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LET Cn be a curve in real projective w-space which is a continuous 1—1 image 
of either the projective line or one of its closed segments. Consequently its 
points depend continuously on a real variable 5 ffor which 0 ^ s ^ 1, with the 
understanding that 5 = 0 and 5 = 1 represent the same curve point in the case 
that Cn is the image of the complete projective line. The points of Cn will be 
described by their corresponding real numbers s. 

We assume 
(1) No (n — l)-dimensional hyperplane H cuts Cn in more than n points. 

An immediate consequence of the above is that any k + 1 distinct curve points 
generate a linear fe-subspace. 

We assume 
(2) The linear &-subspace L generated by ^ + 1 curve points always eon-

verges to a linear &-subspace designated by (k, s) as the k + 1 points all con 
verge to 5, 0 ^ k < n. 

The subspaces (k, s) enable us to count multiple intersection points of a 
linear subspace L with Cn. A point 5 is said to be within L &-fold if (k — 1,5) 
C L, {k, s) <X. L. We now assume that (1) and (2) are both true when the 
multiple intersection points of both H and L are coimted by the above con­
vention. 

In 1936 Scherk1 gave the first proof that the dual of Cn has properties (1) 
and (2). His proof first derives the result for the case where Cn is the map of the 
whole projective line and then derives the general result by showing that every 
Cn is part of such a curve. In the following an alternative proof is given which 
applies directly to any Cn» The methods are elementary. Use is made of 
the easily established fact that the projection of a Cn from one of its points s' 
is a Cn-i and each (k, s) of Cn projects either into a (k, 5), 0 ^ k ^ n — 2, 
or into a (k — 1, 5), 1 ^ k ^ n — 1, for the projected curve according as either 
5' 7^ 5 or s' = 5. 

THEOREM 1. Where s is an interior point of Cn let s"i, 5"2 be two sequences of 
real numbers which approach s and for which 5Mi 9^ 5/i2- / / P* be a convergent 
sequence of space points selected from the intersection of {n — 1, 5"i) and {n — \ ,5̂ 2) 
then it converges to a point P of (n — 2, 5). 

For the proof of this result we shall use 
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LEMMA 1. If s is an interior point of Cn and P 6 (n — 1, 5) but P non Ç 
(» — 2, s) then for every sufficiently small curve neighborhood I(s) a curve neighbor­
hood 7(5), 7(5) C I(s), together with a space neighborhood N(P) of P exists with 
the following properties: 

(1) Curve points 5, su s2, . . . , sn-2 from 7(5) and a point P' of iV(P) build 
a hyperplane which cuts 7(5) in exactly one additional point q{s). (Some or 
all of si, St, ... , 5n_2 may coincide.) 

(2) As s moves continuously in one direction in 7(5), q(s) moves continuously 
in the opposite direction so that q(sf) ^ q(s") if sf ^ s". 

Proof of Lemma. As the lemma deals with local properties of C« it is 
sufficient to prove it within an affine w-subspace of the projective space which 
contains P and 5 . By hypothesis the linear n — 2-subspace generated by any 
n — 1 curve points will approach (n — 2, 5) as these points all approach 5. 
Therefore and because P non Ç (n — 2, 5) a curve neighborhood J(«5), i.e. a set 
of points 5 containing s for which sa < s < Sb, together with a point P' suffici­
ently close to P will always generate a hyperplane H. H converges to (n — 1, 5) 
as P' —> P and 5, su 52, . . . , sn_2 converge to 5. The endpoints 5a, s& of 7(5) 
will be on the same or opposite sides of H according as they are on the same 
or opposite sides of (n — 1, 5) provided 5, sh 52, . . . , sn~2 are in a sufficiently 
small neighborhood P(5) and Pr in a sufficiently small neighborhood N' of P . 
In this event the number of intersection points of H and I(s) will be odd or 
even according as n is odd or even. Therefore H cuts I(s) in a point g(.s) in 
addition to the points s, si, . . . , sn_2 and in no further points because of the 
order of Cn by (1). For fixed $i, 52, . . . , sn-2, <l(s) rnoves continuously with 
5 because H moves continuously with s. As $(5), 5i, . . . , 5n-2 and P' define H 
completely, two different positions of 5 cannot define the same q(s) because 
the order of the curve would exceed n in this case. For the same reason q(s) 
cannot experience a reversal as 5 moves continuously in a fixed direction. As 
H—> Cn — 1, 5), q(s) —> 5. Hence neighborhoods J($), NÇP) with J(s) C I'(s), 
N(P) C iV'exist so that if 5, sh 52, . . . , 5n_2 Ç 7(5), P'G iV(P) then q(s) G P (5) 
Consequently q(q(s)) is defined and must be equal to 5 as q(s)> 5i, 52, . . . , 5n-2 
and Pr define a unique hyperplane. If we project from sh 52, . . . . , 5n-2, P' 
then Cn will be projected into a curve of order two on the affine line. Points 
for which 5 = q(s) will be projected into the reversal points of such a curve 
and as there are at most two such points we conclude q(s) 9^ s with at most 
two possible exceptions. Let 5' G 7(5), q(sr) ^ s'. Then q(s') G P(5). Let 
5 move continuously in a fixed direction in If(s) from sf to q(s'). q(s) will 
move from q(s') to 5' in a fixed direction and remain in I(s). As 1(5) is not 
the whole curve Cn this can only happen if q(s) moves in the direction opposite 
to that of 5. The lemma is now completely proved. 

