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SUMMARY

The seasonality and periodicity of infections, and the mechanisms underlying observed dynamics,
can have implications for control efforts. This is particularly true for acute childhood infections.
Among these, the dynamics of measles is the best understood and has been extensively studied,
most notably in the UK prior to the start of vaccination. Less is known about the dynamics of
other childhood diseases, particularly outside Europe and the United States. In this paper, we
leverage a unique dataset to examine the epidemiology of six childhood infections – measles,
mumps, rubella, varicella, scarlet fever and pertussis – across 32 states in Mexico from 1985 to
2007. This dataset provides us with a spatio-temporal probe into the dynamics of six common
childhood infections, and allows us to compare them in the same setting over the same time
period. We examine three key epidemiological characteristics of these infections – the age profile
of infections, spatio-temporal dynamics, and seasonality in transmission – and compare them
with predictions from existing theory and past findings. Our analysis reveals interesting
epidemiological differences between the six pathogens, and variations across space. We find
signatures of term-time forcing (reduced transmission during the summer) for measles, mumps,
rubella, varicella, and scarlet fever; for pertussis, a lack of term-time forcing could not be
rejected.
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INTRODUCTION

The dynamics of directly-transmitted, acute infections
are well-described by the Susceptible-Infected-
Recovered (SIR) model [1]. Among acute childhood
infections, the epidemic dynamics of measles are per-
haps the best understood since it has received exten-
sive study, most notably in England and Wales prior
to the start of vaccination. This body of research has

shown that the basic epidemic clockwork of measles
is driven by the aggregation of children during school
terms [2]. Measles dynamics are also tuned by birth
rates as modulated by vaccination rates [3]. If both
of these factors are encompassed into simple mechan-
istic models that reflect the SIR, long-term prediction
of incidence is possible [4]. Less is known about the
dynamics of other childhood diseases, particularly
outside Europe and the United States. Here, we lever-
age a unique existing dataset to examine the epidemi-
ology and incidence dynamics of six childhood
infections – measles, mumps, rubella, varicella, scarlet
fever and pertussis – across 32 states in Mexico from
1985 to 2007. The availability of data for each state
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provides 32 similar populations for comparing varying
social and demographic contexts across the six patho-
gens. We test the extent to which the dynamics of
these common childhood infections align with predic-
tions from theory and past findings.

Measles, mumps, rubella, and varicella are viral
infections, while scarlet fever and pertussis have a
bacterial aetiology. All six are directly transmitted air-
borne diseases that have highest incidence in children.
The pathogens, however, have several important life-
history differences. There is considerable variation in
the duration of generation times (latent period plus
infectious period), transmission rates, the degrees of
immunity conferred, and the existence of asymptom-
atic carriers across the six infections; the main differ-
ences and similarities are summarized in Table 1.
Our focus is on examining the role of three key epi-
demiological characteristics of these six common
childhood infections in the context of existing theory

Age profile of infection

The mean age of infection and the age-specific force of
infection (FOI) are core epidemiological parameters.
The variation of FOI with age has been documented
for several childhood diseases [5] and has implications
for control efforts [6]. Elimination following vac-
cination is easier if the infection is intrinsically less
transmissible in older age groups than it would be if
transmission were constant across all ages [5].

In the basic SIR model, at equilibrium, the average
age of infection is inversely proportional to the FOI
(and the underlying rate of disease transmission) [5].
Thus, we would expect denser states, and those with
higher birth rates, to have a lower average age of
infection due to higher rates of disease transmission.
The mean age of infection could also be associated
with socioeconomic factors. For instance, if school
attendance rates vary across states, we would expect
to see a corresponding variation in the mean age of
infection; if fewer children are concentrated in schools,
then the transmission rates may be lower, resulting in
higher mean ages of infection. Accordingly, we pre-
sent analysis of how the estimates of the mean age
of infection vary with space, demography and socio-
economic factors.

Spatio-temporal patterns in incidence

Given life-history differences for the six pathogens, we
may expect to see differences in the infection

dynamics. Previous work has suggested that diseases
with large values of the basic reproduction number,
R0, tend to exhibit large resonant power (cycles with
annual or multiennial periods), while diseases with
small amplitude of seasonality or small R0 tend to
exhibit significant non-resonant power (which can
occur at any frequency) [7]. For instance, measles
(large R0) epidemics are typically strongly annual or
biennial, whereas pertussis (small amplitude of sea-
sonality) often exhibits significant non-resonant
power. Pertussis also tends to exhibit longer period
cycles of 3–4 years due to a longer generation time
[8]. Multi-annual cycles with varying periodicity
have also been observed for mumps [9], rubella [5],
and scarlet fever [10]; annual cycles have been
observed for varicella incidence [11]. The dynamics
of these pathogens have rarely been compared in the
same setting over the same time period, which is pos-
sible with this unique dataset.

We also examine the epidemic synchrony between
states and the timing of epidemics across states.
Previous work has suggested that the strong synchron-
izing effect of seasonally forced transmission should
lead to epidemics that are completely synchronized
across large coupled areas [12]. However, travelling
epidemic ‘waves’ have been observed for measles in
England and Wales, arising as a result of repeated
invasions from endemic core areas to the periphery
[13]. This is thought to be a result of the coupling of
large and small population centres. Travelling waves
have also been observed for pertussis in the United
States in the 1950s, although no similar spatial pattern
was detected during the more recent re-emergence of
the pathogen [14]. While our scale of observation
(state-level) is too large to detect core-periphery
dynamics, we can nonetheless examine the synchrony
across states for each disease. Comparing across dis-
eases allows us to comment on the extent to which
the strength of seasonal forcing is correlated with syn-
chrony, as predicted by previous theory [12].

