.
1069). Based on this point, the mW water model is chosen to describe the water because it
is a coarse-grained model that can significantly reduce the computational cost. This water
model is expressed as

UmW(rij) =
∑

i

∑
j>i

ϕ1(rij) +
∑

i

∑
j /=i

∑
k>j

ϕ2(rij, rik, θijk), (2.2)

ϕ1(rij) = Aε

[
B
(

σ

rij

)p

−
(

σ

rij

)q]
exp

(
σ

rij − aσ

)
, (2.3)

ϕ2(rij, rik, θijk) = λtε[cos θijk − cos θ0]2 exp
(

γ σ

rij − aσ

)
exp

(
γ σ

rik − aσ

)
, (2.4)
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where A = 7.049556277, B = 0.6022245584, p = 4, q = 0, γ = 1.2, a = 1.8 and
θ0 = 109.47° are from the original Stillinger–Weber potential (Stillinger & Weber
1985), whereas the tetrahedral parameter λt (describing the strength of the tetrahedral
interaction), the energy scale (ε) and the distance scale (σ ) are tuned to λt = 23.15,
ε = 0.2684 eV and σ = 0.23925 nm for producing the mW model (Molinero & Moore
2009). According to Molinero & Moore (2009) and Jacobson, Kirby & Molinero (2014),
the properties of mW water are ρ = 996 kg m−3, γ = 66 mN m−1 and μ= 0.2837 mPa s. It
should be noted that these parameters are all calculated from MD simulations based on the
mW model. For example, considering a periodic simulation box with a slab of liquid inside
it, as shown in figure S2, the surface tension can be calculated by 1/2LN[〈 pN〉 − 〈 pT〉]
(Kirkwood & Buff 1949), where LN is the length of the simulation box in the direction
normal to the slab of liquid, and 〈 pN〉 and 〈 pT〉 are the time-averaged components of the
pressure tensors tangential ( pT ) and normal ( pN) to the slab of liquid over an equilibrium
simulation. It is worth noting that the choice of the mW model may lead to a problem
of reproducing the saturated vapour pressure of water. The mW model is proposed by
Molinero & Moore (2009) to describe the molecular interaction of water, by modifying
the original Stillinger–Weber potential that is used to model the solid and liquid forms
of silicon (Stillinger & Weber 1985). Silicon has an extremely low saturated vapour
pressure; for example, its saturated vapour pressure is not larger than 15 Pa at a super-high
temperature of 2102 K according to Stevanovic (1984); therefore, the mW water model
significantly underestimated the saturated vapour pressure of water so that the gas space
can be approximately treated as a vacuum at 300 K, as shown in figure S3(a–c). However,
such an underestimation is proven not to affect the reliability of the mW water model
for the prediction of nanodroplet collision dynamics (please see supplementary material,
figure S3). In addition, as shown in figure S4, the change in the numbers of gas molecules
during collisions are extracted for mW water, TIP3P water and LJ argon at Oh = 0.49
and We = 25, whose βmax have been proven the same (figure S1), indicating that MD
simulations can capture the evaporation during collisions and such evaporation does not
affect the collision dynamics.

At the macroscale, the choice of gas has been proven to affect the collision process
due to the different gas molecular weight and viscosity; however, Regime BO can always
take place once the gas pressure is large enough, no matter the kind of gas (Qian & Law
1997). In this work, the most focused issue in a gas environment is whether Regime BO
can still exist at the nanoscale instead of detailed effect on collision dynamics, so only the
gas pressure is concerned. Because argon (Ar) with a simple structure can result in high
computational efficiency and is gaseous at 300 K, it is chosen to fill the simulation box for
creating gas pressures. The interactions of Ar-water and Ar–Ar are both described by the
12-6 Lennard-Jones potential, expressed as

ULJ(rij) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

, rij < rcut, (2.5)

where rcut is the cut-off distance. The parameters for Ar–water and Ar–Ar interactions are
εAr−water = 0.0085 eV, σAr−water = 3.286 Å, εAr–Ar = 0.0103 eV, and σAr–Ar = 3.405 Å,
respectively, where the parameters for Ar–Ar interactions are from Yaguchi, Yano &
Fujikawa (2010). For these interactions, rcut is long enough to be set to 1 nm, as shown
in figure S5. To test the effect of ambient gas at high pressures, the droplets are set far
away from each other before collisions and the simulation system is filled with Ar atoms
to create gas pressures of 120 and 450 kPa.
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Each simulation includes three processes with a time step of 2 fs. The first process
is an equilibrium process, conducted in the NVT ensemble (canonical ensemble) with
a constant temperature of 300 K by the Nose–Hoover thermostat. In this process, two
nanodroplets are fixed at a certain distance away from each other. After the simulation is
implemented for 2 ns, the system achieves thermodynamic equilibrium and the equilibrium
process ends. The second process is an approach process running in the NVE ensemble
(micro-canonical ensemble), in which the two nanodroplets move close to each other
with a given velocity. Once the two nanodroplets start to touch each other, the second
process ends. The third process is a collision process (i.e. an outcome process), and
many outcomes are possibly observed, depending on the collision condition, such as
coalescence, separation and so forth. According to our tests, the formation of outcomes
(i.e. the maximum stretching length does not change for coalescence, separation takes
place for stretching separation and generated daughter droplets retract to spheres for
shattering) are mostly within 500 ps; therefore, the collision process for all cases is
implemented for 1 ns that is long enough to observe the whole collision process. The
calculations for the cases of 6, 8 and 10 nm nanodroplets without additional gas molecules
will require approximately 5, 10 and 16 h, respectively, on four threads on Intel Xeon
E5-2697 v4 processors. The position and velocity of each water molecule are recorded
every 1 ps for further analysis. For ensuring reliable statistics, we repeated the simulations
of collisions of two 10 nm nanodroplets at low, medium and high Weber numbers (i.e.
We = 6, 24 and 74) five times and recorded βmax, as shown in Table S1. The maximum
relative deviation from the mean value of βmax at each Weber number does not exceed
1.5 %, showing the reliable statistics of the simulations.

3. Results and discussion

3.1. Outcome regimes of collisions in a vacuum

3.1.1. Effects of We and B
In this section, the outcome regimes of binary droplet collisions in a vacuum are discussed.
At the macroscale, a total of six outcomes are reported, as shown in figure 1. However,
there are only three outcomes for binary nanodroplet collisions, including CO, SS and SH,
as shown in figure 3. As expected, due to the vacuum condition and the high-Oh effect,
Regimes BO, RES and ROS are not found in the tested We range from 1 to 110 at the
nanoscale. Here, instead of considering the formation of holes as a final outcome as done
by the previous studies (Zhang & Luo 2019), the formation of holes is regarded as an
intermediate outcome in this work, i.e. each final outcome can be further divided into two
branches by whether holes form during collisions. As a result, the final outcomes with
holes are further marked by an additional red circle, as shown in figure 3. For example, the
outcome of coalescence with holes is marked by a blue square (representing coalescence)
with an additional red circle (standing for a hole). Each outcome will be discussed in detail
with the help of its typical snapshots, as shown in figures 4 and 5. The discussion of the
outcome regimes is divided into two groups: (i) a low-B range (B < 0.2) and (ii) a high-B
range (B ≥ 0.2).