We write q(s) as 3(5, 5i, 52, . . . , 5n-2) because it is a function of the n — 1 
variables 5, 5i, 52, . . . , 5n-2. If any one of these variables moves in a fixed 
direction in 7(5) while all the others remain fixed, q{s, s 1, . . . , 5n-2) will move 
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in the opposite direction. To prove the theorem we note that, as P is the 
limit of P", P 6 (n — 1,5). We assume P non Ç (n — 2, s), construct 
neighborhoods I(s)t J(s), N(P), satisfying the conditions of the lemma and 
select s"i, s*2 6 J(s), P* € N(P). Because P* £ (n - I, s*i), q(s»h s*u.. . ,s"i) 
= s^i. Now if we move each of the variables successively from s"i to s*2 the 
point q will move in the opposite direction and remain on I(s) in accordance 
with the lemma. But as I(s) is not the whole curve Cn and ç(sM

2, s
M2, . . . ^2) 

= sfi2f this is impossible. Hence P € (n — 2, s) and the theorem is proved. 

THEOREM 2. If s belongs to an arc si < s < s2 then not all of (n — 1, s) 
can pass through a single point. 

Proof. The result is true for a d as by definition two different values of 5 
define different curve points (0, s). We assume the result true for Cn-i and pro­
ceed by induction. Should an arc Si < s < s2 of Cn exist together with a 
point P so that all (n — 1, s), si < s < s2, pass through P then by Theorem 1 
all (n — 2, s), Si < s < s2, must pass through the same point. If we project 
the curve Cn from one of its points the resulting curve is a Cn-i for which all 
(n — 2, s), s 1 < s < s2 pass through the projection of P. This contradicts the 
induction assumption and thus the theorem is proved. 

DEFINITION. A system of linear subspaces 5"r is defined to converge to a 
subspace Sr if a basis aMi, aM

2, . • . , aM
r+i exists for each S"r, with /x ^ MO, such 

that a"*, 1 ^ k ^ r + 1, converges to a* where ai, a2jl . . . , a r + i is a basis of 
Sr. 

LEMMA 2. 5M
r w a se£ 0/ linear subspaces of dimension ^ r, 0 ^ r < w, 

defined for positive integers y.. The limit points of any point set P", P* £ S",., 
are a// within a linear r-subspace Sr> Then 5M

r converges to Sr as y. approaches 
infinity. 

Proof. Let Tn-r-i be any linear (n — r — l)-subspace such that the pro­
jective w-space is the direct sum of P»- r - i and 5 r . We choose /x0 so large that 
S^r contains no elements of r n - r ~ i for /x ^ j*o. This is possible as P n - r - i is a 
closed compact set which contains no elements of Sr. If vectors ai, a2, . . . , a r + i 
form a basis of Sr each 5M

r, /x ̂  Mo will have a basis a i + pi, a2 + p2 , . . . , 
a r + i + pr+i where the vectors pi, p2, . . . , p r + i define points of Tn-r-i- Hence 
all these S"r will have dimension r. All the vectors pi, p2 , . . . , p r+i must 
approach the null vector as /x approaches infinity otherwise we could construct 
3. subsequence which would contradict the hypothesis. Thus the lemma is 
proved. 

We introduce the following multiplicity convention: 
A point P is said to be within the space (n — 1, s) exactly fe-fold if P £ 

(n - k, s), P non € (w - k - 1, s), 0 < k < n, and w-fold if P = s. 

LEMMA 3. For n> 1, k> 1 an arc A of Cn contains points si, s%,. . . , Sk with 
si ^ s2 ^ . . . ^ sk and all different from one of its endpoints sa. P is a space 
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point for which P 9^ sa and P £ (n — 1, Si), 1 ^ i ^ k. Then the projection of 
P from sa will be included within at least k — 1 spaces (n — 2, s) of the projec­
tion Cn-i of Cn for which S\^ s ^ s*. Multiple inclusions are to be interpreted 
in accordance with the multiplicity convention. 

