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Cremona Maps of de Jonquières Type

Ivan Pan and Aron Simis

Abstract. This paper is concerned with suitable generalizations of a plane de Jonquières map to higher
dimensional space Pn with n ≥ 3. For each given point of Pn there is a subgroup of the entire Cre-
mona group of dimension n consisting of such maps. We study both geometric and group-theoretical
properties of this notion. In the case where n = 3 we describe an explicit set of generators of the group
and give a homological characterization of a basic subgroup thereof.

Introduction

Let k denote an algebraically closed field of characteristic zero, and let Pn = Pn
k de-

note the projective space of dimension n over k. A classical problem is to understand
the structure of the k-automorphism group of the function field of Pn or, equiva-
lently, its Cremona group Cr(Pn) of birational maps.

An important subgroup of Cr(Pn) is the group PGL(n + 1, k) of projective (linear)
transformations. For n = 1 one easily sees that Cr(P1) = PGL(2, k), the so-called
group of Möbius transformations over k. For n = 2 a celebrated result states that
Cr(P2) is generated by PGL(3, k) and the standard quadratic map of P2. The first
proof was given by M. Noether ([13, 15]). Unfortunately, the proof contained one
gap. A complete proof was later given by G. Castelnuovo. For an interesting account
of the history of this result, including the contributions by Castelnuovo and others,
the reader is referred to [1, Chap. 8]. Now, in his version of the theorem, Castelnuovo
gives an alternative approach by first proving that every plane Cremona transforma-
tion is a composite of de Jonquières maps, then by showing that any such map is a
composite of projective transformations and the standard quadratic map. This shows
the prominence of de Jonquières maps in the classical Cremona map theory.

A de Jonquières map (in honor of [12] where it was been first studied) is a plane
Cremona map F, say, of degree d ≥ 2, satisfying any one of the following equivalent
conditions:

• F has homaloidal type (d ; d− 1, 12d−2).
• There exists a point o ∈ P2 such that the restriction of F to a general line passing

through o maps it birationally to a line passing through o.
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• Up to projective coordinate change (source and target) F is defined by d-forms
{qx0, qx1, f } such that f , q ∈ k[x0, x1, x2] are relatively prime x2-monoids one of
which at least has degree 1 in x2.

The first alternative means that the base cluster of the map has one proper point
of multiplicity d − 1 and 2d − 2 simple, possibly infinitely near, points. The second
alternative is a “dynamical” notion emphasizing the behavior of the map with respect
to proper linear subspaces of P2. Finally, the third alternative stresses the shape of the
defining forms or, as one might say, the underlying indeterminacy locus of F, with an
emphasis on the monoid shape of intervening forms. We refer to [17, Proposition 2.2,
Corollary 2.3] for a simple geometric proof, and to [10, Proposition 2.3, Remark 2.4]
for a later argument stressing the algebraic fundamentals of plane Cremona maps.

Up to a projective change of coordinates, one can take o = (0 :0 :1), and hence the
explicit format delivered by the third alternative is(

(c(x0, x1)x2 + d(x0, x1)) x0 : (c(x0, x1)x2 + d(x0, x1)) x1 :a(x0, x1)x2 + b(x0, x1)
)
,

a, b, c, d ∈ k[x0, x1] are forms such that ad− bc 6= 0 and of degrees

deg(a) = deg(d) = deg(b)− 1 = deg(c) + 1.

Note that the fraction (a(x0, x1)x2 + b(x0, x1))/(c(x0, x1)x2 + d(x0, x1)) defines a Mö-
bius transformation in the variable x2 over the function field of P1, i.e., the subfield
of k(x0, x1) consisting of homogeneous rational functions of degree 0.

In general, the problems concerning the Cremona group have (at least) two facets:
the group theoretic questions, such as booking generators and relations of some im-
portant subgroups, and the geometric questions that deal with classifying types ac-
cording to the geometric properties or the group constituents. These two facets are
interspersed, and it often happens that the geometric results help visualize the group
structure. In this paper we deal with both aspects of the theory and, in addition,
bring up the underlying commutative algebra in terms of the ideal theoretic and ho-
mological side of the so-called base ideals of the maps.

We will deal with suitable generalizations of de Jonquières maps to higher dimen-
sional space Pn with n ≥ 3. These generalizations will be subsumed under the general
frame of maps of de Jonquières type. For n ≥ 3 we will study elements of the Cremona
group Cr(n) = Cr(Pn) satisfying a condition akin to the second alternative above.
More precisely, for a point o ∈ Pn and a positive integer m we consider the Cremona
transformations that map a general m-dimensional linear subspace passing through
o onto another such subspace. Fixing the point o, these maps will form a subgroup
Jo(m ; Pn) ⊂ Cr(n). This subgroup is our main concern in this work.

Let us focus on the case m = 1. The strategy is based on an exact sequence of
groups

1 −→ PGL(2, k(Pn−1)) −→ Jo(1; Pn)
ρ
−→ ρCr(Pn−1) −→ 1,

where ρ is a natural homomorphism that one may define by thinking of Pn−1 in
Cr(Pn−1) as the set of lines passing through o (see Section 1 for a more precise def-
inition). Hence PGL(2, k(Pn−1)) corresponds to the subgroup consisting of de Jon-
quières transformations that stabilize a general line passing through o. The elements

https://doi.org/10.4153/CJM-2014-037-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-037-3


Cremona Maps of de Jonquières Type 925

of this subgroup are the Möbius transformations over the function field k(Pn−1) of
Pn−1. Moreover, one can see that the sequence is right split (see Section1).

One does not know much about the structure of Jo(1; Pn) when n ≥ 3. For ex-
ample, it is not known whether this group together with the projective linear trans-
formations generate the entire Cremona group Cr(Pn), as happens when n = 2. It
has been proved in [16, Theorem 1] that if k = C (or, more generally, if k is an alge-
braically closed field of characteristic zero having uncountably many elements), then
any set of group generators of Cr(Pn) contains uncountably many non linear trans-
formations. In this paper we show that Jo(1; P3) itself inherits this property, and yet
we are still able to describe a complete set of families of maps that generates it.

The paper is divided into three sections. The first section is devoted to the basic
definitions and the main properties of the subgroup Jo(m ; Pn) ⊂ Cr(n).

