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Introduction. Computational analysis of genome or exome sequences may improve inherited disease diagnosis, but is costly and time-consuming.
Methods. We describe the use of iobio, a web-based tool suite for intuitive, real-time genome diagnostic analyses.
Results. We used iobio to identify the disease-causing variant in a patient with early infantile epileptic encephalopathy with prior nondiagnostic genetic testing.

Conclusions. lobio tools can be used by clinicians to rapidly identify disease-causing variants from genomic patient sequencing data.
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analysis. cases [2—4], possibly because there are over 300 genes [|] known to

cause EIEE, and different panels include only subsets of these genes.
Furthermore, EIEE disease presentation may mimic other seizure
Introduction disorders, and multiple rounds of testing may be required to eliminate

Genetic Diagnosis Of Early Infantile conditions such as Angelman Syndrome before EIEE is confirmed.

Encephalopathy (EIEE)

When genetic tests fail to yield a diagnosis for EIEE, sequencing and
analysis of whole exomes or genomes may detect disease-causing var-
iants. However, analysis of genomic sequences is more expensive than
panel testing, and requires either familiarity with command-line software
tools and significant computational resources, or collaboration with a
bioinformatics expert or commercial service provider. Such analyses are
costly and time-consuming, limiting the adoption of whole exome or
genome-based approaches for routine clinical diagnoses.

EIEE is a rare but debilitating neurological disorder characterized by
frequent, typically intractable seizures within the first months of life,
severe psychomotor deficits, and low survival rate beyond infancy.
Multiple causes for EIEE are known, including genetic mutations,
metabolic disorders, and structural abnormalities of the brain. Genetic
cases of EIEE are often caused by dominant de novo mutations in
voltage-gated ion channel genes required for neuronal development,

including SCNIA, SCN2A, SCN8A, and KCNQ2 [I]. When a genetic . . . )
The lobio Tool Suite Facilitates Rapid and
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and researchers to analyze genome sequence data and obtain genetic
diagnoses, using standard equipment such as a laptop or desktop
computer and a web browser. lobio uses an intuitive user interface and
a series of web applications to perform discrete genome sequence
analyses in an interactive, visually driven fashion. Here we demonstrate
the use of the iobio tool suite to successfully analyze the whole genome
sequence of a female infant with EIEE for whom initial gene panel
testing was nondiagnostic.

Methods

Sequencing and Data Acquisition

Patients were recruited locally through the Pediatric Neurology
Clinic at Primary Children’s Hospital. This study was approved by the
University of Utah Institutional Review Board. Medical history and
electroencephalogram findings were reviewed to confirm the
diagnosis of EIEE. Magnetic resonance imaging (MRI) and laboratory
data were reviewed to confirm that patients did not have other causes
of EIEE. Exclusion criteria included the presence of an inborn error of
metabolism, an established diagnosis of a genetic syndrome, or struc-
tural brain abnormality. Proband and both parents were enrolled in the
study and provided blood samples. DNA was extracted from the
blood, and whole genome sequencing (WGS) was performed on
lllumina 10 x sequencers, at 60 X nominal genome coverage for
each sample. The sequencing reads were mapped with a “best
practices” mapping pipeline using the BWA software [5]. The resulting
alignment (BAM [6]) files were stored locally and accessed using the
iobio software tools in the Google Chrome internet browser.

Quality Control

BAM files were accessed using the bam.iobio [7] sequence alignment
inspector web app (http://bam.iobio.io) from the University of Utah
data laboratory information management system GNomEx [8], where
links for all BAM files are provided. Quality metrics, including read
coverage distribution, percentage of mapped reads, and duplication
rate were inspected visually in the web browser using the graphics
returned by the software.