Proof. For 5 on the given arc A of Cn let Q(s) be the intersection of (n — 1, s) 
and the line saP; Q(s) is uniquely defined except possibly for 5 = sa. It is 
continuous as (n — 1, s) is continuous by (2). It cannot cover the full pro­
jective line sa P as Q(s) 5* sa, s j£ sai for all s in A including the second end-
point. For i < k let Si < s^+i; Q(si) = Q(si+i) = P but Q(s) cannot be 
equal to P for all 5 with Si < s < Si+i by Theorem 2. Hence Q(s) must attain 
an extremum at a point s'i for which Si < s'i < Si+i. Within every curve 
neighborhood of s'i two points separated by s'i must exist for which Q(s) 
attains the same value. Then by Theorem 1 and the continuity of (?(s), 
Q(s) e (n - 2, s'i). 

Let m be the number of different values of Si and let s, run through each of 
these different values exactly once. Let nj be the number of Si which assume 
the value Sj. By hypothesis £ nj = k. Let P be the projection of P from 

i 
sa and Cn-i that of Cn. As the space (n — 2, s'i) of Cn projects into the space 
(w — 2, s';) of Cn-i, P € (» —• 1 — 1, s'i). Similarly, if P Ç (n — n ; , s,) of 
Cn then P £ (n — 1 — («j — 1), ŝ ) of Cn-i- Hence P is contained in at 
least m — 1 + £ (»i — 1) = & — 1 spaces (« — 2, s) of Cn-i for which 

s\ ^ 5 ̂  s*. Thus the lemma is proved. 

THEOREM 3. No space point P is within more than n spaces (n — 1 , s) of Cn. 

Proof. This theorem is the statement that the dual of Cn has property (1). 
As C\ is self-dual it is true for C\. We assume the result for curves Cn-\ and 
proceed by induction. If the result is false for a curve Cn then an arc of this 
curve exists with distinct endpoints sa9 Sb together with n + 1 points si, s2, 
. . . , Sn+1 With Sa ^ Si ^ 52 ^ . . . ^ 5 n +l ^ Sb SO t h a t P Ç ( « — 1, S t), 

1 ^ i ^ n + 1. Multiple inclusions are interpreted in accordance with the 
multiplicity convention. P cannot be the point sa for in this case P would be 
included in (n — 1, sa) «-fold and by (1) (with the added multiplicity con­
vention) in no other spaces (n — 1, s). Let P be included in (n — 1, sa) 
Mold, 0 ^ k < n where k = 0 is to be interpreted as P non Ç (n — 1, sa). 
Then P is contained in n — k + 1 spaces (n — 1, 5) with 5 5̂  s0. If we pro­
ject from sa then the projection P of P will, by Lemma 3, be contained in at 
least n — k spaces (« — 2, s) of the projected curve Cn- i in addition to being 
contained in (n — 2, s0) &-fold. In all, P is contained in at least n spaces 
(n — 2, 5) of Cn-i in contradiction to the induction assumption. Hence P 
can be contained in at most n spaces (« — 1,5) and the theorem is proved. 

THEOREM 4. Points sMi, s^, • • • , SMM-I are defined for n = 0, 1, 2, 3, . . . , 
and all converge to s as p approaches infinity. Then the intersection 5M of the 
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spaces (n — 1, s"i), (n — 1, sM2), . . . , ( # — 1, s^-fi), 0 ^ k < n, converges to 
(n — k — lyS). The points of S" are to be included h-fold within any hyper-
plane which occurs h times in this set. 

Proof. The theorem is the statement that the dual of (2) is true for Cn. 
For k = 0 the result is a statement of the continuity of (n — 1, s) which we 
assume by (2). In particular the result is true for C\. Therefore let k > 0. 
We assume the result for Cn-i and proceed by induction. We select a point 
P" from each S*. As the dimension of 5M ^ n — k — 1 the truth of the theorem 
will result from Lemma 2 if we prove that every convergent subsequence P* 
of PM has its limit P within (n — k — 1, s). We may assume sMi ^ sM

2 ^ 
. . . ^ s^k+i- With the help of Theorem 2 we select an arc A containing s 
for one of the endpoints sa of which s 9* sa and P non Ç (n — 1, stt). If we 
choose P" sufficiently close to P, we may assume P9 non Ç (n — 1, sa) and also, 
if 5"i, s"2, . . . , s"k+i are sufficiently close to s, that these points will be within 
A and different from sa. Let P be the projection of P from s0, Cn-i t n a t °f 
C» and P" that of Py. By Lemma 3, P will be contained in k spaces (n — 2, s) 
of Cn-i with 5"i ^ 5 ^ svk+v P* will converge to P and, by the induction 
assumption applied to Cn-i, P Ç (w — 1 — k, s). Therefore P is contained 
in the space generated by sa and (n — k — 1, S)of Cn. If Pnon Ç (n—k — l,s). 
then $o will be in the space generated by P and (n — & — 1, s). As sa may be 
chosen in infinitely many ways this would contradict the assumption (1). 
Hence P Ç (» — fc — 1, 5). The theorem is then completely proved. 
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