The second section establishes the main group theoretic results of the paper, based
on information coming from the geometric side. The first result states that any F ∈
Jo(1; Pn) contracts a finite number of irreducible hypersurfaces each of which has
geometric genus bounded by a number depending on deg(F). This is then used
to deduce, provided k is an uncountable field, that given any set G of generators of
Jo(1; Pn) and an integer d ≥ 2, any subset G0 ⊂ G such that PGL(2, k(Pn−1)) is
generated by elements of G0 contains uncountably many elements of degrees ≥ d.
Finally we focus on dimension 3 and show that Jo(1; P3) is generated by its subgroup
Jo(2; P3) and by the cubic Cremona map (x0x1x2 :x2

0x2 :x2
0x1 :x1x2x3).

In the third section of the paper we expand on certain algebraic aspects of rational
maps akin to maps of de Jonquières type by stressing homological properties of a
class of homogeneous ideals resembling the base ideals of such rational maps. The
gist of this section is to take a more abstract view, with an emphasis on the ideal
theoretic and homological properties of the base locus of a rational map. For most of
the material of this part one can drop the requirement on the characteristic of k and
any additional hypothesis on the transcendence degree of k over its prime field.

Constructs of a similar type have been considered in [11] as parametrizations of
certain implicit monoid hypersurfaces (see also [6] for a related development).

One goal is to give an ideal theoretic characterization of the elements of a set
of generators of the group J0(1; Pn) (see Proposition 3.6); by this we mean making
explicit the form and free resolution of the base ideals of those generators as rational
maps.

Another goal is a homological characterization of the elements of the subgroup
J0(2; P3) ⊂ J0(1; Pn) – this is the content of Theorem 3.8. This result hinges on the
purely algebraic result of Theorem 3.7.

1 Maps of the Jonquières Type

We will be solely concerned with rational maps of Pn to itself. A rational map
F : Pn 99K Pn is defined by n+1 forms f = { f0, . . . , fn} ⊂ R := k[x] = k[x0, . . . , xn]
of the same degree d ≥ 1, not all null. We often write F = ( f0 : · · · : fn) to under-
score the projective setup. Any rational map can without lost of generality be made
to satisfy the condition that gcd{ f0, . . . , fn} = 1. In order to have a well-defined no-
tion of degree of F, we will always assume the latter condition, which means that we
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will usually be identifying the maps ( f0 : · · · : fn) and ( f f0 : · · · : f fn) for any nonzero
form f ∈ R.

Given a point o ∈ Pn, we denote by So(m, n) the Schubert cycle parameterizing
the set of m-dimensional linear subspaces L ⊂ Pn containing o; it is known to be
an irreducible variety. We will, as usual, identify a member L of the set with the
corresponding point of So(m, n).

Fix a point o ∈ Pn and an integer 1 ≤ m ≤ n− 1.

Definition 1.1 A Cremona map F of Pn is a de Jonquières map of type m with center
o if, given a nonempty open set U ⊂ Pn on which F induces a biregular morphism
onto its image, the following condition holds: L ∈ So(m, n) with L ∩U 6= ∅ implies
F(L ∩U ) ∈ So(m, n), where over-line indicates Zariski closure.

In a more informal way, the condition is that the general member of the Schubert
cycle So(m, n) is mapped onto a member of So(m, n). Note that since the union of
contracted linear subspaces by a Cremona map is contained in a finite set of hyper-
surfaces, the restriction of the Cremona map to a general member of So(m, n) is a
birational map onto its image.

The set Jo(m ; Pn) of all de Jonquières maps of type m with center o is a subgroup
of the whole Cremona group; it will be referred to as the de Jonquières group of type
m with center o. We note that, with varying terminology, this notion has appeared
elsewhere, e.g., [17, Proposition 2.1] and [7, Section 4.3] where the author called level
n−m what we call type m.

Since a general member of So(m, n) is the intersection of two general members in
So(m + 1, n), one easily deduces that Jo(m′ ; Pn) ⊂ Jo(m ; Pn) for any m′ ≥ m.

Now we focus on the case m = 1. Let H ⊂ Pn be a hyperplane not containing
the point o and let K stand for its field of rational functions over k; note that the
projective space of lines passing through o may be identified with H by associating
each such line with its intersection with H. By definition, an element F ∈ Jo(1; Pn)
is a Cremona map of Pn that acts birationally on the set of lines passing through o,
hence F induces a birational map H 99K H. By identifying H = Pn−1, we obtain a
map

(1.1) ρ : Jo(1; Pn)→ Cr(Pn−1),

which is clearly a group homomorphism.
The group Jo(1; Pn) itself was treated in [17]. Here we provide further details

about the above map.
For this, we introduce some additional notation, where we set o = (0 : · · · : 0 :1)

and H : {xn = 0}. Given forms a, b, c, d ∈ k[x0, . . . , xn−1] = Symk[H∗] of degrees
r − 1, r, r − 2, r − 1 ≥ 1, respectively, such that either a 6= 0 or c 6= 0 and satisfying
gcd(axn + b, cxn + d) = 1, one considers the following two objects:

• The element fa,b,c,d := (axn + b)/(cxn + d) ∈ k[x0, . . . , xn−1](xn).
• The rational map Fa,b,c,d : Pn 99K Pn(n ≥ 2) defined by(

(cxn + d)x0 : · · · : (cxn + d)xn−1 :axn + b
)
.
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Let us emphasize that axn +b ∈ (x0, . . . , xn−1)k[x0, . . . , xn−1][xn] always holds, while
the same holds for cxn+d except when its degree as a form is 1. We observe that Fa,b,c,d

is an element of Cr(Pn) since the first n coordinates defines the identity map of Cr(H)
up to the identification H = Proj(Symk(k[H∗])) and the last coordinate is of degree
at most 1 in the variable xn ([17, Proposition 2.2]).

Forms such as axn + b, cxn + d are called xn-monoids.

Proposition 1.2 Let ρ : Jo(1; Pn) → Cr(Pn−1) be as in (1.1). Fix o = (0 : · · · : 0 :1)
and H := {xn = 0} and let K stand for the function field of H ⊂ Pn. Then

(i) A Cremona map F ∈ Cr(Pn) belongs to Jo(1; Pn) if and only if as a rational map
Pn 99K Pn it has the form (qg0 : · · · :qgn−1 : f ), where (g0 : · · · :gn−1) defines a
Cremona map of H = Pn−1 and q, f ∈ k[x0, . . . , xn−1, xn] are relatively prime
xn-monoids at least one of which has positive xn-degree.

(ii) The group PGL(2,K) can be identified with the Möbius group whose elements
have the form fa,b,c,d.

(iii) The map fa,b,c,d 7→ Fa,b,c,d is an injective group homomorphismψ : PGL(2,K) ↪→
Jo(1; Pn).