(i) Low-B range (B < 0.2)
In the low-B range, a binary nanodroplet collision is more like a head-on collision.

Figure 3 shows that as We increases, nanodroplets sequentially undergo Regimes CO and
SH, with holes forming in a high-We range. At a relatively low Weber number of 24, the
collision is in Regime CO, as shown in figure 4(a). The two nanodroplets first merge into
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Figure 3. Phase diagram of binary nanodroplet collisions with Oh = 0.35, including coalescence (CO),
stretching separation (SS) and shattering (SH). It should be emphasised that the hole is an intermediate outcome
marked by a red circle based on the final outcomes (CO, SS and SH).

a single droplet and spread to the maximum spreading diameter without residual kinetic
energy (t = 35 ps); subsequently, by releasing the surface energy stored in the deformation
at the maximum spreading state, the merged droplet retracts (t = 75 ps) and reflexively
stretches to the maximum extent against the collision direction (t = 120 ps). The reflexive
separation does not take place, and the merged droplet eventually equilibrates into a sphere
under the action of surface tension (t = 200 ps). At the macroscale, at a low Weber number
of 8 (Qian & Law 1997), the merged droplet can stretch and form a dumbbell-like shape,
i.e. the critical shape to generate Regime RES. However, at the nanoscale, although the
Weber number is increased to a larger value of 54, the dumbbell-like shape is still not
observed, as shown in figure 4(b). Eventually, no reflexive separation is found in all the
present simulation cases, as shown in figure 3. This may be ascribed to the fact that the
enhanced viscous force significantly increases the viscous dissipation during spreading.
As We continues to increase to 74, the two droplets still coalesce into a merged droplet
(t = 10 ps), but holes are generated in the retraction process (t = 60 ps), as shown in
figure 4(c). Subsequently, the holes are refilled at t = 140 ps, and the following dynamic
behaviours of the merged nanodroplet are identical to those in Regime CO without holes.

Here, it should be noted that no holes can be observed during binary droplet collisions
at the macroscale (Pan et al. 2009; Liu & Bothe 2016). Using MD simulations, Zhang
et al. (2021) have also found that the hole outcome will no longer be observed as the
diameter of droplets increases to 100 nm. Therefore, the generation of holes for binary
droplet collisions is limited to small scales. At the nanoscale, the outcome of holes is
reported not only in head-on collisions (Zhang & Luo 2019; Zhang et al. 2021) but also
in another similar process, i.e. the impact of a nanodroplet on a smooth solid surface (Li
et al. 2017; Wang et al. 2021b). Li et al. (2017) and Wang et al. (2021b) interpreted that
holes at the nanoscale are induced by the violent vibration of liquid films at relatively high
Weber numbers. However, this interpretation is possibly doubtful because the centre of the
liquid film is expected to experience the most violent vibration, but holes disorderly form
in the interior of the film instead of at the centre, as shown in figure 4(c) and snapshots in
the previous studies (Li et al. 2017; Wang et al. 2021b).
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Side view:
(a)

(b)

(c)

(d )

Front view:

0 ps 15 ps 35 ps 75 ps 120 ps 200 ps

0 ps 15 ps 35 ps 75 ps 130 ps 300 ps

0 ps 10 ps 35 ps 60 ps 160 ps 230 ps

0 ps 10 ps 20 ps 30 ps 40 ps 70 ps

Figure 4. Snapshots of head-on binary nanodroplet collisions at We = (a) 24, (b) 54, (c) 74 and (d) 109. The
numbers shown in panel (d) at t = 30 and 40 ps highlight the positions of jetted fingers. It is worth noting that
when the thickness of the peripheric rim is larger than the one at the centre of liquid films, only the outline
of the rim can be seen in the front view. To show the relative thickness between the rim and the centre of
liquid films, supplemented sliced snapshots near the beginning of forming holes for panel (c,d) are shown in
figure S6(e, f ).

Another possible mechanism, thermal fluctuations, is proposed here to interpret the
generation of holes. Moseler & Landman (2000) investigated liquid jets at the nanoscale
using MD simulations and claimed that the instability is induced by thermal fluctuations.
To prove this, they added a stochastic stress tensor to the standard NS equations, and
a stochastic lubrication equation (SLE) was derived to simulate the liquid jets at the
nanoscale. Good agreement between the MD and SLE results is found. Subsequently,
Hennequin et al. (2006) experimentally attested that thermal fluctuations can play an
important role in liquid instability at very small scales and proved that the extended
NS equations are able to describe the instability of liquid when thermal fluctuations
are dominant. Based on these studies, it can be concluded that thermal fluctuations are
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Side view:
(a)

(b)

(c)

(d )

Front view:

0 ps 15 ps 80 ps 220 ps 340 ps 400 ps

0 ps 15 ps 50 ps 120 ps 150 ps 180 ps

0 ps 15 ps 40 ps 90 ps 110 ps 135 ps

0 ps 15 ps 20 ps 35 ps 70 ps 90 ps

Figure 5. Snapshots of off-centre binary nanodroplet collisions at We = (a) 24, (b) 54, (c) 74 and (d) 109.

important for liquid instability at the nanoscale, and MD simulations can accurately
simulate the effect of thermal fluctuations. Recently, Zhang, Sprittles & Lockerby (2019)
investigated the instability of liquid films with thicknesses of 1.18, 1.57 and 1.96 nm. Their
MD results show that the films have unstable surfaces and spontaneously break up at their
internal parts due to the action of thermal fluctuations. Based on this result, as expected,
the liquid film at the maximum spreading state in figure 4(c), which has a thickness of
less than 2 nm, does have unstable surfaces due to thermal fluctuations. As a result, the
thermal fluctuations and the strong vibration at relatively large Weber numbers jointly
induce the formation of holes. This insight not only interprets why holes disorderly form in
the interior part of liquid films, but also answers why no holes generate when the diameter
of nanodroplets increases to 100 nm (Zhang et al. 2021).

After the formation of holes, hole-refilling is observed, as shown in figure 4(c). Here,
its mechanism is discussed, with the help of a series of detailed snapshots. As shown in
figure S6(a), holes are formed in the retraction stage at 50 ps. With the action of surface
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tension, the holes rapidly expand and merge into a large one from 50 to 69 ps. Meanwhile,
the outer rim has started to retract at considerable speed. At t = 69 ps, the merged hole
stops expanding because it comes up against the retracting rim. After that, the merged
hole begins to retract along with the retracting rim from 69 to 83 ps, and eventually, the
hole is completely refilled at t = 85 ps. Therefore, the hole-refilling can be attributed to the
intensely retracting rim. In addition, the hole-refilling process is also observed by other
potential models (an LJ liquid argon, the TIP3P water and the SPCE water), as shown
in figure S6(b–d). As a result, the hole-refilling does not rely on the choice of potential
models and hence is physical.