Seasonality in transmission

Many childhood infectious diseases exhibit a marked
seasonal pattern in incidence. In the SIR model, for
the oscillatory behaviour to persist over a long period,
as is observed in incidence data for many pathogens,
seasonal ‘forcing’, or variation, in host births [15]
and/or in transmission is necessary. Seasonal fluctua-
tions in transmission for directly transmitted patho-
gens can occur for several reasons. These include
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changes in host behaviour [16], annual variation in
environmental conditions [17, 18], and variations in
host susceptibility [19]. Environmental conditions,
such as temperature and humidity, may affect patho-
gen survival outside the host and the dispersal of
infectious particles [20]. However, the link between
environment factors and disease dynamics has not
been shown conclusively for any of the pathogens con-
sidered here.

For childhood infections, there is evidence to sug-
gest that changes in host behaviour, rather than envir-
onmental conditions, may be the key driver of
seasonality in transmission [21, 22]. Seminal work
on measles in England and Wales, demonstrated
that the aggregation of children during school term
time was a strong driver of the observed seasonality
in incidence [2, 6, 16]. For measles in Niger, the
strength of the seasonal forcing of transmission was
shown to be uncorrelated with rainfall patterns but
correlated with population size [22]. This is consistent
with the hypothesis of changes in host behaviour (in
this case, due to agricultural cycles) driving seasonal-
ity in transmission. The evidence for other pathogens,
however, is less conclusive. A reduction in the trans-
mission parameter during the summer months has
been estimated for other childhood infectious diseases
including mumps, varicella, and pertussis [16, 23].
Metcalf et al. [24] found evidence for school term-
time forcing for viral infections (measles, mumps,
varicella), but not for bacterial infections (diphtheria,
scarlet fever, pertussis) in Copenhagen before the start
of vaccination.

To examine seasonality in transmission, we fit a
mechanistic model to the incidence data to estimate
the unobserved transmission rates. Comparing across
different pathogens, with varying transmission rates
and mean ages of infection, over the same time period,
allows us to better understand the drivers of seasonal-
ity for childhood infections. If term-time forcing were

driving the seasonality in transmission, then we would
expect to see consistently reduced transmission during
the long summer holidays.

In addition to quantifying these three key epidemio-
logical characteristics for each infection, we examine
whether they are related to the states’ demographic
and socioeconomic conditions. Socioeconomic factors
may affect disease dynamics for a variety of reasons.
For instance, they may affect host susceptibility (chil-
dren in poorer states are more likely to suffer from
malnutrition) or host aggregation patterns (states dif-
fer in schooling rates, spatial aggregation patterns,
and agricultural practices). Only a few studies have
closely examined these hypotheses. Metcalf et al. [25]
found no association between a states’ socioeconomic
characteristics and rubella dynamics in Mexico. On
the other hand, scarlet fever epidemics in England
and Wales in the nineteenth century were strongly
correlated with wheat prices, possibly as a result of
malnutrition [10]. Here, we examine the associations
between socioeconomic factors and disease dynamics
as a first step towards better understanding the role
of these drivers in shaping the observed dynamics.

We first estimate the mean age of infection and the
age-specific FOI from the age-structured incidence
data. Next, we examine spatio-temporal patterns in
the incidence data by examining the periodicity of
the epidemic cycles, the epidemic synchrony between
states, and the timing of epidemics across states.
Last, we fit a mechanistic model to the incidence
data for each disease to estimate the unobserved trans-
mission rates, and examine the feasibility of making
predictions using this model. We discuss how our
results compare with predictions from previous theory
and findings. Our analysis reveals interesting epi-
demiological differences between the six pathogens.
With the exception of pertussis, we detect signatures
of term-time forcing for all the pathogens.

Table 1. Comparison of the six infections [5]

Infection Type of pathogen Generation time Degree of immunity
Existence of
asymptomatic carrier

Measles Virus 10–14 days Strongly immunizing No
Mumps Virus 16–26 days Immunizing Yes
Rubella Virus ∼18 days Immunizing Yes
Varicella Virus 18–23 days Immunizing No
Scarlet fever Bacteria 10–14 days Immunizing Yes
Pertussis Bacteria ∼27 days Waning immunity Yes
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METHODS

Data

Incidence data for the six infections was obtained
from the Yearly Morbidity Report (2008) of the
Directión General de Empidemiología, Mexico [26].
The dataset contains monthly counts for the number
of infected individuals between 1985 and 2007 for
each of the 32 states of Mexico for each infection
(Supplementary Figs S1–S6). Figure 1 shows the inci-
dence time-series for all states combined. For measles,
data is missing for 1989; for scarlet fever, data is miss-
ing for 1985. We also have state-level yearly incidence
data between 1990 and 2007 broken down by age
groups of 5–10 years (<1, 1–4, 5–14, 15–24, 25–44,
44–64, 565 years) for all the infections, except for
measles for which no age-structured data is available.
Widespread vaccination for measles and pertussis
began around 1991, and reached relatively high levels
of coverage [27, 28]. The MMR vaccine was intro-
duced in 1998 and supplanted the monovalent measles
vaccine [27]. Routine vaccination for varicella is not
recommended in Mexico, and there is no vaccine for
scarlet fever.

We obtained demographic information and socio-
economic indicators for each state from the Instituto
Nacional de Estadística y Geografía. In our analysis,
we used population size, population density, and
crude birth rate (averaged over the time period) as
our demographic variables for each state. We used
the average of the estimated poverty rates (measured
as food poverty and asset poverty) in 1990, 2000
and 2010 as our main socioeconomic indicator.