(iv) im(ψ) = ker(ρ); in particular Fa,b,c,d maps a general line passing through the
point o = (0 : · · · : 0 :1) birationally to itself.

Proof (i) This was proved in [17, Proposition 2.2].
(ii) This is an easy exercise passing to inhomogeneous coordinates x1

x0
, . . . , xn−1

x0
.

(iii) By (i), ψ maps to Jo(1; Pn). A straightforward computation gives the compo-
sition law

Fa,b,c,d Fa′,b′,c′,d′ = Faa′+bc′,ab′+bd′,ca′+dc′,cb′+dc′ ,

which shows that ψ is a group homomorphism. For the injectivity, note that Fa,b,c,d

is the identity map if and only if b = c = 0, a = d.
(iv) Clearly ρ maps any Fa,b,c,d to the identity map of Cr(Pn−1). Conversely,

let F ∈ ker(ρ). By (i), F = (qg0 : · · · :qgn−1 : f ), for suitable xn-monoids q, f ∈
k[x0, . . . , xn−1, xn] at least one of which has positive xn-degree. But since ρ maps F

to the identity of Cr(Pn−1), (t0 : · · · :tn−1) must be the identity map. This shows that
F = Fa,b,c,d, with f = axn + b, q = cxn + d.

Let o = (0 : · · · : 0 :1) and H = {xn = 0} ⊂ Pn as before.
As a consequence of the above methods, we observe that Jo(1; Pn) has two dis-

tinguished subgroups: one is the kernel ker(ρ), which we have shown to be exactly
the subgroup of Cremona maps of the form Fa,b,c,d, for suitable forms a, b, c, d ∈
k[x0, . . . , xn−1]. Note that these fix a general hyperplane through the point o, since
the first n coordinates of the map define the identity map on the fixed hyperplane H
avoiding o. The other subgroup is Jo(n − 1; Pn) ⊂ Jo(1; Pn), whose elements map a
general hyperplane through o birationally onto a hyperplane through o (not neces-
sarily fixing the source hyperplane).

The simple geometry behind the relationship between these two subgroups asks
for a group-theoretic formulation. And in fact, there is a simple one.

https://doi.org/10.4153/CJM-2014-037-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-037-3


928 I. Pan and A. Simis

Proposition 1.3 Let PGL(n + 1, k)o be the subgroup of linear automorphisms of Pn

fixing o. Then ker(ρ) is a normal subgroup of Jo(n− 1; Pn) and the equality

Jo(n− 1; Pn) = PGL(n + 1, k)o ker(ρ)

holds.

Proof Clearly, both ker(ρ) and PGL(n + 1, k)o are subgroups of Jo(n − 1; Pn) and
the first is normal since it is normal in the larger group Jo(1; Pn). Therefore, the
product of the two subgroups is a subgroup of Jo(n − 1; Pn). Conversely, let F ∈
Jo(n−1; Pn). Expressing it as an element of Jo(1; Pn) we know from the previous part
that F = (qg0 : · · · :qgn−1 : f ), for a suitable G = (g0 : · · · :gn−1) ∈ Cr(Pn−1) and cer-
tain xn-monoids q, f . Since F maps a general hyperplane through o to a hyperplane
through o, the forms g0, . . . , gn−1 are necessarily linear forms in k[x0, . . . , xn−1].
Let A ∈ PGL(n + 1, k)o denote the inverse of the linear automorphism defined by
(g0 : · · · :gn−1 :xn). Then AF = (qx0 : · · · :qxn−1, f ), which is a map of the type
Fa,b,c,d, and hence it belongs to ker(ρ) by Proposition 1.2(iv).

2 Generators of the de Jonquières Group of Type 1

The following fact was established in [17, Proposition 2.1], for which an affine argu-
ment was given. We isolate it as a lemma for reference convenience and give a proof
in terms of the projective geometry.

Lemma 2.1 Consider the previous group homomorphism Jo(1; Pn)
ρ−→ Cr(Pn−1),

whose kernel is identified with PGL(2, k(Pn−1)) by Proposition 1.2. Then there is a map
σ : Cr(Pn−1) → Jo(1; Pn) such that ρ ◦ σ is the identity of Cr(Pn−1). In particular, ρ
is surjective and Jo(1; Pn) is isomorphic to the semi-direct product PGL(2, k(Pn−1)) o
Cr(Pn−1).

Proof A splitting map σ is of course not uniquely defined. We choose one such
map σ : Cr(Pn−1)→ Jo(1; Pn). Given t := (t0 : · · · :tn−1) ∈ Cr(Pn−1), let σ(t) be the
rational map of Pn defined as follows:

σ(t) = (x0t0(x) :x0t1(x) : · · · :x0tn−1(x) :t0(x) xn),

where x = {x0, . . . , xn−1}. It is clear that σ(t) ∈ Jo(1; Pn) by appealing to Proposi-
tion 1.2(i) with G = (t0(x) : · · · :tn−1(x)), q = x0 and f = t0(x) xn.

Note that if t′ = (t ′0 : · · · :t ′n−1) ∈ Cr(Pn−1) has degree r and t◦t′ = (s0 : · · · : sn−1),
then

σ(t) ◦ σ(t′) = σ(t)
(

x0t ′0(x), . . . , x0t ′n−1(x), xnt ′0(x)
)

=
(

xr+1
0 s0(x) : · · · :xr+1

0 sn−1(x
)

:xr
0xns0(x))

=
(

x0s0(x) : · · · :x0sn−1(x) :xns0(x
)

)

= σ(t ◦ t′).

By definition of the map ρ : Jo(1; Pn)→ Cr(Pn−1) it is clear that ρ ◦ σ is the identity
map of the group Cr(Pn−1).
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We proceed to elucidate further the geometric behavior. For this, recall that a
rational map F : Pn 99K Pn contracts a subvariety V ⊂ Pn provided the restriction of
F to an open dense subset of V is well defined and its image has dimension strictly
less than dim V . It is known that if F contracts an irreducible hypersurface V ⊂ Pn,
then the defining equation of V is a factor of the Jacobian determinant of the forms
defining F.

If V ⊂ Pr is an irreducible projective variety of dimension m, the geometric
genus pg(V ) of V is the maximal number of linearly independent global differential
m-forms on some (then all) desingularization of V ; if V is a smooth hypersurface,
then pg(V ) =

(
`−1
r−1

)
. In general, writing `−1 = s(r−m)+e, where 0 ≤ e ≤ r−m−1,

one has the so-called Castelnuovo–Harris bound for the geometric genus of V (see
[9]):

pg(V ) ≤
(

s

m + 1

)
(r −m) +

(
s

m

)
e.