At an extremely large We of 109, the collision enters Regime SH. Figure 4(d) shows
that the merged droplet has an irregular and unstable periphery during spreading (t = 10
and 17 ps) with holes appearing and growing in its internal part (t = 36 and 40 ps).
Instead of the formed rim when holes emerge at We = 74, as shown in figure S6(e),
such an irregular and unstable periphery at We = 109 inhibits the formation of retracting
rim, as shown in figure S6( f ); as a result, the expending of holes cannot be stopped
and eventually the merged droplet shatters (t = 70 ps). Pan et al. (2009) who studied
macroscale binary droplet collisions in Regime SH have pointed out that the irregular
and unstable periphery is attributed to Rayleigh–Taylor instability. The difference in the
unstable periphery between the macroscale and the nanoscale lies in that the formed
fingers at the macroscale are lathy, but those at the nanoscale are stubby. In addition, Wang
et al. (2021b) also reported that the splash of a nanodroplet impacting a solid surface is
due to Rayleigh–Taylor instability. According to these studies, the shattering in binary
nanodroplet collisions is expected to be caused by the Rayleigh–Taylor instability as well.
Inspired by Wang et al. (2021b), the Rayleigh–Taylor instability during the fast spreading
of thin films is tested by comparing the MD results of the interfacial waves at the periphery
of nanodroplets with the theoretical results of the Rayleigh–Taylor instability. According
to the Rayleigh–Taylor instability theory developed by Allen (1975), the finger number can
be calculated by N = [kρ/(12γ )]1/2D0βmax, where k is the deceleration rate calculated by
V2

0/D0. Using βmax ≈ 3 extracted from the snapshots at 30 and 40 ps in figure 4(d), N is
theoretically obtained as 9, which shows good agreement with the MD result at 30 and
40 ps in figure 4(d), and therefore indicates that the present data are consistent with the
Rayleigh–Taylor instability theory. Further tests for nanodroplets with diameters of 6 and
8 nm are also implemented to prove this consistency, as shown in figure S7.

(ii) High-B range (B ≥ 0.2)
In the high-B range, the off-centre effect becomes significant. As shown in figure 5(a),

at a low We of 24, the higher B reduces the head-on area between the two droplets
and enhances the stretching behaviour (t = 15 ps). Subsequently, the merged droplet is
continuously stretched by the residual initial kinetic energy, with the central liquid bridge
becoming thinner (t = 80 ps), accompanied by rotational motion. After the centre of the
droplet reaches the thinnest thickness (t = 220 ps), the liquid bridge gradually grows
(t = 340 ps) until its thickness increases to the ends’ thickness of the merged droplet
(t = 400 ps), showing Regime CO. When We increases to 54, larger off-centre kinetic
energy is present, leading to the transition from Regime CO to SS. As shown in figure 5(b),
the early collision process in Regime SS, including the stretching (t = 15 ps) and the
formation of a thin liquid bridge (t = 50 ps), does not show a significant difference
from the one in Regime CO shown in figure 5(a), whereas in the later process, the
liquid bridge does not stop becoming further thinner (t = 120 ps) and finally breaks up
(t = 150 ps), generating separated daughter droplets (t = 180 ps). At a larger We of 74,
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holes generate at the centre of the merged droplet during stretching, as shown in figure 5(c).
Furthermore, the deformation of merged droplets is enhanced and the number of holes is
raised with a further increase in We, as shown in figure 5(d).

3.1.2. Modelling the boundary of the stretching separation regime
Regimes CO and SS occupy most regions of the phase diagram at the nanoscale, as
shown in figure 3, and thereby, identifying the boundary between them is important
for understanding the outcome regimes. In an early study, Jiang et al. (1992) assumed
the separation process as two short cylinders grazing and finally departing from each
other and correspondingly established a model for describing the boundary, expressed as
B = c1We−1/2[1 + c2μγ −3/2ρ1/2D1/2

0 ], where c1 and c2 are both fitting parameters. The
model can satisfactorily fit the boundary in wide collision conditions, whereas these fitting
parameters vary with the properties of liquid, indicating a lack of universality. This may
arise from the fact that the actual shape of stretching droplets greatly deviates from the
excessively constrained assumption of the cylinder shape. More recently, Al-Dirawi et al.
(2021) experimentally found that the stretching separation of merged droplets follows a
universal critical maximum stretching factor (lmax,cr) of 3.35, above which the stretching
separation can take place. They, therefore, established a model of lmax to predict the
boundary. Here, lmax is considered to be contributed by head-on and off-centre parts when
B > 0.2, expressed as lmax = βmax + s(B − 0.2), where s is an off-centre fitting function as
s = 0.049We + 2.58. The model of βmax is built based on the assumption of the constant
proportion (α) of the viscous dissipation during spreading to the initial kinetic energy
at each Oh, and s is obtained by data fitting as a We-dependent function. Substituting
lmax,cr = 3.35 in the model of lmax, the equation of the stretching separation boundary is
obtained. This model can accurately predict the boundary between Regimes CO and SS in
both inertial and cross-over regimes. In the inertial regime, the boundary is independent of
Oh, so the model with a constant value of α = 0.65 can predict the boundary at different
Oh; in the cross-over regime, because the boundary is dependent on Oh, the model can
hold only when adjusting the value of α corresponding to Oh. However, the quantitative
relationship between Oh and α has not been established. Furthermore, using the model
of lmax to predict the boundary is complex because it requires the calculation of βmax
from an implicit expression even if α is known. To simplify this, a simple scaling law
of the stretching separation boundary is directly established in this work, in which α is
incorporated into the prefactor of it. This scaling law is expected to be valid both in the
inertial regime by a constant α and in the cross-over regime by an Oh-dependent α. Despite
using Oh-dependent α in the cross-over regime, α is not extracted from experiments or
simulations but is obtained by a model of βmax in which the viscous dissipation during
spreading is directly calculated.

The scaling law of the stretching separation boundary is derived in this section. During
off-centre collision, the off-centre kinetic energy, expressed as ∼PoρD3

0V2
0 , principally

contributes to the stretching of the merged droplet, where Po = −0.5B3 + 1.5B is the
off-centre factor (for detailed information, please see Appendix A). During stretching,
the off-centre kinetic energy converts to viscous dissipation and surface energy stored
in the deformation. Once the residual off-centre kinetic energy after overcoming viscous
dissipation exceeds the surface energy required for triggering the stretching separation,
the stretching separation could take place. Since B does not affect the viscous dissipation
proportion during stretching (Al-Dirawi et al. 2021), the residual off-centre kinetic energy
can be expressed as ∼(1 − α)PoρD3

0V2
0 . The required surface energy is difficult to directly

express, but it should satisfy the following two restrictions. One is that it must increase
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Figure 6. (a,b) Phase diagrams of binary nanodroplet collisions with Oh = (a) 0.39 and (b) 0.45, where the
solid line represents the proposed scaling law. (c,d) Boundary data of the stretching separation regime from
(c) Al-Dirawi et al. (2021) and Sommerfeld & Pasternak (2019), and (d) Sommerfeld & Kuschel (2016).
(e) Values of prefactor (C) obtained from figures 3, 6(a–d) and figure S8 at various Oh, where the values
of C regressed from figures 3 and 6(a,b) are marked by black squares, and the value regressed from figure S8 is
marked by a green square. Here, the dashed line represents a constant value of 3.8, and the solid line represents
the predicted value by the scaling law of C ∼ (1 −α)−1, where the prefactor of this scaling is adopted as 1, and
α is obtained by the model of βmax, i.e. (3.20).