Age profile of infection

We estimated the age-specific FOI for mumps,
rubella, varicella and scarlet fever from the age-struc-
tured data (for all states combined) using the ‘cata-
lytic framework’ described in detail in [29]. There is
no age-specific data available for measles, and the
age-specific data for pertussis is too sparse for accur-
ate estimation of the mean age of infection. We used
a piecewise constant model to estimate the age-
dependent FOI, assuming a constant FOI within
pre-determined age intervals. We assumed a binomial
distribution for the proportion infected at each age,
and numerically maximized the likelihood to esti-
mate age-dependent values of FOI that best fit the
age-structured prevalence data. Using the estimated
age-specific FOI, we can also estimate the mean

age of infection for each disease for all states
combined.

We also used the age-specific incidence data to esti-
mate the mean age of infection for mumps, rubella,
varicella and scarlet fever for each state separately.
While the approach described above works well for
all states combined, the maximum-likelihood esti-
mates are difficult to obtain when the data is sparse.
To estimate the state specific mean ages of infection,
we estimated the cumulative distribution function by
fitting a cubic smoothing spline to the cumulative pro-
portion of cases at each age (calculated by summing
the data over age and dividing by the total sum).
We estimated the derivative of the fitted curve to
obtain an estimate of the probability density by age
(scaled to sum to one). The mean age of infection
can then be calculated as the numerical mean of the
probability density curve.

We used ordinary least squares to estimate associa-
tions between the mean age of infection and the dis-
trict’s population size, population density, crude
birth rate, and poverty rates. We examined the asso-
ciations of mean age of infection with each of these
factors separately, but also included them as multiple
predictors in the same regression model. We also
examined any spatial gradient in the estimated mean
age of infection.

The estimates of the average age of infection also
allows us to calculate a rough estimate of the basic
reproduction number, R0, for each disease in every
district. Assuming a constant FOI and Type I mortal-
ity (constant survivorship over age until life expect-
ancy is reached), R0 = μ−1/A, where μ is the per
capita birth rate and A is the mean age of infection
[5]. Although this estimate of R0 may be biased due
to many factors [30], it provides an independent esti-
mate that can be compared with the time-series sus-
ceptible-infected-recovered (TSIR) estimate of R0, to
ensure that the model fit is producing reasonable
estimates.

Spatio-temporal analysis

We used wavelet analysis, described in detail in [31], to
examine the period of oscillations in the incidence
data over time. Unlike Fourier analysis, wavelet ana-
lysis can capture the non-stationarity in the period of
recurrent outbreaks over time. This allows us to
describe how the period of incidence cycles vary
over time and across diseases. We log(x + 1)-trans-
formed the incidence time-series to dampen the
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amplitudes. We used a Morlet wavelet and applied the
wavelet transform to the transformed incidence data
to compute the power as a function of period and
time. Statistical significance was tested against red
noise background (signal noise produced by ran-
dom-walk motion).

We also examined the synchrony in recurrent epi-
demics between states for each disease. We defined
epidemic synchrony between two states as the
Pearson correlation coefficient between the two inci-
dence time-series. The incidence time-series was
square-root-transformed to stabilize the variance.
We examined how synchrony was related to distance
between states (as measured by the latitude and
longitude of the centre of the state) by estimating
spatial correlation functions [13, 32]. We used a

nonparametric spline function to estimate the correl-
ation functions, and computed confidence limits
using bootstrapping (with 500 resamples) [33]. For
diseases where vaccination was implemented during
the observed timeframe we computed the spatial cor-
relation functions separately for pre-vaccination and
vaccination-era data. For each disease, we also com-
puted the cross-correlation coefficient between all
states and the Federal District (Mexico City), to see
if there were any lags between the incidence time-
series.

To examine any spatial gradient in the timing of
epidemics, we computed the ‘centre of mass’ of the
incidence time-series. The centre of mass represents
the average month in the year in which the most
cases occurred over the entire observation time period.

Fig. 1. Reported incidence for all states in Mexico from 1985 to 2007 for (a) measles, (b) mumps, (c) rubella, (d) varicella,
(e) scarlet fever, and (f) pertussis. Approximate vaccination start date is indicated with the red line for measles, mumps,
rubella, and pertussis. The monovalent measles vaccine and the pertussis vaccine were introduced in 1991; the MMR
vaccine (which supplanted the monovalent measles vaccine) was introduced in 1998.
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Bootstrapped confidence intervals were computed
with 1000 resamples, by computing the maximum-
likelihood estimate for the mean of a von Mises distri-
bution [34] for each resampled dataset. We examined
the correlation between the centre of mass for each
state and the latitude and longitude of the centre of
the state, and repeated the analysis for each disease.

The TSIR framework

To estimate seasonal transmission rates we used the
TSIR model developed by [4]. The TSIR model is a
stochastic, discrete time analogue of the classic SIR
model. The time-series of number of infected and
the number susceptible are described by a set of differ-
ence equations. At each time step, the expected num-
ber of infected cases is given by

E[It+1] = βs I
α
t St

Nt
, (1)

where E[It+1] is the expected number of infected indi-
viduals one infection generation time in the future; It
and St are the numbers infected and susceptible at
time, t, respectively; Nt is the total population size at
time, t; βs is the seasonal transmission factor; and α
captures heterogeneities in mixing, not captured by
the seasonality, and the effects of discretization.