Proposition 2.2 Any F ∈ Jo(1; Pn) contracts a finite number of irreducible hypersur-
faces, each of which has geometric genus bounded by a number depending on deg(F).

Proof Let F ∈ Jo(1; Pn) be a de Jonquières map of type 1. By Proposition 1.2(i)
there exists G = (g0 : · · · :gn−1) ∈ Cr(Pn−1) such that

(2.1) F = (qg0 : · · · :qgn−1 : f ),

for xn-monoids q = cxn+d, f = axn+b, for suitable forms a, b, c, d ∈ k[x0, . . . , xn−1],
with either c 6= 0 or a 6= 0, and gcd(q, f ) = 1 (equivalently, ad − bc 6= 0); set
deg G = deg F− t , where t = deg(q) with 1 ≤ t ≤ deg F.

Note that F maps the hyperplane xn = 0 birationally onto a hypersurface. We
deduce that F is a local isomorphism at a point p ∈ Pn if and only if p is not a

zero of (ad − xdeg F−t
n bc)q Jac(G), where Jac(G) is the Jacobian determinant of the

set {g0, . . . , gn−1}. Indeed, for p belonging to the open set {xn = 1}, if q(p) 6= 0,
then that map is not a local isomorphism at p if and only if it is a zero of the Jacobian
determinant of the set {g0, . . . , gn−1, f /q)}, i.e., a zero of (ad− bc) Jac(G). Then the

reduced hypersurface J(F) of equation (ad − xdeg F−t
n bc)q Jac(G) = 0 has degree at

most t2(deg F− 1)n(deg G− 1) ≤ n(deg F)2(deg F− 1)2.
Now let V ⊂ Pn denote an irreducible hypersurface contracted by F. One knows

that V ⊂ J(F). Then the assertion follows by using the Castelnuovo–Harris bound
for V .

Theorem 2.3 Assume that k is uncountable e.g., k = C. Let G be a set of generators
for Jo(1; Pn) and let d ≥ 2. Then any subset G0 ⊂ G such that PGL(2, k(Pn−1)) is
generated by elements of G0 contains uncountably many elements of degrees≥ d.

Proof First note that for every `, and every irreducible smooth hypersurface Γ ⊂
Pn−1 of degree `, we can construct an element of ker(ρ) ⊂ Jo(1; Pn) of degree ` + 1
following the recipe in (2.1). Take G to be the identity map, q ∈ k[x0, . . . , xn−1] to
be a defining equation of Γ, and f = axn + b, with a 6= 0 .
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Recall that if ` > n, then two smooth hypersurfaces Γ1,Γ2 ⊂ Pn−1 of degree `,
which are birationally equivalent, are necessarily biregularly so. This is because the
canonical class of such a hypersurface is ample (cf. [4, Thm. 0.2.1]). In particular,
if Γ1 and Γ2 are not isomorphic, then Γ1 × P1 and Γ2 × P1 are not birationally
equivalent by Lüroth’s Theorem.

Since the moduli space of smooth hypersurfaces of degree ` in Pn−1 has positive
dimension, there are uncountably many such hypersurfaces that are pairwise noniso-
morphic. We deduce that for any ` > n there exists a family A` ⊂ Jo(1,Pn) with the
following properties:

• A` contains uncountably many elements.
• If F ∈ A` then deg(F) = ` + 1 and F ∈ ker(σ).
• If F1,F2 ∈ A`, then there are irreducible components V1 ⊂ J(F1) and V2 ⊂

J(F2), which are not birationally equivalent. Indeed, we can choose Vi ⊂ Pn to
be a cone, with vertex o, over a smooth hypersurface Γi ⊂ {x0 = 0} = Pn−1 of
degree `, then Vi is birationally equivalent to Γi × P1.

It follows from [16, Lemma 4] that if G1 is a subset of Cr(Pn) and if F ∈ Cr(Pn)
is written as a product of elements in G1, then every hypersurface contracted by F is
birationally equivalent to a hypersurface contracted by some element in G1.

Suppose that there exist an integer d ≥ 2 and a subset G0 ⊂ G such that G0

contains at most countably many elements of degree≥ d. Now every member of such
a countable sequence of elements of degrees de := d+e, e = 0, 1, . . . , contracts a finite
number of hypersurfaces. We then deduce that for any ` > n, an uncountable subset
A
′

` ⊂ A` is generated by elements of degree ≤ d belonging to G0. This contradicts
Proposition 2.2, since it suffices to take ` large enough in order to obtain elements in
A
′

` that contract a hypersurface with geometric genus larger than the stated bound.

We now turn to the question of giving explicit families of maps that together gen-
erate Jo(1; Pn). Since Jo(1,Pn) is isomorphic to PGL(2, k(Pn−1)) o Cr(Pn−1), it suf-
fices to find generators for the two factors. In the case where n > 3, however, this ap-
proach does not help, since we do not know a workable set of generators of Cr(Pn−1).
On the other hand, since Cr(P2) is sufficiently familiar, we can make these generators
explicit for n = 3. For this, recall the generation of the Möbius group PGL(2,K),
where K is an arbitrary field, by the elements defined by matrices of the following
types (

α 0
0 1

)
,

(
1 β
0 1

)
,

(
0 1
1 0

)
,

where α, β ∈ K, α 6= 0. These three types of matrices are often called elementary
Möbius maps over K, generating, respectively, the torus K∗, the additive group K, and
the order 2 cyclic group defined by the “inversion” t 7→ 1/t .

We denote by s = (x1x2 :x0x2 :x0x1) the so-called standard quadratic plane Cre-
mona map.
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Proposition 2.4 The group Jo(1; P3) = PGL(2, k(P2)) o Cr(P2) is generated by the
elements 1o s, 1o t, and f o 1, where s is the standard quadratic plane Cremona map,
t ∈ PGL(3, k), and f ∈ PGL(2, k(P2)) is an elementary Möbius map.

Proof The result is immediate from the above prolegomena on the generation of the
Möbius group and the Noether–Castelnuovo Theorem on the generation of Cr(P2)
by the standard quadratic transformation and by PGL(3, k).

An internal description of a set of generators of Jo(1; P3) as a subgroup of Cr(P3)
will be a consequence of Proposition 2.4, through the required interpretation. We
can restate the proposition in the following compact form.