when B decreases, which corresponds to the fact that reducing the off-centre effect can
hinder the stretching separation behaviour. The other is that it must be infinite when
B = 0, because stretching separation is impossible to take place in head-on collision
processes, indicating that B must be larger than 0. These restrictions yield a simple scaling
assumption for the required surface energy as ∼γ D2

0/B. As a result, the scaling law for
describing the stretching separation boundary is obtained as γ D2

0/B ∼ (1 − α)PoρD3
0V2

0 .
After rearranging this scaling law, the boundary equation of the transition from Regime
CO to SS is

We = C(−0.5B4 + 1.5B2)−1, (3.1)

where C is the prefactor of the scaling law. This scaling law shows the energy balance
between the off-centre kinetic energy and the required surface energy, with the viscous
dissipation during stretching to be incorporated into its prefactor as C ∼ (1 −α)−1. When
the viscous dissipation becomes larger (i.e. α and C are both larger), a smaller ratio of
the initial kinetic energy can be used to promote the stretching for separation, leading to
an increase in the requirement for the initial kinetic energy and also to the shifting of the
critical Weber number towards high values. Using C = 4.8, (3.1) well fits the boundary
between Regimes CO and SS, as shown in figure 3.

It should be emphasised that in the inertial regime, C is a constant due to constant α;
however, in the cross-over regime, a large Oh increases viscous dissipation and hence leads
to an increased C. To validate whether this scaling law covers the stretching separation
boundary in both the inertial and cross-over regimes, another two phase diagrams for mW
nanodroplets with Oh = 0.39 (D0 = 8 nm) and 0.45 (D0 = 6 nm) from this work are shown
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Figure 7. (a) Schematics of a head-on collision process and a symmetry plane, where, due to the symmetry,
the collision can be considered as a nanodroplet impacting the imaginary symmetry plane, bringing the
convenience of modelling βmax. (b–d) Velocity contours of head-on binary nanodroplet collisions at We = 85 at
t = (a) 8, (b) 13 and (c) 18 ps. The left side shows the velocity component in the impact direction, Vz, whereas
the right side represents the velocity component in the spreading direction, Vr.

in figure 6(a,b), and an additional phase diagram for TIP4P nanodroplets with Oh = 0.58
from Yin et al. (2021) is shown in figure S8. Moreover, the experimental data on the
stretching separation boundaries from the previous studies (Sommerfeld & Kuschel 2016;
Sommerfeld & Pasternak 2019; Al-Dirawi et al. 2021) are also used to test the scaling
law, as shown in figure 6(c,d). This scaling law can satisfactorily match the stretching
separation boundaries at both the nanoscale and the macroscale. In a relatively low-Oh
range, C is almost constant; however, in a relatively large-Oh range, C increases with
Oh. To exhibit the relationship between C and Oh, the data of C versus Oh are drawn in
figure 6(e). This figure shows that C remains constant at 3.8 in the inertial regime but
increases with Oh in the cross-over regime. Nonetheless, it should be indicated that all
values of C in figure 6(a–d) are obtained by regression. As a result, the model of βmax will
be established in the next section to obtain α and hence C by C ∼ (1 −α)−1.

3.2. Modelling βmax in a vacuum
In this section, the head-on collision is discussed by modelling its feature parameter βmax
for understanding the viscous dissipation mechanism and obtaining the ratio (α) of the
viscous dissipation during spreading to the initial kinetic energy. The energy conservation
equation of spreading is frequently established by considering kinetic energy (Ek), surface
energy (Es) and viscous dissipation (Edis) from the initial state to the maximum spreading
state, expressed as

Ek,0 + Es,0 = Es,m + Edis, (3.2)

where subscripts 0 and m denote the initial state and the maximum spreading state,
respectively. Since the net flux of molecules across the symmetry plane can be safely
regarded as null, the head-on binary droplet collision can be considered as a droplet
impacting an imaginary symmetry plane. Therefore, only one of the two droplets is chosen
as the subject in modelling, as shown in figure 7(a). This treatment brings convenience to
the discussion of binary droplet collisions and the impacts of droplets on solid surfaces
later.
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The spherical shape of a nanodroplet before collision yields the expressions of Ek,0 and
Es,0 as

Ek,0 = 1
12πρD3

0V2
0 , (3.3)

Es,0 = γπD2
0. (3.4)

According to Li et al. (2017), Es,m for the nanodroplet at the maximum spreading state can
be expressed as

Es,m = πD2
0γ

(
1
3
β2

max + 2
3

1
βmax

)
. (3.5)

In a recent study (Al-Dirawi et al. 2021), it has been proven that α is constant in the
inertial regime but increases with Oh in the cross-over regime. However, the quantitative
relationship between α and Oh has not been satisfactorily established in the cross-over
regime. Herein, the viscous dissipation is estimated by integration of the dissipation
function, φ, as follows:

Edis =
∫ ts

0

∫
Ω

φ dΩ dt, (3.6)

φ = μ

(
∂vi

∂xj
+ ∂vj

∂xi

)
∂vi

∂xj
. (3.7)

Considering Vθ = 0, (3.7) is simplified as

φ = 2μ

[(
∂Vr

∂r

)2

+
(

Vr

r

)2

+
(

∂Vz

∂z

)2

+ 1
2

(
∂Vr

∂z
+ ∂Vz

∂r

)2
]

, (3.8)

where � is the volume of droplets, ts is the spreading time, i.e. the time span for one of the
two droplets from just touching the symmetry plane to attaining the maximum spreading
state, Vr is the velocity component in the spreading direction (radial direction), Vz is the
velocity component in the impact direction (axial direction), r is the coordinate of the
spreading direction (radial direction) and z is the coordinate of the impact direction (axial
direction). According to (3.8), the estimation of viscous dissipation requires information
on velocity gradients; however, the velocity distribution feature within the nanodroplet
in head-on collisions is still unknown. Zhang & Luo (2019) assumed that the velocity
gradient of ∂Vr/∂z dominates the viscous dissipation during spreading, expressed as
∂Vr/∂z = (rV0)/(RH), where R is the spreading radius and H is the height of droplets.
Unfortunately, the model of βmax from Zhang & Luo (2019) based on this velocity
assumption does not accurately fit MD data in a high-We range. This may be attributed
to the fact that the no-slip condition usually takes place when liquid flows on a solid
surface but significantly diverges from the free-spreading film in such head-on collisions.
For precisely understanding velocity distributions within droplets, velocity contours
are extracted from MD simulations by the following method. The simulation box is
divided into many units with a dimension of 0.5 × 0.5 × 0.5 nm3, and then the velocity
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components in spreading and impact directions in each unit are calculated by