Assuming all individuals eventually become
infected, the number of infected individuals tracks
the births, B, and the number of susceptible indivi-
duals is defined by:

St+1 = St + Bt − It + ut. (2)
Here, ut is additive noise, with E [ut] = 0. By reducing
the susceptible population, vaccination has the same
effect as lowering births. Vaccine coverage levels
were assumed to be 80% for measles, mumps and
rubella, and 90% for pertussis. Accordingly, the num-
ber of births in the TSIR model was discounted by 0·8
for measles, mumps, and rubella, and 0·9 for pertussis
following the introduction of vaccination. Our main
model results also hold over a range of assumed vac-
cination rates for these infections.

If the number of susceptible individuals fluctuates
around a mean, then St = �SNt + Zt, where �S is the
average proportion of susceptible individuals in the
total population, Nt, and Zt is the unknown deviation
around the mean number of susceptible individuals.
We can rewrite the susceptible difference equation in
terms of the deviations, Zt, and iterate successively

with an initial starting condition, Z0. This yields:∑t−1

k=0
Bk = −Z0 +

∑t−1

k=0
Ik + Zt + ut. (3)

Assuming ut is small, Zt can be estimated as the resi-
duals from the locally varying regression of the cumu-
lative number of births on the cumulative number of
cases. We can then rewrite equation (1) as:

E[It+1] =
βs I

α
t

�S Nt + Zt
( )
Nt

. (4)

The mean proportion of susceptible individuals, �S ,
can be estimated using marginal profile likelihoods
from estimating equation (4) for a range of values
of �S. We used a quasi-Poisson generalized linear
model to estimate equation (4). We constrained the
estimated �S to have an upper limit of 0·8 (i.e. 80%
of the population). Conditional on the estimated �S,
the seasonal transmission rates, βs, were estimated
using a quasi-Poisson generalized linear model with
monthly or biweekly-specific factors (and no inter-
cept). Since the TSIR model is not age-structured,
here we are estimating the ‘effective’ seasonal trans-
mission rates that encompass age structure [2].

We first corrected the incidence time-series for
under-reporting using methods described in [4].
Assuming that all children eventually become infected
in the absence of vaccination, the reporting proportion
can be estimated as the slope of the regression line
relating cumulative number of births to cumulative
number of cases (see [4] for details). To allow for
local variation in the regression of cumulative number
of births on cumulative number of cases, we used a
cubic smoothing spline. This allows for temporal vari-
ation in the reporting proportion. Having corrected
the incidence data for under-reporting, we then fitted
the TSIR model to the mumps and pertussis time-ser-
ies using monthly time steps, which is close to the esti-
mated generation times for these pathogens [5]. As a
robustness check, we also used biweekly time steps
for mumps (generation time is estimated to be
between 16 and 26 days [5]), and the main results
remained unchanged (Supplementary Fig. S10). For
measles, rubella, varicella and scarlet fever, we fitted
the TSIR model to the incidence time-series using
biweekly time steps to match their shorter generation
times. To convert the observed monthly incidence
into biweekly time steps we used linear interpolation
to produce observations for 24 time points in the
year. This method maintains the peaks in the inci-
dence data, although our results are robust to using
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cubic interpolation. Assuming that the time step used
in the TSIR model is the true average time from in-
fection to recovery, the estimates of the seasonal trans-
mission rates, βs, correspond to the seasonally varying
basic reproductive number, R0. We fit the TSIR model
to the incidence data for all states combined, as well as
for each state separately.

Although our main focus was to analyse seasonal
patterns in transmission, we also explored the ability
to predict long-term incidence dynamics using the
TSIR parameter estimates. For each disease, we
fitted the TSIR model to the reported cases after cor-
recting for under-reporting. We used the correspond-
ing estimates of the seasonal transmission rates to
forecast incidence for the observed time period.
Predictions were made by sampling the incidence,
It+1, from a negative binomial distribution:

It+1 � NB
βs I

α
t St

Nt
, It

( )
, (5)

with mean E[It+1] = βs I
α
t St/Nt and shape parameter

It. We used the observed I0, corrected for under-
reporting, and estimated S0 as the initial conditions,
and allowed the simulation to continue until the end
of the observed time-series. To assess the accuracy of
the predicted incidence time-series, we calculated the
normalized root mean squared error (NRMSE)
between the predicted incidence and the actual inci-
dence (normalized by dividing the root mean squared
error by the average incidence over the observed time
period).

RESULTS

Age profile of infection

The mean age of infection estimated from age-
structured case data for all states combined was 6·47
for mumps, 6·52 for rubella, 6·78 for varicella, and
5·46 for scarlet fever (Fig. 2). The age-specific FOI
was highest in the 4–14 years age group for mumps
and scarlet fever. This is in the same range as what
has been found for other childhood diseases in the
past [5, 29]. The estimated mean age of infection for
varicella was within the 5–14 years age range that
has been estimated in the past [5, 11]. The FOI, how-
ever, was highest in the 1–4 years age group for vari-
cella. Somewhat surprisingly, for rubella, the highest
FOI was in the 0–1 years age group, although the
confidence intervals for the estimates are largest for
rubella. The 4–14 years age group has the second
highest FOI for rubella.