Theorem 2.5 The group Jo(1; P3) is generated by a set of generators of Jo(2; P3) and
the cubic Cremona map

(2.2) T3 = (x0x1x2 :x2
0x2 :x2

0x1 :x1x2x3).

Proof We have T3 = σ(s) = 1os, where s is the standard quadratic map of Cr(P2).
On the other hand, any t ∈ PGL(3, k) = Aut(P2) is defined by three independent

linear forms `0, `1, `2 ∈ k[x0, x1, x2]. Its image by σ is

1 o t = (x0`0 :x0`1 :x0`2 :x3`0),

which has degree at most 2 (actually, equal to 2, provided `0 6= αx0 for α ∈ k). Note
that 1 o t belongs to Jo(2; P3).

Finally, we know that the PGL(2, k(P2)) is identified with ker(ρ) ⊂ Jo(2; P3)
(Proposition 1.3).

To close the section, we state yet another result individualizing further the set of
generators into some explicit families.

For this, we consider the set T22 of Cremona maps of P3 of degree 2 with inverse
of degree 2. We consider the usual action of PGL(4, k)× PGL(4, k) on T22,

(2.3) (T1,T2) · F = T1FT−1
2 .

One knows from [18, Prop. 2.4.1, Thm. 3.1.1] that T22 is an irreducible variety of
dimension 26 with 7 orbits under the action (2.3). It can be seen that any F ∈ T22

admits points o1, o2 ∈ P3 such that F transforms a general plane going through o1

in a plane going through o2. Up to projective transformations, every orbit meets
Jo(2; P3), and also ker(ρ) ⊂ Jo(2; P3) by Proposition 1.3.

Considering the induced action of PGL(4, k)o × PGL(4, k)o on ker(ρ) ∩ T22, one
has the following lemma.

Lemma 2.6 Any orbit of ker(ρ) ∩ T22 under the action of PGL(4, k)o × PGL(4, k)o

is the restriction to ker(ρ) of an orbit of T22 under the action of PGL(4, k)× PGL(4, k).
In addition, every such orbit of ker(ρ) ∩ T22 contains involutions.

Proof Let O ⊂ T22 be an orbit under the action of PGL(4, k) × PGL(4, k). We
know that O ∩ ker(ρ) 6= ∅. To prove the first assertion it suffices to show that
F,G ∈ ker(ρ) implies T,T′ ∈ PGL(4, k)o for F,G ∈ O and T,T′ ∈ PGL(4, k) such
that TFT′ = G.
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The linear system associated with an element in T22 is defined by smooth quadrics
containing a conic C of rank r, where r ∈ {1, 2, 3}, and going through a unique
“special” point p that either does not belong to the conic plane or p ∈ C and the
tangent plane at p of a general member in that linear system is constant and does not
contain C . In particular, such an element in T22 is not defined (only) along C ∪ {p},
and if it belongs to PGL(4, k)Jo(1; P3), then p = o.

Let L ' P1 be a line in P3. If L intersects the open set on which F is injective,
the restriction of F ∈ ker(ρ) ∩ T22 to L induces a biregular map onto the image
ν : P1 → P3. Since F is defined by quadratic polynomials, then ν∗OP3 (1) = OP1 (n)
with n ∈ {1, 2}. We have n = 1 if and only if all these polynomials vanish at a point
p′ ∈ L; in this case the point p′ is the special point associated with F as element in
T22, that is, p′ = o.

By applying this argument to lines of the form L = T′(Lo), where Lo is a general
line passing through o, and taking into account that G maps Lo birationally onto a
line of the same type, we deduce that the special point of TF is o, hence T′(o) = o.
By symmetry the same holds for T−1(Lo) and (T′)−1F−1, hence T(o) = o.

This proves the first assertion. For the second one we may use the normal forms
obtained in [18, Thm. 3.1.1] or draw upon the content of [19, Cor. 5.3] (also [19,
Thm. 5.11]).

We now deduce the following theorem.

Theorem 2.7 The group Jo(1; P3) is generated by the cubic Cremona involution T3,
seven involutions of degree 2, generators for PGL(4, k)o, and the Cremona maps of degree
≥ 3 coming from elementary Möbius maps in PGL(2, k(P2)).

3 Generalized de Jonquières Ideals

In previous sections we focused on the group theoretic and geometric properties of
certain Cremona maps. As we have seen, these maps admit a very special form in
terms of their defining coordinates. In this section we take a more abstract view of a
map of de Jonquières type, with an emphasis on the ideal theoretic and homological
properties of the base ideal thereof.

Quite generally, let there be given a rational map

G = (g0 : · · · :gn−1) : Pn−1
k 99K Pn−1

k ,

where gi ’s are forms of degree d ≥ 1 in the polynomial ring

R := k[x] = k[x0, . . . , xn−1].

Write I := (g0, . . . , gn−1) ⊂ R for the corresponding base ideal. Consider the flat
extension S := k[x, xn] = R[xn] = k[x0, . . . , xn−1, xn], where xn is a new indetermi-
nate. Let q, f ∈ S be additional forms of degrees d ≥ 1 and D := d + d, respectively,
where d is arbitrary. We assume throughout that q and f are relatively prime.

Definition 3.1 The rational map F := (qg0 : · · · :qgn−1 : f ) : Pn 99K Pn will be
called a map of (q, f )-type with underlying map G.
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The corresponding base ideal J := (qI, f ) ⊂ S will also be called a (q, f )-ideal
(with underlying ideal I).

These rational maps admit a fairly structured homological behavior.

3.1 The Homology of a Map of (q, f )-type

We refer to [3] or [8] for the basic homological notions used in this and subsequent
parts.

Let S be as above and let J ⊂ S stand for a homogeneous ideal. The S-module
S/ J has a graded free resolution of finite length ([8, Section 1.10]). Such a resolution
of minimal length is essentially unique, and its length is the homological dimension
of S/ J, denoted hd(S/ J). This number is an upper bound for the codimension of J.
The ring S/ J is said to be Cohen–Macaulay if the two numbers coincide. In this case
the ideal J is said to be perfect. (We observe that these notions are definable in more
general contexts, but the present ones suffice for our purpose.)

We write a minimal graded free resolution as an exact sequence

0→ Fr

ψr

−→ Fr−1 · · ·
ψ2

−→ F1

ψ1

−→ F0 −→ S/ J → 0,

where Fi is a free graded module. The maps ψi are homogeneous of degree 0. Typ-
ically, Fi '

⊕si

j=1 S(−Ci j), where si is the rank of Fi and Ci j are the shifts needed to
make of degree 0 the corresponding map of the resolution.