Variant Calling and Prioritization

BAM files were accessed from within the gene.iobio web app (http://
gene.iobio.io) by clicking the “Files” button, selecting the relevant
samples, and then clicking “Load.” Variant calling was performed on
the selected BAM files within gene.iobio using the integrated FreeBayes
[9] calling algorithm. A prioritized list of the top 20 genes associated
with EIEE was obtained within gene.iobio by clicking “Genes” and
entering the key phrase “early infantile epileptic encephalopathy” in
the “Phenolyzer” field to generate a list of genes most likely associated
with one or a combination of input phenotype terms, using the
Phenolyzer [10] tool. All variants in this gene list were assessed by
clicking the “Analyze all genes” button within gene.iobio. ldentification
of genes harboring candidate variants was achieved by clicking the
“Filter” button and applying successive levels of filtering. The “Known
Pathogenic” button was selected to highlight any genes containing rare
variants (< 1% allele frequency in the thousands of samples present in
the 1000 Genomes Project [| I, 12] and ExAC [|3] databases) that are
already identified as pathogenic, or likely pathogenic in ClinVar
[14, 15]. To search for genes containing rare de novo variants that are
predicted to have a “High” or “Moderate” functional impact, the “De
novo VUS” button was selected (variants of unknown significance).
Returned genes were then individually selected to give a visual repre-
sentation of the variants present that conform to the de novo filter,
along with data coverage across the gene in the context of the gene
model. Variants with a severe predicted functional effect were further
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investigated using links within gene.iobio to determine their significance
and likelihood of disease causation.

Results

The subject of our study is a female infant who presented with a
confusing mixture of seizures, hypotonia, and apneic episodes in the
first week of life. The seizures persisted, and then the patient also
developed severe neurodevelopmental impairment. Because of the
mixture of hypotonia and epilepsy, a wide range of diagnostic tests
were ordered, including brain MRI, testing for inborn errors of
metabolism, testing for causes of hypotonia (including for Prader-Willi
Syndrome and for muscular dystrophies), and testing for epilepsy
disorders with specific treatment implications (such as pyridoxine-
dependent epilepsy and glucose transporter defect). Genetic testing
(all of which was normal) included a SNP microarray, and a gene panel
for causes of epilepsy and neurodevelopmental impairment (which
included ARX, ATRX, CDKL5, FOXGI, MEF2C, MEDI7, NRXNI,
OPHNI, PCDH19, PNKP, SLC2A1, SLC9A6, TCF4, UBE3A, ZEB2). The
patient was subsequently enrolled in the present study, in which
WGS was carried out to identify potentially causative de novo muta-
tions. The WGS data was processed with a standard read mapping
pipeline at the USTAR Center for Genetic Discovery. When alignment
(BAM) files were available, we used the iobio tools to confirm data
quality and to identify the likely causative de novo variant causing EIEE
in the patient.

To ensure reliable diagnoses, an evaluation of the quality of the
underlying data prior to variant analysis was performed. We
investigated data quality parameters using bam.iobio for all 3 samples in
the EIEE trio. Data quality statistics were generated in <10 seconds per
sample. Fig. | reports the sequence alignment metrics for the
proband: corresponding metrics for the 2 parents were similar. The
read coverage showed a Poisson distribution centered on ~80 %,
higher than the expected value of 60 X . Sequencing fragment length
(averaging roughly 325 bp), mapping rate (>99% of reads mapped),
and mapping quality (a large fraction of the reads mapping with
mapping quality (MQ) >40) were as expected for high quality
sequence data. However, this sequencing library had unusually large
(16.9%) polymerase chain reaction (PCR) fragment duplication rate
(the optimal rate is <5%). Although the high duplication rate meant
that overall effective sequence coverage was only about 5/6th of the
measured >80 %, the resulting >60 X effective coverage was still
sufficient for accurate de novo mutation detection.

To search for the variant that caused the disease in the patient,
we first defined the location of the sequence alignment (BAM) files
from the 3 members of the family trio, then added a list of genes known
to be associated with early childhood seizures using the Phenolyzer
function. Next, due to the absence of defined variant call format
[16] files, the Freebayes variant calling algorithm, available natively
within gene.iobio, automatically generated variant calls within this set of
genes in about 2 minutes. Variants in the proband and 2 parents,
together with the underlying sequence coverage, were then
visualized (see Fig. 2).