The mean age of infection estimated separately for
each state, by fitting a smoothing spline to the cumula-
tive proportion of cases by age, were lower than the
mean age of infection estimated for all states combined
using the catalytic framework. This is likely because
there is less year-to-year variation in the cumulative
proportion of cases by age within states (as opposed
to when we look at all states together), and the spline
function is overfitting to the initial increase in the
cumulative proportion of cases from the 0–1 to 1–4
years age group. The mean age of infection, estimated
separately by state, was not significantly associated
with population size, density, or the crude birth rate.
However, we found significant geographical variation
in the mean age of infection (Figs 3 and 4). The
mean age of infection estimated separately for each
state was significantly associated with the longitude
of the centre of the state for mumps [A= 12·39
(1·81) + 0·06 (0·02) longitude; P= 0·001, r2 = 0·27,
S.E. in parentheses], rubella [A= 11·32 (2·78) + 0·08
(0·03) longitude, P= 0·008, r2 = 0·19, S.E. in paren-
theses], varicella [A= 14·31 (1·94) + 0·10 (0·02) longi-
tude, P= 0·00001, r2 = 0·46, S.E. in parentheses], and
scarlet fever [A= 8·35 (2·02) + 0·05 (0·02) longitude,
P= 0·023, r2 = 0·13, S.E. in parentheses]. There were
also significant associations of mean age of infection
with latitude for all four infections, although the
strength of the association was weaker. The associ-
ation between latitude/longitude and the mean age of
infection remained significant, and of similar magni-
tude, even after controlling for the population size
and density. The mean age of infection was signifi-
cantly positively associated with (logged) poverty for
mumps (estimated association = 0·67, P= 0·005),
rubella (estimated association = 0·95, P= 0·008), and
varicella (estimated association = 0·76, P= 0·014).

The estimated R0 (averaged over all states) was 6·89
(variance = 0·97) for mumps, 13·26 (variance = 18·4)
for rubella, 9·92 (variance = 3·87) for varicella and,
11·83 (variance = 3·68) for scarlet fever. We observe
the same spatial gradient in R0 (controlling for the
birth rate and population density) as we do for the
mean age of infection, with states in the east having
lower R0 compared to states in the west.

Spatio-temporal dynamics

Timing of outbreaks

Figure 5 shows the median number of cases by month,
for consecutive pairs of years (pre-vaccination) for
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each disease for all states combined. Measles and per-
tussis had the greatest variance in monthly incidence
over the observed time period. Measles and varicella,
and to some degree, rubella, show clear annual pat-
terns, while the other pathogens exhibit a slightly
more complicated pattern. For all of the infections,
incidence fell during the summer school holidays.
With the exception of mumps, all infections had
peak incidence in the spring around April. For
mumps, we observed biannual peaks. There was a
second peak just at the start of summer holidays,
with the second peak being higher than the April
peak every other year. For scarlet fever, the annual
peak incidence switched from April to June every
other year.

All diseases had similar epidemic centres of mass,
around April. Measles incidence had the earliest cen-
tre of mass (mid-March), and rubella incidence had
the latest centre of mass (late April). Overall, we
found no evidence of a relationship between the epi-
demic centre of mass and demographic factors.
However, centre of mass (CoM) was significantly
negatively correlated with longitude (Fig. 6) for
measles [CoM=−0·85 (0·58) – 0·02 (0·01) longitude,
P = 0·001, r2 = 0·29, S.E. in parentheses], varicella
[CoM= 0·92 (0·18) – 0·004 (0·001) longitude, P=
0·016, r2 = 0·15, S.E. in parentheses] and, scarlet fever
[CoM=−0·22 (0·58) – 0·02 (0·01) longitude, P=
0·007, r2 = 0·19, S.E. in parentheses]. The centre of
mass was significantly positively associated with

Fig. 2. Top row: Estimated force of infection (FOI) by age for (a) mumps, (b) rubella, (c) varicella, and (d) scarlet fever
for all states combined. Bottom row: Cumulative proportion of cases by age for (e) mumps, (f) rubella, (g) varicella, and
(h) scarlet fever for all states combined. For the same age, the different points correspond to different years. The piecewise
fit is shown in red. Mean age of infection, A, for each disease was calculated from the fitted model.
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poverty (even after controlling for population size and
longitude) for rubella (estimated association = 0·08,
P = 0·029), varicella (estimated association = 0·05,
P = 0·044), and scarlet fever (estimated association =
0·18, P= 0·032). Combined with our earlier findings,
this result indicates that states that had higher rates
of poverty, on average, had higher mean ages of
infection (i.e. lower rates of disease transmission)
and experienced epidemics later in the year
(Supplementary Fig. S7).

Periodicity

Figure 7 shows the wavelet power spectra for the six
infections. Measles dynamics are erratic, exhibiting

annual, biennial and multiennial cycles. Rubella
(pre-vaccination), varicella and scarlet fever had a
dominant annual periodicity. The annual periodicity
of rubella disappeared after the introduction of vac-
cination. Mumps incidence exhibited a mixture of
annual and multiennial cycles, particularly in the earl-
ier years. The 4-year period was dominant for pertus-
sis. This observed difference between pertussis and
other similar childhood diseases such as measles has
been described in detail in [8], and the longer cycles
for pertussis are likely to be a result of differing
response to dynamical noise as a result of a longer
infectious period. Pertussis and rubella incidence
exhibited significant non-resonant power, while vari-
cella exhibited very large resonant power. This is

Fig. 3. Estimated mean age of infection plotted against longitude for each state. Ordinary least squares regression fit and
95% confidence intervals are shown in red.
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consistent with previous work that has suggested that
diseases with large R0 (such as measles and varicella)
typically exhibit large resonant power (annual or
multi-annual dynamics), while diseases such as pertus-
sis (small amplitude of seasonality) and rubella (small
R0) also exhibit non-resonant power due to transient
dynamics [7].