A set of minimal generators of the submodule Im(ψ1) is called a set of minimal
syzygies of S/ J. Writing ψ1 in matrix form, the column vectors corresponding to
these generators are the (minimal, generating) relations of a set of minimal genera-
tors of J.

Throughout we will freely draw on these notions without further ado.
We keep the notation as in the beginning of the section.
Let I ⊂ R = k[x0, . . . , xn−1] ⊂ S = R[xn] be an ideal generated by forms g =

{g0, . . . , gn−1} of degree d ≥ 1. Let

· · · →
m1⊕
j=1

R(−a1 j)
ϕ
−→

n⊕
i=0

R(−d)
g
−→ R −→ R/I → 0,

· · · →
s1⊕

j=1
S(−C1 j)

ψ
−→

s⊕
j=1

S(−C j)
π
−→ S −→ S/IS : f → 0

stand for minimal graded free resolutions of R/I and R/IS : f , over R and S respec-
tively, from which we trivially derive minimal graded free resolutions of S/qIS and
R/q(IS : f ) over S:

· · · →
m1⊕
j=1

S(−a1 j − deg(q))
ϕ1=ϕ
−−−→ S(−(d + deg(q)))n

q g
−→ S→ S/qIS→ 0,

· · · →
s1⊕

j=1
S(−C1 j − deg(q))

ψ1=ψ
−−−→

s⊕
j=1

S(−C j − deg(q))
q π
−→ S→ S/q(IS : f )→ 0.
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Shifting the second of these resolutions by−(d + deg(q)), one obtains a map of com-
plexes, where the vertical homomorphisms are also homogeneous of degree 0 in-
duced by multiplication by f on the rightmost modules:

··
·

//⊕ m
i

j=
1

S(
−

a i
j
−

d
)

// ·
··

ϕ
// S

(−
(d

+
d

))
n

// S
// S
/q

IS
// 0

··
·
//⊕ s i j=

1
S(
−

C
ij
−

(d
+

2d
))

//

c i
(f

)

OO

··
·

ψ
//⊕ s j=

1
S(
−

C
j
−

(d
+

2d
))

//

c(
f)

OO

S(
−

(d
+

d
))

//

f

OO

S

q(
IS

:f
)(−

(d
+

d
))

//

f

OO

0

where we have written d := deg(q) for editing purposes.

Proposition 3.2 The mapping cone of the above map of complexes is a graded free
resolution of the ideal (qI, f ) of (q, f )-type with underlying ideal I. Moreover, if

hd(S/q(IS : f )) ≤ hd(R/I)− 1

(e.g., if f ∈ IS and I has codimension≥ 2), then hd(S/(qI, f )) ≤ hd(R/I).
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Proof This result was essentially proved in [11]. This case only requires minor
changes.

We draw attention to the syzygy matrix of the generators of (qI, f ), which has the
form

Ψ =

(
ϕ c( f )
0 −qπ

)
.

Here ϕ denotes a syzygy matrix of the given set of generators of I, while π : Ss �
IS : ( f ) stands for a surjective S-module homomorphism based on the given homo-
geneous generators {c1, . . . , cs} ⊂ S of IS : ( f ), and c( f ) : Ss −→ Sn+1 is the induced
content map whose j-th column vector gives the coefficients of f c j as a combination
over S of the generators of I.

We will write D := deg( f ) = d + d.

Example 3.3 Suppose that f ∈ IS. Then π is the identity map of S and the content
map c( f ) : S→ Sn+1 is represented by one single column. A graded free resolution of
(qI, f ) has the form

0→ Fr −→ · · · −→ F2 −→ F1 ⊕ S(−(D + d)) −→ Sn+1(−D) −→ S,

where 0 → Fr → · · · → F2 → F1 → Sn(−D) → S is a graded free resolution of qIS
over S with suitable self-understood shifts.

Two important cases emerge as follows.

3.1.1 Hilbert–Burch ideal of (q, f )-type

If I is a codimension 2 perfect ideal, then so is (qI, f ). Namely, a graded free resolu-
tion of (qI, f ) is

0→
(⊕

j
S
(
−(d + d j)

))
⊕ S(−(D + d)) −→ Sn+1(−D) −→ S,

where 0→
⊕

j S(−d j)→ S(−d)n → S is a graded free resolution of IS.
We also call these ideals Hilbert–Burch ideals because they satisfy the Hilbert–

Burch theorem, by which they are generated by the maximal minors of the corre-
sponding matrix of syzygies ([8, Theorem 20.15]).

For convenience we introduce the following definition.

Definition 3.4 We will say that a Cremona map is Cohen–Macaulay if its base ideal
J ⊂ S is perfect (i.e., S/ J is Cohen–Macaulay).

We often say that a Cremona map is Hilbert–Burch if it is Cohen–Macaulay of
codimension 2. The Cremona map of degree 3 in (2.2) falls within this class: it is
based on the standard plane quadratic Cremona map, which is Cohen–Macaulay of
codimension 2.

Remark 3.5 The classification of codimension 2 Cohen–Macaulay Cremona maps
seems to be largely unknown. If n − 1 = 2, i.e., for plane Cremona maps, this
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property is equivalent to requiring that the base ideal be saturated. It has been proved
in [10, Theorem 1.5] that a plane Cremona map of codimension 2 and degree at most
4 is Cohen–Macaulay. This is false for degree ≥ 5, and the classification gets harder
and harder as the degree increases.

3.1.2 Almost Koszul Ideal of (q, f )-type

This is the case where I is generated by a regular sequence (necessarily of degree 1),
which is resolved by the Koszul complex on the elements of the regular sequence. The
graded free resolution of (qI, f ) has the form

0→ S(−(n+d))→ · · · → S(−(3+d))
(

n
3

)
→ S(−(2+d))

(
n
2

)
⊕S(−(D+d))→ Sn+1(−D)→ S.

The class of these maps and the class of Hilbert–Burch ones are quite apart. In-
deed, the only Cremona maps of de Jonquières type that are both Cohen–Macaulay of
codimension 2 and based on a regular sequence are the classical plane de Jonquières
maps (thus forcing n = 2).

Infringing our notation for a minute, writing d := deg(q) + 1 = d + 1, the graded
free resolution of an almost Koszul Cremona map (i.e., based on a complete intersec-
tion) has the form

0→ S(−(d + n− 1))→ · · · → S(−(d + 2))(n
3)

→ S(−(d + 1))(n
2) ⊕ S(−(2d− 1))

ϕ
−→ Sn+1(−d)→ S.