Vr =

n∑
i=1

Vr,i

n
,

Vz =

n∑
i=1

Vz,i

n
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

where n is the number of molecules in a unit, and i is the ith molecule. The velocity
contours of the merged nanodroplet during head-on collision at We = 85 are shown in
figure 7(b–d). Each velocity component (Vr or Vz) shows a linear profile in its own
direction (spreading or impact direction) but does not change in the other direction. In
other words, ∂Vr/∂r (or ∂Vz/∂z) is constant, but ∂Vr/∂z (or ∂Vz/∂r) can be neglected. As
a result, the velocity gradients of ∂Vr/∂r and ∂Vz/∂z play dominant roles in the viscous
dissipation during spreading. Because of Vr|r = 0 = 0 and Vr|r = R = Vs, the distribution of
Vr within nanodroplets can be expressed as

Vr = r
R

Vs, (3.10)

where Vs is the spreading velocity at the edge of the spreading film. According to the
continuity equation,

∂Vr

∂r
+ ∂Vz

∂z
+ Vr

r
= 0, (3.11)

the expression of Vz can be derived as

Vz = −2z
R

Vs. (3.12)

Unlike the assumption of velocity gradients, ∂Vr/∂z = (rV0)/(RH), satisfying the no-slip
condition (i.e. the shear flow feature), (3.10) and (3.12), following the free-slip condition
(i.e. the extensional flow feature), can match better with the velocity contours shown in
figure 7(b–d). Combining (3.8) with (3.10) and (3.12), the dissipation function is obtained,

φ = μ
12
R2 V2

s . (3.13)

By integration with respect to space, (3.6) is transformed to

Edis =
∫ ts

0
[12πHμV2

s ] dt. (3.14)

According to the volume conservation, πD3
0/6 = πD(t)2H, H could be replaced by β(t),

expressed as

H = 2
3

D0

β2(t)
. (3.15)

Substituting (3.15) in (3.14) yields

Edis =
∫ ts

0

[
8πμD0V2

s · 1
β2(t)

]
dt. (3.16)
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Figure 8. (a–e) Comparisons between theoretical results and MD data from both current and previous
studies.

In addition, the differential of time, dt, can be replaced by the differential of the spreading
factor, dβ(t), expressed as

dβ(t) = dD(t)
D0

= 2
dR(t)

D0
= 2Vs dt

D0
. (3.17)

Rearranging (3.17) leads to

dt = D0 dβ(t)
2Vs

. (3.18)

Substituting (3.18) in (3.16), the expression of the viscous dissipation during spreading is
finally obtained as

Edis = 4πμD2
0Vs

(
1 − 1

βmax

)
. (3.19)

Combining (3.2) with (3.3)–(3.5) and (3.19) leads to

1
3
β2

max + 2
3

1
βmax

− 1 = We
12

− 4Cvf We1/2Oh
(

1 − 1
βmax

)
, (3.20)

where the velocity factor is Cvf = Vs/V0. During spreading, the spreading velocity varies
nonlinearly from a high value at the initial state to zero at the maximum spreading state.
Here, an equivalent constant spreading velocity is adopted by data fitting. The spreading
velocity (Vs) stems from the collision of droplets with the impact velocity (V0), and
therefore, it should increase with V0. In addition, the internal extensional flow feature has
been incorporated into this model, which relates the velocities in the impact and spreading
directions. Based on these clues, it is expected that the spreading velocity scales as the
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Figure 9. (a) Results of Edis varying with Ek,0 at different Oh calculated by (3.20) and the corresponding linear
fitting results. (b) Comparison between the predicted α by (3.20) and the measured α in previous experimental
studies, where the dashed line presents a constant value of α in the inertial regime and the solid line shows the
predicted α with the method shown in panel (a).

impact velocity (i.e. Cvf is a constant) in the cross-over regime. According to the data
of βmax shown in figure 8(a), Cvf is taken as 0.48. For testing the universality of this
fitting value, with Cvf = 0.48 as input, the proposed model of βmax is compared with the
simulation data not only of mW water nanodroplets with diameters from 5 to 10 nm but
also of TIP3P water nanodroplets with diameters of 8 and 10.9 nm (figure 8). To verify
whether the molecular orientation and structure have special effects on βmax, figure 8(e)
includes two series of data for both the mW water and the TIP3P water at the same Oh,
where the mW water is a monatomic model and the TIP3P is a full-atom model. Good
agreement is shown between the model and the MD simulation results for nanodroplets
with various diameters and Weber numbers based on different water models, indicating
the universality of the proposed model in the cross-over regime.

Using the proposed model of βmax, the value of Edis is calculated at various We. As
shown in figure 9(a), the predicted Edis show linear dependence on Ek,0 at each Oh,
indicating a constant value of α = Edis/Ek,0. This is consistent with the experimental
observation in the previous studies (Planchette et al. 2017; Al-Dirawi et al. 2021). By
fitting the slopes of Edis–Ek,0 curves, α at different Oh is obtained. Figure 9(b) shows the
data of α from previous studies (Willis & Orme 2003; Planchette et al. 2017; Huang, Pan
& Josserand 2019; Al-Dirawi et al. 2021) in both the inertial and cross-over regimes. In
the cross-over regime, the ratios (α) from Willis & Orme (2003) are lower than those
from Huang, Pan & Josserand (2019) and Al-Dirawi et al. (2021). To the best of our
knowledge, such differences have not been satisfactorily interpreted before. Two possible
reasons are proposed here, i.e. the non-Newtonian effect and the gas pressure effect.
However, Al-Dirawi et al. (2021) reported that HPMC and glycerol aqueous solutions
show Newtonian behaviours in their study; in addition, the silicone oils used by Willis
& Orme (2003) and Huang, Pan & Josserand (2019) can also safely be considered as
Newtonian fluids, according to the study of Vázquez-Quesada et al. (2017). As a result,
the non-Newtonian effect is excluded. Because the experiments of Willis & Orme (2003)
were conducted in a vacuum, whereas those of the other studies were in an atmosphere, the
lower α from Willis & Orme (2003) is more possibly ascribed to the gas pressure effect.

979 A25-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1069


Y.-F. Wang and others

As expected, the proposed model of βmax, which is based on binary nanodroplet collisions
in a vacuum, underpredicts the macroscale data of α in the atmosphere but shows good
agreement with the macroscale data in the vacuum (Willis & Orme (2003)). Using α

obtained by the model of βmax in the cross-over regime, the prefactor, C ∼ (1 −α)−1,
of (3.1) is also determined, which shows good agreement with the data in the cross-over
regime, as shown in figure 6(e). It should be emphasised that the value of C regressed from
the phase diagram of Yin et al. (2021), who simulated the collisions by two TIP4P water
nanodroplets, is also satisfactorily predicted by C ∼ (1 −α)−1, indicating that the collision
dynamics obtained by different potential models of liquids is the same when the value of
the dimensionless number group remains constant. This further proves that it is safe to
investigate binary nanodroplet collisions by such a coarse-grained mW water model.