Synchrony

To characterize spatial patterns we examined the syn-
chrony between states for each disease, which reflects
correlations between states in both amplitude and tim-
ing of epidemics (Fig. 8). Epidemic synchrony declines
with distance for measles, mumps, rubella but the
decline is not statistically significant at the 95% level.
For scarlet fever, the epidemic synchrony drops sign-
ificantly with distance. Measles epidemics became
less synchronized with the introduction of vaccination,

a pattern that has also been documented for cities in
the UK [35].

Rohani et al. [35] found a reverse pattern, i.e.
greater synchrony following the introduction of vac-
cination, for pertussis epidemics in the UK.
Interestingly, in Mexico, mumps and rubella epi-
demics became more synchronized in the vaccination
era, while the synchrony for pertussis was not signifi-
cantly different pre- and post-vaccination. Synchrony
in varicella epidemics remains relatively high and con-
stant with distance. This could be the result of the
strong seasonality in varicella transmission (discussed
below) synchronizing epidemics across the country.

The cross-correlation coefficients between all states
and the Federal districts confirmed that epidemics
were synchronized across Mexico for all diseases,
except pertussis. The zero time-step lag was highest
for all districts for measles and varicella, for 30/31

Fig. 4. Estimated mean age of infection by state. Darker green colours indicate a higher mean age of infection. The key
indicates the upper age bound for each colour category. Red circle indicates the location of Mexico City.
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districts for mumps, and for 25/31 states for rubella
and scarlet fever. For pertussis, the zero time step
lag was the most common (for 6/31 states), followed
by a lag of two months (for 5/31 states; epidemic
occurring two months earlier in the Federal District).

Seasonal variation in transmission

Table 2 shows the results offitting theTSIRmodel to the
incidence data for each of the six infections, for all states
combined. There was a great deal of variation in the esti-
mated �S for each infection, with the lowest estimated for
pertussis (�S = 0·05) and the highest estimated for scarlet
fever and varicella ( �S = 0·8). The estimated reporting
proportion was low for all six infections, particularly
for scarlet fever and pertussis. A few studies, looking at
measles reporting, have estimated the reporting propor-
tion in Mexico to be as low as 3% during the 1980s [27].

Our estimated reporting proportion for some infections,
such as pertussis, is quite a bit lower. Errors in our esti-
mates of the reporting proportion and the mean propor-
tion susceptiblewill affect the estimatedmagnitudeof the
seasonal transmission rates. This makes it difficult to
compare the magnitude of the seasonal transmission
rates across diseases and states, as the uncertainty in
the estimated �S and reporting proportion will vary.
For scarlet fever and varicella, �S was estimated to be
0·8 which is at the upper bound of our constraint on �S.
These estimates are most likely biased upwards, and
has the effect of downward biasing the magnitude of
the estimated seasonal transmission rates.

However, we are most interested in the shape of the
seasonal transmission rate which is unaffected by the
estimated �S and reporting proportion. The transmis-
sion rates, estimated for all states combined, exhibit
a marked decline during the summer for mumps,

Fig. 5. Median number of cases by month (and interquartile range) for consecutive pairs of years in the pre-vaccination
time-series for each disease (for all states combined). Approximate school holidays are shown in grey. n, number of years
of data used for each infection.
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rubella, varicella, and scarlet fever (Supplementary
Figs S8 and S9). We estimate a small decline in trans-
mission for measles; however, the estimates for mea-
sles are highly uncertain as we only had a few years
of incidence data prior to the start of vaccination.
We did not detect any clear patterns in the transmis-
sion rate for pertussis.

We also estimated monthly transmission rates for
all diseases separately by state (Fig. 9). For pertussis,
for 16 out of the 32 states, we were unable to estimate
at least one seasonal transmission parameter because
there were not enough reported cases for that
month. Furthermore, some estimated transmission
rates for pertussis were unreasonably large, and we
excluded all estimated transmission rates above 50
for our analysis (nine states). The yearly average trans-
mission rate (averaged across all states) was 6·83 for
measles, 10·58 for mumps, 4·20 for rubella, 2·19 for
varicella, 3·14 for scarlet fever, and 14·54 for pertussis
(Supplementary Fig. S11). The surprisingly low

estimate of the average transmission rate for varicella
may be due to biases in our estimate of �S.

All of the diseases, with the exception of pertussis,
exhibited a decline in transmission during the summer
months, which is consistent with school term-time for-
cing. School holidays in Mexico consists of 2 weeks at
Christmas, 2 weeks at Easter, and summer holidays
from July to mid-August [25]. Transmission (averaged
across all states) peaked in December for measles,
varicella and pertussis; February for rubella and scar-
let fever; and in March for mumps. Transmission was
lowest in August for measles, mumps, and rubella;
July for varicella and scarlet fever; and June for per-
tussis. There was no significant spatial gradient in
the magnitude of transmission or the coefficient of
variation in the transmission parameter. For rubella
and varicella, we found a negative significant associ-
ation between the coefficient of variation and density
(rubella: estimated association =−0·01, P = 0·011;
varicella: estimated association =−0·01, P = 0·028).

Fig. 6. Centre of mass against longitude for (a) measles, (b) mumps, (c) rubella, (d) varicella, (e) scarlet fever, and (f)
pertussis. Ordinary least squares regression fit and 95% confidence intervals are shown in red.
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For rubella, we also found a significant correlation
with poverty (estimated association =−0·18, P =
0·004), but not for any of the other infections.