3.2 Inverse Results

From the previous subsection we transcribe the relevance of the two discussed special
classes of ideals of (q, f )-type in the following condensed result.

Proposition 3.6 The de Jonquières group Jo(1; P3) is generated by de Jonquières maps
of Hilbert–Burch type and of almost Koszul type.

In this part we will reverse our considerations by assuming a resolution format
is given from which we wish to deduce the nature of the ideal. Unfortunately, due
to the difficulty in classifying the plane Cremona maps with Cohen–Macaulay base
ideals, it becomes hard to recover which elements of Jo(1; P3) are determined by the
minimal free resolution of the respective perfect base ideals. In the subsequent part
we will find a satisfactory result for the case of almost Koszul maps.

3.2.1 Homological Characterization

We will continue to write d for the degree of the generating forms.
Thus, let S = k[x0, . . . , xn] be a standard graded polynomial ring over a field k,

where n ≥ 3, and let J ⊂ S denote a homogeneous ideal of codimension at least 2,
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having a minimal free graded resolution of the form

(3.1) 0→ S(−(d+2))
ψ
−→ Sn(−(d+1))⊕S(−(2d−1))

ϕ
−→ Sn+1(−d) −→ J → 0.

Clearly, for such homological dimension, J is saturated (i.e., Jsat := J : (x)∞ = J)
and d ≥ 2. Moreover, if n = 3, then J has codimension at most 2. In fact, otherwise
J would have codimension at least 3, hence of codimension exactly 3, because the
projective dimension is 3. Then S/ J would be Cohen–Macaulay, hence Gorenstein,
because the Cohen–Macaulay type is 1 ([3, Theorem 3.2.10]). But this is nonsense
since any (homogeneous or local) Gorenstein ideal of codimension c ≥ 3 that is not
a complete intersection is minimally generated by at least c + 2 ≥ 5 elements.

Thus, J has codimension 2 if n = 3. We assume throughout that n = 3. Recall that
the unmixed part Jun of an ideal J ⊂ S is the intersection of its primary components
of minimal codimension and that J is said to be unmixed if Jun = J.

Theorem 3.7 Let n = 3 and let J ⊂ S denote an ideal of codimension 2 having
a minimal free resolution as in (3.1). If d = 2, we assume, moreover, that J is not
unmixed.

(i) S/ J has a unique associated prime of codimension 3 and, moreover, this prime is
generated by the entries of ψ.

(ii) Up to a linear change of variables and elementary row operations one has

ψ =


x0

x1

x2

0

 , ϕ =


−q0

K −q1

−q2

0 0 0 q

 , J = (qx0, qx1, qx2, q0x0 + q1x1 + q2x2),

for suitable forms q0, q1, q2, a ∈ S of degree d − 1, where K is the Koszul syzygy matrix
of the regular sequence x0, x1, x2; in particular, Jun = (q, q0x0 + q1x1 + q2x2), a complete
intersection of degree (d− 1)d.

Proof Let us first assume that d ≥ 3. Then 2d − 1 ≥ d + 2, hence we can assume
that the last entry in ψ vanishes. Since the remaining entries are linear and generate
an ideal of codimension ≥ 3 by the acyclicity criterion of Buchsbaum–Eisenbud ([8,
Theorem 20.9]), then they form a regular sequence of linear forms. By a change of
variables, we may assume that the entries of ψ are x0, x1, x2, 0. Consider the 4 × 3
linear submatrix L of ϕ. Its rows are Koszul relations of x0, x1, x2, therefore it has
rank at most 2. Then clearly its rank is exactly 2, since ϕ has rank 3. Therefore, we
can write, up to elementary row operations,

ϕ =


−q0

K −q1

−q2

0 0 0 q

 ,

where K denotes the transposed Koszul syzygy matrix of x0, x1, x2. Note that all the
operations so far have changed the entries on the right most column of ϕ, but not
their degrees (= d− 1).
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But this immediately implies that the columns of K are syzygies of say, the first
three minimal generators of J. This implies that the latter have the form px0, px1, px2,
for some form p ∈ S of degree d− 1. This already proves the assertion in (i), namely,
since p /∈ J by degree consideration, the prime ideal P = (x0, x1, x2) is an associated
prime of S/ J. Moreover, by a well-known fact (see, e.g., [8, Corollary 20.14(a)]) this
is necessarily the only associated prime thereof of codimension 3.

To complete the proof of (ii) it remains to show that we can assume p = q, and the
fourth minimal generator of J is of the stated form. Let N denote, say, the submatrix
of ϕ consisting of the three rightmost columns, which we may clearly assume has
rank 3. Recall that, up to order and signs, the set of 3 × 3 minors of N divided by
their gcd coincide with the given set of minimal generators of J on which (3.1) is
based. This fact is well known and follows by dualizing (3.1) into S to get

0→ J∗ ' S −→ S4(d)
ϕt

−→ S3((d + 1))⊕ S((2d− 1)),

from where follows that the entries of the vector generating the image of S → S4(d)
are the maximal minors of the transpose of N divided by their gcd.

In this case, by the explicitness of N, we immediately see that this gcd is x0, so the
determinant of −x0 0 −x2

0 −x0 x1

q2 q1 q0

 ,

further divided by x0 gives the required expression up to signs adjustment. To verify
that p can be taken to be q, one inspects easily the other 3-minors.

The last statement in (ii) is obvious, since localizing at any minimal prime of codi-
mension 2, a variable among x0, x1, x2 becomes invertible.

We now consider the case d = 2. Our starter fails right at the outset, since
there are in fact unmixed ideals with the given resolution shape, e.g., the classical
J = (x0, x1) ∩ (x2, x3). Thus, we must assume that J is not unmixed. But then S/ J
has some associated prime of codimension 3. As remarked earlier, any such prime
must contain the ideal generated by the entries ofψ. Since these are all linear, we con-
clude as before that there is only one associated prime of codimension 3, necessarily
generated by a regular sequence of 3 linear forms. This shows (i) for d = 2, and we
can pick up from here by repeating the argument used in the case where d ≥ 3.

We say that two rational maps F,G : Pn 99K Pn are linearly equivalent if they
belong to the same orbit of the action of PGL(n + 1, k) × PGL(n + 1, k) as in (2.3).
We note that under this action the base ideal J = ( f0(x), . . . , fn(x)) ⊂ S = k[x] =
k[x0, . . . , xn] of a map F : Pn 99K Pn changes to the ideal generated by the forms
f0(x · (P′)−1), . . . , fn(x · (P′)−1) where (P, P′) ∈ PGL(n + 1, k) × PGL(n + 1, k)
(considered as matrices). Clearly then, the base ideals of two linearly equivalent maps
have the same typical algebraic invariants, such as equivalent minimal graded free
resolutions.