Although the established model of βmax successfully covers the viscous dissipation
mechanism in the cross-over regime, the transition from the inertial to the cross-over
regime has not been properly interpreted. Here, a possible reason for the transition
is discussed based on the flow features in the inertial (Wildeman et al. 2016) and
cross-over (this work) regimes. In the inertial regime, Wildeman et al. (2016) reported a
viscosity-independent ratio of the viscous dissipation during spreading to the initial kinetic
energy for head-on binary droplet collisions. They interpreted that this specific viscous
dissipation mechanism corresponds to the flow feature that velocity gradients principally
concentrate in the entrance region of the rim. However, as shown in figure 7(b–d), when
collisions are in the cross-over regime, the velocity gradients are violent in entire droplets
instead of only in the entrance region of the rim. Therefore, the transition mechanism
from the inertial to the cross-over regime may result from the violent viscous dissipation
extending from the entrance region of the rim to the entire droplet.

Since the impact of droplets on solid surfaces is similar to head-on binary droplet
collisions, the current model of βmax in the cross-over regime is expected to be valid for
impacting nanodroplets on solid surfaces as well. It is also desired to provide insights into
the viscous dissipation mechanism during spreading on solid surfaces at the nanoscale
because there is still a debate on the flow feature of nanoscale impact dynamics. Li
et al. (2015) reported that the velocity gradient of ∂Vz/∂z = V0/H dominates the viscous
dissipation, whereas Li et al. (2017) claimed that ∂Vr/∂z = (rV0)/(RH) contributes to the
viscous dissipation. Nonetheless, both of them ignored some important velocity gradients.
Wang et al. (2020a) proposed another velocity distribution for calculating the viscous
dissipation, i.e. Vr = Vsrz/(RH) and Vz =−z2Vs/(RH), based on which no velocity gradient
is ignored. These expressions satisfy the no-slip condition. However, the no-slip condition
is significantly violated for impacting nanodroplets on solid surfaces (Koplik, Banavar &
Willemsen 1988), implying that these expressions do not hold for the nanoscale impact
on solid surfaces, and also showing the similarity between the impact on solid surfaces
and head-on binary droplet collision at the nanoscale. Therefore, it is expected that the
proposed model can also predict βmax for the impact of nanodroplets on solid surfaces.
Nonetheless, the model can fit the data on a surface with θ = 180° only when the fitting
parameter (Cvf ) is modified to 0.85, as shown in figure 10(a). This may be attributed to
the fact that solid surfaces render the viscous dissipation of impacting nanodroplets on
them larger than that of binary droplet collisions. Wang et al. (2021a) reported that when
θ > 73°, the wettability has a relatively weak effect on the maximum spreading factor
(βmax) for the impact of nanodroplets on solid surfaces. Therefore, the data of βmax on
surfaces with θ from 73° to 148° are also used to further test the proposed model here. It is
found that although the proposed model does not include the effect of contact angles,
it still shows good agreement when θ ≥ 125°, as shown in figure 10(b), with a mean
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Figure 10. (a) Comparison among the MD data for impacting nanodroplets on solid surfaces with θ = 180°,
the scaling law of βmax ∼ We1/2 with a prefactor of 0.26 and the proposed model with Cvf = 0.85.
(b,c) Comparison between the proposed model with Cvf = 0.85 and the MD data of βmax for nanodroplets
on solid surfaces with (b) θ ≥ 125° and (c) θ < 125°. In addition, an experimental data point is also considered
for comparison in panel (b).

relative error of 2.1 %. When θ < 125°, the accuracy of the proposed model is reduced
with underestimation in a low-We range and overestimation in a high-We range, as shown
in figure 10(c). This can be attributed to the following two reasons. First, in a low-We
range, stronger wettability can spontaneously increase βmax. Therefore, in the low-We
range, the proposed model slightly underestimates the value of βmax. Second, stronger
wettability may also reduce the slip effect, leading to increased viscous dissipation. This
viscous dissipation is more significant at high We. Consequently, the proposed model
overestimates βmax at high Weber numbers. The combination of these two reasons results
in a steeper dependency of βmax on We than MD data when θ < 125°. However, even if
wettability comes into play, the prediction accuracy of our model remains acceptable, with
the mean relative error only increasing to 6.4 %. To further demonstrate that the prediction
accuracy is indeed improved by modifying the estimation of viscous dissipation in the
proposed model, a recently developed nanoscale no-slip βmax model is also considered for
comparison (Li et al. 2017). Comparing this no-slip model with the MD data reveals that
the estimation of viscous dissipation has a dominant effect on both prediction accuracy and
the dependence of βmax on We, as shown in figure 10(b,c). Therefore, our proposed model,
using slip-based viscous dissipation estimation, not only improves prediction accuracy
but also further elucidates the viscous dissipation mechanism behind nanoscale droplet
impact on solid surfaces. In addition to the comparison with MD data, to further ensure
the established model is useful in physical reality, the only data point on the maximum
spreading factor of nanodroplets in a real inkjet printing process from Galliker et al.
(2012) is also taken into consideration. As shown in figure 10(b), without any further
modification, the established model can well fit the experimental value, proving the
practical significance of the established model.

It should be emphasised that, intriguingly, in the wide We range from approximately 30
to 110, the data of βmax for nanodroplets coincide with the scaling law of βmax ∼ We1/2, as
shown in figure 10(a); however, βmax ∼ We1/2 has never been observed in any experiments
for millimetre-sized droplets impacting solid surfaces (Josserand & Thoroddsen 2016).
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Here, the agreement between the prediction result of (3.20) and the scaling law of
βmax ∼ We1/2 at the nanoscale indicates that the possible condition for the occurrence
of the scaling of βmax ∼ We1/2 is the extensional flow feature. If that is not the case,
the spreading droplet will have the shear flow feature, and the velocity gradient of
∂Vr/∂z( = (rV0)/(RH)) for the shear flow will make the expression of viscous dissipation
include a term of β5

max (Li et al. 2017; Wang et al. 2020a), leading to remarkable viscous
dissipation with increasing βmax and hence making the scaling law of βmax ∼ We1/2

impossible. This argument provides a possible reason why βmax ∼ We1/2 has never
been observed for millimetre-sized impacting droplets on solid surfaces (Josserand &
Thoroddsen 2016).

3.3. Effect of ambient gas
All discussion in §§ 3.1 and 3.2 is implemented in a vacuum condition by mW droplets,
therefore under the dimensionless parameter group of We, Oh and B. However, the effect
of ambient gas is also an important parameter affecting the collision dynamics of droplets.
In previous macroscale studies (Jiang et al. 1992; Qian & Law 1997), to incorporate the
influence of ambient gases, the ambient pressure p is usually included to describe the
collision dynamics. Nonetheless, because p is not a dimensionless number, a variety of
gas types is also frequently considered to fully understand the effect of ambient gases.
On outcomes, the previous study (Qian & Law 1997) has shown that ambient gas mainly
affects Regime BO, while its effect on other regimes (CO, SS and RES) is relatively weak.
Specifically, in a wide range of ambient gas pressures, the boundaries between Regimes
CO, SS and RES only alter slightly, while the boundaries between Regime BO and other
outcomes can change dramatically. For βmax, Jiang et al. (1992) have pointed out that
the work on ambient gas by droplets is negligible compared with the viscous dissipation
inside the droplets, so it is believed that the ambient gas does not affect βmax. Another
piece of evidence is that the head-on transition between Regimes CO and RES, which is
strongly dependent on the viscous dissipation during head-on collisions, does not change
significantly over a wide pressure range of 100 to 800 kPa (Qian & Law 1997). Therefore,
the effect of ambient gas at the macroscale can be summarised. For outcomes, the ambient
gas mainly affects the boundaries between Regime BO and other regimes, depending on
both the type and pressure of the gas. For βmax, the effect of ambient gas is not significant.
At the nanoscale, the effect of ambient gas on collision dynamics is also important to
explore. Here, the discussion of ambient gas below is divided into two groups based on
gas pressures, i.e. low ambient gas pressure and high ambient gas pressure.