Forecasting epidemics

Finally, although our main aim with the TSIR ana-
lysis was to examine seasonal patterns in transmission,
we also explored the ability to predict long-term
dynamics using the TSIR framework (Fig. 10). Our
results, for all states combined, suggest that it may
be possible to make reasonable predictions for vari-
cella (NRMSE = 0·33) and scarlet fever (NRMSE =
0·37). The more complex dynamics of mumps
(NRMSE = 0·44), rubella (NRMSE = 0·67), and per-
tussis (NRMSE = 1·38) are not captured as well by
the TSIR framework; for measles the model fit is
poor since we fit the TSIR model to only a few

years of pre-vaccination incidence data (NRMSE =
3·40).

We also examined the ability to predict long-term
dynamics of mumps, rubella, varicella, and scarlet
fever at the state-level. The results varied widely across
states. The NRMSE averaged across states was lowest
for varicella (mean NRMSE= 0·75), followed by
mumps (mean NRMSE = 0·92), scarlet fever (mean
NRMSE = 1·01), rubella (mean NRMSE = 1·60),
and measles (mean NRMSE = 4·47). The NRMSE
was not significantly correlated with the state’s demo-
graphic and socioeconomic indicators (P > 0·05 for all
associations).

DISCUSSION

Our analysis reveals interesting epidemiological varia-
tions across the six infections, but our results are

Fig. 7. Wavelet power spectra of the incidence time-series for all states combined for (a) measles, (b) mumps, (c) rubella,
(d) varicella, (e) scarlet fever, and (f) pertussis. Lighter shades of grey indicate greater power.
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consistent with predictions from a seasonally forced
SIR model. All infections, except pertussis, exhibited
a seasonal pattern in transmission with a drop during
the summer months. This is consistent with the well-
defined term-time forcing of directly transmitted child-
hood infections observed elsewhere, most notably for
pre-vaccination measles in the UK [2]. Unlike
Metcalf et al. [24] who found increased transmission
of bacterial infections (including pertussis and scarlet
fever) during the summer, we found a reduction in
transmission for scarlet fever; for the other bacterial
infection (pertussis) we found no change in transmis-
sion during the summer.

The four pathogens – mumps, rubella, varicella,
and scarlet fever – for which we had age-structured

data, all had similar mean ages of infection (around
6 years). Basic compulsory education in Mexico starts
at the age of 6, although almost 100% of children are
enrolled in formal care and pre-school by age 5 [36].
Net enrolment rate in primary school was 94·3% for
Mexico in 1985, and has remained fairly steady (low-
est rate was 93·5% in 2006) [37]. On the other hand,
fewer than 10% of children aged <3 years are enrolled
in any form of formal care. Thus, the estimated mean
age of infection, which is between the ages of 5 and 7
years, is consistent with the hypothesis of high trans-
mission in schoolchildren during term time driving
the epidemic dynamics.

Our results suggest that there was substantial vari-
ation in the epidemiology and dynamics of the six

Fig. 8. Estimated spatial correlation functions showing epidemic synchrony (Pearson correlation coefficient) between states
as a function of distance (as measured by the latitude and longitude of the centre of the state) for (a) measles, (b) mumps,
(c) rubella, (d) varicella, (e) scarlet fever, and (f) pertussis, along with 95% confidence intervals. Red indicates pre-
vaccination and blue indicates post-vaccination era epidemics (1991 onwards for measles and pertussis; 1998 onwards for
mumps and rubella). The dashed horizontal line represents the average correlation across all states.
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childhood infections in Mexico, and we also found
evidence for the role of demography and socio-
economic factors in determining dynamics, at least
for some of the infections. All six pathogens had
peaks in incidence in the spring and troughs in
autumn. Schenzle [6] showed, using an age-structured
model, that for countries where the school year starts
after a long summer vacation, with relatively short
interruptions throughout the year, peak measles inci-
dence occurs around March, and then declines
throughout the school year as the susceptible popula-
tions within schools are depleted. The incidence time-
series for childhood infections in Mexico are broadly
consistent with this result. This also aligns with our
estimates of seasonal patterns of transmission, which
are consistent with term-time forcing (see above).

Mumps and pertussis had the most complex
dynamics with multiennial cycles. This could be the
result of longer generation times interacting with the
nonlinear dynamics of transmission, as has been sug-
gested earlier [8]. Rubella and scarlet fever, which
have shorter generation times, had annual epidemic
cycles. Although the generation time for varicella is
similar to that of mumps and pertussis, it has annual
periodicity possibly because of higher transmission
rates.

Our analysis also reveals interesting spatial pat-
terns. We document lower mean ages of infection

for all pathogens around Mexico City, and higher
mean ages of infection in the states in the eastern
coast. This is consistent with past findings for rubella
epidemics in Mexico [25]. States with higher poverty
rates also had a higher mean age of infection for
mumps, rubella, and varicella. Poorer states also
experienced epidemics later in the year compared to
other states. The observed spatial gradient could be
due to biased estimates of the age-specific FOI [38].
Another possible explanation could be regional vari-
ability in R0, for instance due to differences in school-
ing rates and practices across states.