As a consequence of the above results, we obtain a homological characterization
of the elements of the subgroup Jo(n− 1; P3) for n = 3.
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Theorem 3.8 Let F denote a Cremona map of P3 of degree d ≥ 2. The following
conditions are equivalent.

(i) F is linearly equivalent to an element of Jo(2; P3).
(ii) The base ideal J ⊂ S = k[x0, x1, x2, x3] of F admits a minimal graded free reso-

lution of the form

0 −→ S
(
−(d + 2)

)
−→ S3

(
−(d + 1)

)
⊕ S
(
−(2d− 1)

)
−→ S4(−d) −→ S/ J,

and is not unmixed if d = 2.

We list some further properties of the above free resolution of the base ideal of
a map F in Jo(2; P3). By Theorem 3.7, we may assume that J = (x0q, x1q, x2q, f )
for some relatively prime forms q, f ∈ S of respective degrees d − 1, d, with f ∈
(x0, x1, x2)S. Moreover, F being birational implies that q, and hence f as well, is an
x3-monoid. Let us write f = αx3 + β, q = γx3 + δ, with α, β, γ, δ ∈ k[x0, x1, x2]
forms of degrees d− 1, d, d− 2, d− 1, respectively, such that αδ − βγ 6= 0.

Proposition 3.9 With the above notation, set P = (x0, x1, x2).

(i) The following conditions are equivalent:

(a) P is an embedded prime of S/ J;
(b) either F has degree≥ 3 (i.e., γ 6= 0 and deg(γ) ≥ 1) or else γ = 0;
(c) (αx3 + β, γx3 + δ) ⊂ P.

(ii) If the ideal (c, β, γ, δ) containing (αx3+β, γx3+δ) is a proper ideal of codimension
at least 3, then the minimal primes of S/(αx3 + β, γx3 + δ) are those that contract
in k[x0, x1, x2] to an irreducible factor of the determinant αδ−βγ; otherwise (i.e.,
if (α, β, γ, δ) has codimension 2), the additional minimal primes are the defining
primes of straight lines through o and a point of V (α, β, γ, δ) ∩V (x3).

Proof (i) Set q := γx3 + δ.
(a)⇒ (b) If F has degree 2 and α 6= 0, then q /∈ P. But if P is embedded, then

P ⊃ Q for some minimal prime of S/ J of codimension 2. Since q /∈ Q, Q must
contain the variables x0, x1, x2, hence contains P, a contradiction.

(b)⇒ (c) This is obvious.
(c)⇒ (a) If P is a minimal prime of S/ J and If (αx3 + β, γx3 + δ) ⊂ P then P

contains a minimal prime of S/(αx3 + β, γx3 + δ); since the latter has codimension 2
it is also a minimal prime of S/ J because clearly J ⊂ (αx3 + β, γx3 + δ). Therefore P
is an embedded prime of S/ J.

(ii) The ideal (α, β, γ, δ) is proper if and only if deg(γ) > 0. Therefore, according
to item (i) this ideal is proper if and only if P is an embedded prime of S/ J. If, more-
over, (α, β, γ, δ) has codimension ≥ 3 then the minimal primes of S/(α, β, γ, δ)
cannot be minimal primes of S/(αx3 + β, γx3 + δ). Then, locally at any minimal
prime Q of S/ J, αδ − βγ is a generator of (αx3 + β, γx3 + δ). This implies that
some irreducible factor of αδ − βγ is a minimal generator of Q, hence generates its
contraction to k[x0, x1, x2] since this contraction has codimension 1. The alternative
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statement follows immediately since α, β, γ, δ ∈ k[x0, x1, x2] now implies that ev-
ery minimal prime of S/(α, β, γ, δ) is generated by two linear forms in k[x0, x1, x2]
defining the straight line through a point of V (α, β, γ, δ) ∩V (x3) and o.

3.2.2 Homologically Near Cases

The purpose of this piece is to convey examples of ideals whose minimal free reso-
lution is obtained from (3.1) by a slight perturbation of its shifts. Such ideals will
actually be base ideals of Cremona maps which, therefore, cannot be elements of
Jo(2; P3).

The first example appears on M. Noether’s original papers ([14]; also [20, Example
after Remark 2.3]).

Example 3.10 J = (x0x3, x1x3, x0(x1 − x2), x1(x0 − x1)).

The minimal free resolution is of the form

0→ S(−5) −→ S3(−3)⊕ S(−4) −→ S4(−2) −→ J → 0.

Note that it fits the template

0→ S(−(d + 3)) −→ S3(−(d + 1))⊕ S(−2d)
ϕ
−→ S4(−d) −→ J → 0.

Here the linear submatrix of ϕ has rank 3 (not 2 as in the de Jonquières case) and
the coordinates of the tail map generate a radical ideal in degrees 1, 2 whose minimal
primes are

(x0, x1, x3), (x1, x2, x3), (x0 − x2, x1 − x2, x3).

The unmixed radical of J is (x0, x1), hence J has one embedded associated prime and
two minimal primes of codimension 3.

Moreover, a calculation with Macaulay ([2]) shows that the initial degree of J :P
is 2, where P is any of the above three associated primes. Therefore, there is no
associated prime of codimension 3 driven inside J by a form of degree 1.

The next example defines the polar map of the determinant of a so-called 3 × 3
sub-Hankel matrix ([5]):

ϕ =

x0 x1 x2

x1 x2 x3

x2 x3 0

 .

Example 3.11 J = (x2
3, x2x3, x2

2 − 2/3x1x3, x1x2 − x0x3).

The minimal free resolution is again of the form

0→ S(−5) −→ S3(−3)⊕ S(−4) −→ S4(−2) −→ J → 0.

This time around, however, S/ J admits a unique associated prime of codimension 3,
and this prime is an embedded prime. This makes up for a sensitive geometric dis-
tinction between this example and the previous one (although both have the same
degree (= 1) as schemes). The first is the scheme-theoretic union of a straight line
with an embedded point and two isolated points, while the second is a straight line
with an embedded point. Clearly, any of these two is very distinct from de Jonquières
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ideal, whose scheme has multiplicity 2. Nevertheless, the second example is more
akin to a de Jonquières, as it is in a sense an “iteration” of Cohen–Macaulay de Jon-
quières schemes [5, Remark 4.6 (b)].
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