3.3.1. Low gas pressure
In this work, four different liquid models, including SPCE, TIP3P, mW and LJ (for
argon), have been used to create different saturated vapour environments. Among the three
water models (SPCE, TIP3P and mW), TIP3P can satisfactorily reproduce the saturated
vapour pressure of water in experiments (3.5 kPa at no curvature), while mW significantly
underestimates the saturated vapour pressure (close to a vacuum). The saturated vapour
pressure of SPCE is intermediate between that of TIP3P and mW. The LJ model creates a
saturated vapour pressure of up to 79 kPa for argon (at no curvature) (Yaguchi et al. 2010).
In addition to these scenarios, a system containing mW water droplets, filled with argon
gas, is also considered to produce a vapour pressure that is the same as the saturated
vapour pressure of water in experiments. In summary, a range of gas pressures from
approximately 0 (mW) to 79 kPa (Ar) and different types of gases (mW water vapour,
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SPCE water vapour, TIP3P water vapour, and argon vapour and gas) are tested in the
low ambient pressure range. Here, the pressure range is characterised by vapour pressures
at no curvature, but to avoid ambiguity, it is worth noting that the Kelvin effect can
occur according to the diameters of droplets. Controlling Oh and B of these droplets and
comparing their βmax over a wide range of Weber numbers, it is found that when the values
of the dimensionless numbers (We, Oh, B) are the same, they have almost the same values
of βmax, independent of the ambient gas type and ambient gas pressure, as shown in figure
S1. Therefore, for collisions at low ambient gas pressures (p < 79 kPa), it can be believed
that the collision dynamics is still governed by the dimensionless numbers (We, Oh, B).
This is also consistent with the results of macroscale studies. Therefore, the conclusions
from §§ 3.1 and 3.2 are equally applicable to the collision dynamics at low gas pressures.

3.3.2. High gas pressure
When exposed to high ambient gas pressures, nanodroplets appear to show different
dynamics from that of macroscale droplets. For macroscale collisions, Qian & Law (1997)
have reported that with increasing p, the area of Regime BO in phase diagrams increases,
and the other regimes can be significantly suppressed. This is because the correspondingly
increasing density of the gas cushion entrapped between two approaching droplets hinders
them from merging. However, the extremely small scale of nanodroplets renders the stable
gas cushion difficult to form, so the gas between them is more likely to be squeezed
out, making the bouncing almost impossible. A recent study (Zhang, Jiang & Luo 2016)
indicated that bouncing can still take place for nanodroplets if the gas pressure is increased
to 270 kPa. However, from the bouncing snapshots reported by them, the nanodroplets stop
approaching due to the existence of a gas cushion. After that, the two nanodroplets are
suspended in gas environments. In traditional bouncing, when two droplets approach each
other, the gas cushion between droplets is compressed with high pressure, resulting in the
flattening of the droplets and hence the energy conversion from kinetic energy to surface
energy; subsequently, when the initial kinetic energy is exhausted, the stored surface
energy is released to induce the bouncing of droplets away from each other. Therefore,
the bouncing reported by Zhang et al. (2016) is different from traditional bouncing. Within
this context, whether traditional bouncing can take place at the nanoscale should be further
verified.

In addition to Regime BO, the viscous dissipation during head-on collisions is also
concerned at the nanoscale. The macroscale study (Jiang et al. 1992) indicated that the
work by droplets on gas can be negligible compared with the viscous dissipation inside
the droplets. However, Zhang & Luo (2019) reported that at each We, βmax significantly
decreases with increasing p. Although they ascribed this to the gas cushion effect,
the relationship between energy dissipation and the gas cushion effect has not been
quantitatively described.

The phase diagrams at p = 120 and 450 kPa at 300 K, with ρg = 1.42 and 6.82 kg m−3,
respectively, are shown in figure 11. It is found that the increased gas pressure does not
significantly affect the boundary between Regimes CO and SS, and Regime BO still does
not occur. For nanodroplets, the gas environment may not be a continuum. According
to the kinetic theory of gases, the mean free path of gas atoms can be calculated by
λ= kBT/(21/2πd2p), and λ is obtained as 60.6 and 16.2 nm at p = 120 and 450 kPa,
respectively, where kB is the Boltzmann constant and d = 3.58 Å is the effective diameter
of argon atoms (Guggenheim & McGlashan 1960). Therefore, the Knudsen numbers
(Kn = λ/D0) for these two gas environments are 6.06 at p = 120 kPa and 1.62 at 450 kPa.
Such large values of Kn indicate that the gas environments are in the transitional flow
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Figure 11. (a,b) Phase diagrams at gas pressures of (a) 120 and (b) 450 kPa. The comparison of βmax
between MD simulation results and theoretical predictions at gas pressures of (c) 120 and (d) 450 kPa.

regime, and importantly, strong rarefaction effects emerge (Gad-el-Hak 1999). Because
stretching separation frequently takes place at a relatively high value of off-centre distance,
the viscous drag force for each nanodroplet can be approximately treated as that for a
single nanodroplet moving in gas environments. At these large Kn of 1.62 and 6.06,
the rarefaction effect has been strong, which significantly reduces viscous drag force.
Therefore, it can be expected that the reduced viscous drag does not show a remarkable
change when Kn decreases from 6.06 to 1.62. Accordingly, when gas pressure increases
from 120 to 450 kPa, the boundary between Regimes CO and SS is almost not altered, as
shown in figure 11(a,b).

Zarin (1970) and Loth (2008) proposed that when the particle Reynolds number
(Rep = ρgD0V0/μg) is lower than 45, the motion of particles (i.e. nanodroplets) is
dominated by the rarefaction effect but not by the compressibility effect. For argon,
ρg = 1.42 and 6.82 kg m−3 at p = 120 and 450 kPa, respectively; μg is not sensitive to p
when p < 10 Mpa (Trappeniers et al. 1964) and equals 22.5 μPa s (Berg & Burton 2012).
Using D0 = 10 nm and the maximum impact velocity (V0,max = 850 m s−1), the maximum
Rep is 2.58, which is far lower than 45 and shows the dominant rarefaction effect. Owing
to the large Knudsen numbers and the dominant rarefaction effect, the stable gas cushion
cannot form at the nanoscale, which is responsible for no Regime BO being observed at
the nanoscale.