While the longitudinal gradient in the mean age of
infection can be partly explained by the spatial gradi-
ent in poverty, further work is needed to disentangle
whether or not the spatial gradient is driven by socio-
economic factors or perhaps by environmental fac-
tors. Environmental conditions, such as temperature
and absolute humidity, may affect pathogen survival
outside the host and the dispersal of infectious parti-
cles [20]. Scarlet fever epidemics in England and
Wales in the mid-nineteenth century were significantly
correlated with dry conditions in the spring/summer;
this was hypothesized to be the result of changes in
host susceptibility and/or better pathogen survival in
the environment due to low absolute humidity [10].
All six pathogens are fomite transmitted, but unlike
influenza [17], the link between environmental factors

Table 2. Infection characteristics estimated by the TSIR model. The approximate generation time of each infection
determines the discrete time step used in the TSIR model

Infection TSIR time step �S Mean reporting proportion Mean βs R2

Measles Biweekly 0·2207 0·004 (0·002) 5·41 (1·52) 0·92
(95% CI 0·2197–0·2217)

Mumps Monthly 0·1277 0·034 (0·007) 10·53 (0·78) 0·98
(95% CI 0·1274–0·1281)

Rubella Biweekly 0·2807 0·017 (0·002) 4·72 (0·18) 0·99
(95% CI 0·2788–0·2825)

Varicella Biweekly 0·80 0·092 (0·02) 1·79 (0·06) 0·93
(95% CI 0·7996–0·8)

Scarlet fever Biweekly 0·80 0·006 (0·001) 1·75 (0·06) 0·91
(95% CI 0·8–0·8)

Pertussis Monthly 0·0533 0·001 (0·0001) 24·65 (5·21) 0·93
(95% CI 0·0531–0·0533)

TSIR, Time-series susceptible-infected-recovered; CI, confidence interval.
�S is the estimated mean proportion of susceptibles in the population (95% CIs in parentheses, derived from the profile like-
lihood using the χ2 distribution with 1 degree of freedom). Mean reporting proportion is the mean of the time-varying reported
rates estimated using locally varying regression of cumulative births on cumulative cases (standard deviation of the time-vary-
ing rates in parentheses). Mean βs is the mean value of the seasonal transmission rates estimated via the TSIR model (max-
imum standard error in parentheses). The R2 values (on a log scale) for the TSIR fit are measured as 1 – [residual deviance/null
deviance].
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and diseases dynamics has not been shown conclu-
sively for any of the pathogens considered here.
Future work will require a more complete analysis
of various drivers using formal techniques such as
those described in [39].

Somewhat surprisingly, we found that states that
are further east experienced measles, varicella, and
scarlet fever epidemic peaks earlier in the year com-
pared to other states. If the higher mean age of infec-
tion observed in these states was being driven by a
lower transmission rate, then we would expect the epi-
demics to occur later in the year compared to other
states. This could be due to biases in our estimation
in the mean age of infection and corresponding R0.
However, further work is needed to disentangle biases
in the data and possible socioeconomic and environ-
mental drivers.

We found that epidemics were synchronized
between states for all diseases, with the exception of
pertussis. Our scale of observation was too large to
detect potential lags in remote areas of the country.
Unlike the other infections, pertussis epidemics were
not synchronized across the country. The irregular
dynamics of pertussis incidence, along with the lack
of epidemic synchrony between states, suggests
that pertussis epidemics in Mexico were strongly
influenced by stochasticity, which is consistent with
past findings [8].

Interestingly, despite differences in the dynamics
and epidemiology of the infections, five of the six
childhood infections had a similar seasonal pattern
in transmission rates. The peak transmission varied
from December to March for the six infections, but
lowest transmission was consistently in July or

Fig. 9. Mean centred seasonal transmission coefficients from the time-series susceptible-infected-recovered fit for (a)
measles, (b) mumps, (c) rubella, (d) varicella, (e) scarlet fever, and (f) pertussis for each state (black lines). The red line
indicates the seasonal transmission coefficient averaged over all states. Approximate school holidays are shown in grey.
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August (for all infections, except pertussis). For two
of the infections, rubella and varicella, we found
that states with lower poverty and lower population
density had higher variation in the transmission rate
through the year. It is possible that term-time forcing
is more dominant in those states because of greater
proportions of children in school (for the states with
less poverty) or because most of the transmission is
occurring in schoolchildren (for less dense states).
The results from the TSIR simulations suggest that
the dynamics of varicella and to some extent, scarlet
fever, can be predicted with reasonable accuracy
using stochastic simulations. At the state-level the
quality of predictions varied greatly, but was not sign-
ificantly associated with the states’ demographic and
socioeconomic indicators.

In conclusion, our results suggest that despite differ-
ences in dynamics and epidemiology, five of the six
childhood infections studied here, behave in accord-
ance with a seasonally forced SIR model. Term-time
forcing is likely to be a major component of seasonal
dynamics for measles, mumps, rubella, varicella and
scarlet fever in Mexico. Pertussis shows more unpre-
dictable dynamics, possibly due to life history differ-
ences such as waning immunity and a longer
generation time. While there was a longitudinal gradi-
ent in the mean age of infection, the pattern and
magnitude of seasonal transmission rates were uncor-
related with longitude. It is possible that our scale of
observation (state-level) is too large to capture more
erratic local dynamics. Nonetheless, these results sug-
gest that epidemics were fairly synchronized across

Fig. 10. Actual cases corrected for underreporting (in black) and 500 stochastic forward predictions (in red) from the
time-series susceptible-infected-recovered fit for (a) measles, (b) mumps, (c) rubella, (d) varicella, (e) scarlet fever, and (f)
pertussis for all states combined.
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Mexico for five of the six infections. This has important
implications for control efforts and the predictability of
epidemics. For infections, such as pertussis, that show
less clear patterns of term-time forcing, predicting
dynamics becomes difficult. However, for most directly
transmitted childhood infections, with varying degrees
of transmissibility, generation times, and immunity
conferred, term-time forcing appears to be a dominant
driver of disease dynamics, leading to more predictable
epidemic cycles.
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