Compared with Regime SS, both Regime SH and the hole regime are remarkably
suppressed, and especially Regime SH does not occur in the tested We range. More
importantly, the maximum spreading factors are also reduced when increasing gas
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pressures, as shown in figure 11(c,d). During head-on collisions, the gas molecules
between two approaching nanodroplets will be squeezed out, leading to the viscous drag
force for head-on nanodroplets being larger than that for a single nanodroplet moving in
the same gas environment, and the viscous drag force will continuously increase with the
distance between two nanodroplets decreasing. More importantly, the increase in viscous
drag force can be strengthened by decreasing Kn (Chun & Koch 2005). As a result, when
gas pressure increases from 120 to 450 kPa (i.e. Kn decreases from 6.06 to 1.62), the
reduction in the maximum spreading factor is more significant, as shown in figure 11(c,d).

In these high-pressure environments, part of the initial kinetic energy is additionally
consumed due to the viscous drag force caused by the displacement of gas molecules
by nanodroplets. Here, the consumed kinetic energy by the viscous drag force is added
to (3.20) by an additional energy term scaling with the initial kinetic energy, i.e.
Cg(ρD3

0V2
0/12), leading to the simply modified model of βmax as

1
3
β2

max + 2
3

1
βmax

− 1 = (1 − Cg)
We
12

− 4Cvf We1/2Oh
(

1 − 1
βmax

)
, (3.21)

where Cg is a fitting parameter. When gas pressure increases (Kn decreases), the displaced
number of gas molecules increases and the viscous drag force is enhanced, so Cg should
be positively related to p. Using Cg = 0.22 at p = 120 kPa and 0.27 at p = 450 kPa, the
modified model can well fit the data on collisions in high gas pressure environments. This
agreement indicates the effectiveness of the insight that the displacement of gas molecules
by nanodroplets consumes part of the initial kinetic energy and the viscous drag force
increases with decreasing Kn during head-on collisions at the nanoscale.

4. Conclusions

In this study, the binary nanodroplet collision dynamics is studied through MD
simulations, aiming to reveal outcome regimes and estimate the viscous dissipation during
spreading. Simulations are implemented for droplet diameters (6, 8 and 10 nm) in wide
ranges of We (1–109) and B (0–0.9). In addition, the effect of gas pressures (vacuum, 120
and 450 kPa) is also discussed.

In a vacuum, outcome regime diagrams are constructed in a We–B coordinate system,
where three outcomes, coalescence (CO), stretching separation (SS) and shattering
(SH), are successfully identified, whereas bouncing (BO), reflexive separation (RES)
and rotational separation (ROS), which have been extensively reported for macroscale
collisions, are not observed. This result is explained by the fact that the reduction in droplet
sizes increases Oh significantly, thereby enhancing the viscous effect. In other words,
natural high-viscosity nanodroplets are responsible for the non-observed three outcomes in
the tested We range in this work. In addition, holes are generated for the observed outcomes
in a high-We range, and, as an intermediate outcome, their formation is attributed to the
vibration-induced rupture of the nanoscale film and the action of thermal fluctuations.
The splashing rims in Regime SH are ascribed to the Rayleigh–Taylor instability, which is
proven by comparing the finger numbers between MD simulations and theoretical results.

Since Regimes CO and SS occupy most regions of phase diagrams, the focus is
subsequently placed on the development of the boundary equation between them. The
boundary equation is established based on the criterion that the residual off-centre kinetic
energy after overcoming the viscous dissipation can still be larger than the surface energy
required for triggering the stretching separation. As a result, the estimation of viscous
dissipation becomes a determinant. The flow feature extracted from MD simulations shows
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that the extensional flow assumption well fits the velocity gradient distributions in both
impact and spreading directions. Based on this, viscous dissipation is calculated, and
the ratio (α) of the viscous dissipation during spreading to the initial kinetic energy is
estimated for various We and Oh. The result shows that the ratio is independent of We and
remains constant at a fixed Oh; it increases with Oh due to the enhanced viscous effect.
Using the obtained Oh-dependent ratio, the boundary equation successfully predicts the
boundaries between Regimes CO and SS for both nanoscale and macroscale binary droplet
collisions. It is worth noting that, owing to intricate viscous dissipation mechanisms, the
relationship between α and Oh is still an issue of concern in the cross-over regime for
macroscale binary droplet collisions. Therefore, the estimation of viscous dissipation in
this work also provides a possible insight into understanding the energy conversion of
macroscale collisions when the viscous force is no longer negligible.

Another contribution of this work is that a model of the maximum spreading factor is
developed for head-on binary nanodroplet collisions based on the estimation of viscous
dissipation. The model shows good agreement with almost all available data on βmax.
In addition, based on similarity, this model is also extended to predict the maximum
spreading factor for the impact of a nanodroplet on solid surfaces. A thorough test indicates
that with a constant fitting parameter of Cvf = Vs/V0 = 0.85, the model fits MD data
on solid surfaces with θ ranging from 73° to 180° satisfactorily. More importantly, this
model also shows good agreement with the available experimental data on nanodroplets
impacting solid surfaces in an inkjet printing process.

Finally, binary nanodroplet collisions are also examined at two gas pressures of 120 and
450 kPa. The result shows that bouncing is not triggered even if the pressure increases to
450 kPa. This unexpected result indicates that there is a different pressure effect between
macroscale and nanoscale collisions. A possible cause of the absence of Regime BO is that
the rarefaction effect is dominant instead of the compressibility effect. This rarefaction
effect also contributes to the fact that the boundary between Regimes CO and SS is not
significantly altered. However, the maximum spreading factor of merged nanodroplets is
remarkably suppressed at high gas pressures because the displacement of gas molecules
by nanodroplets consumes part of the initial kinetic energy. To test this insight, a kinetic
energy term consumed by gas is added to the model of βmax. The modified model can
satisfactorily fit MD results of βmax at different pressures ( p = 120 and 450 kPa).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.1069.
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Appendix A. Calculation of the off-centre factor (Po)

The off-centre factor represents the volume of one in two droplets out of the projection
of the other one, as shown in figure 12. The values of Po at various B are obtained
numerically, as shown in figure 13. With the help of a polynomial fitting procedure, the

979 A25-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1069
http://orcid.org/0000-0003-0539-8639
http://orcid.org/0000-0003-0539-8639
http://orcid.org/0000-0002-5111-2390
http://orcid.org/0000-0002-5111-2390
http://orcid.org/0000-0002-4533-6734
http://orcid.org/0000-0002-4533-6734
https://doi.org/10.1017/jfm.2023.1069


Binary collision dynamics of equal-sized nanodroplets

Off-center
Volume,

Voo

Front view Side view

Po = Voo/Vot

V0

V0

χ

Figure 12. Front and side views of binary droplet collisions, where the off-centre volume (Voo) and the total
volume of one droplet (Vot) are shown schematically.
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Figure 13. Numerical results of Po at various B with different numerical mesh sizes (Dm/D0) of 0.004, 0.01
and 0.2, where Dm denotes the side length of each cubic mesh. Using polynomial fitting, the expression of Po
is obtained as Po =−0.5B3 + 1.5B.

expression of Po is determined as

Po = −0.5B3 + 1.5B. (A1)

This expression shows good agreement with the numerical results. Since the parameter Po
is controlled only by the off-centre parameter (B), the expression is universal.
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