In addition to generating the variant calls, gene.iobio also prioritized the
variants using variant frequencies in the 1000 Genomes Project and the
ExAC database [I3] (updated to gnomAD [I7] by the time of this
publication; and noting that only variants with low population allele
frequencies are likely to cause EIEE, a rare and usually dominant con-
dition), predicted functional impact by the VEP prediction software
[18] (noting that variants with high predicted impact on function are
more likely to be causative) and presence in ClinVar (noting that the
causative variant may already be present in disease variant databases).
This prioritization is presented in the “Ranked Variants” table (situated
between the gene panel and sample data panel in the app), where the
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Fig. I. Examining sequence alignment quality in the proband using the bam.iobio tool. Sequence coverage across all chromosomes (top middle), and relevant

alignment metrics are visualized, including the distributions of read coverage, fragment length, and mapping quality (histograms on the right); as well as summary
metrics including read mapping rate, and polymerase chain reaction (PCR) duplication rate (ring charts on left).

variants with the most significant effect appear to the far left. All of the
genes defined in the initial panel appear at the top of the page with a
visual summary of the high impact variants contained within them.
Using this table, the highest ranked gene was determined to be SCN2A.

The highest ranked variant in SCN2A was a missense variant
(ENST00000375437.2:c.647T > G) showing a de novo inheritance
pattern with 0% allele frequency in the EXAC and 1000 Genomes
databases. The variant is predicted by SIFT [19] to be deleterious, by
PolyPhen [20] as “probably damaging” and is marked in ClinVar as
likely pathogenic. SCN2A encodes for the alpha subunit of a voltage-
gated neuronal sodium channel known to be associated with EIEE [21].
A quick analysis of the other highly ranked genes unearthed no other
variants likely to be implicated in EIEE for this patient. The missense
variant in SNC2A meets American College of Medical Genetics and
Genomics criteria [22] as likely pathogenic and was deemed diagnostic
for the subject. Subsequent confirmatory clinical testing with a second,
EIEE-specific gene panel including the SCN2A gene validated this variant
finding.

Discussion

We developed the iobio tool suite with the goal of enabling clinicians
and researchers with minimal bioinformatics expertise and limited
access to computational resources to rapidly perform complex
genome analyses for diagnosis and discovery purposes. lobio tools are
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web applications that spare the user from having to run UNIX
command line programs, offer intuitive user interfaces, present results
visually, and obviate the need for extensive training. These web tools
are architected such that all analyses are carried out on “backend”
servers currently hosted on Amazon Web Services (although local
copies of the tools are also available upon request, to allow analysis of
patient data securely behind institutional firewalls), and the web client
is only responsible for the visual “rendering” of the results. Because
the tools analyze only the small portion of the underlying genomic data
that is immediately relevant, either sampling a representative fraction
of the data to estimate critical statistics (e.g., read coverage), or
targeting specific regions of a patient’s genome (e.g., a gene or subset of
genes), both data analysis on the backend server and data transfer
between the server and the client can be reduced to seconds, allowing
the tools to return results in real time. Furthermore, because of the
small amount of data that needs to be transferred, wired or wireless
networks typically available in a hospital or research office are
sufficient. Finally, because all analyses are performed server-side, iobio
analyses can be carried out on laptop computers purchased within the
past few years, that is without any “special” hardware. By reducing
analysis time and eliminating the need for bioinformatics expertise and
computational infrastructure, we aim to increase the relative
cost-effectiveness of genome sequencing-based diagnoses and improve
genetic diagnostic rates.

A number of effective variant investigation and prioritization tools are
currently available in the commercial sector (Opal from Fabric
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Fig. 2. Identifying the causative variant in the proband using the gene.iobio tool. This tool facilitates sample data selection (i.e., sequence alignment and variant files

for the proband and parents); candidate gene list generation according to the patient phenotype; variant filtering according, for example, to mode of inheritance,

observed and/or predicted pathogenicity, and population frequency; and gene/variant ranking and prioritization. The insert shows the salient properties of the

diagnostic de novo disease-causing variant in the proband pinpointed by the tool.

Genomics [23], the Ingenuity Variant Analysis Tool [24], the Alamut
software suite [25], WuXi NextCode’s clinical analysis software suite
[26], Congenica’s Sapienta platform [27]) and in the public domain
(QueryOR [28], PhenlX [29], MedSavant [30]). Our iobio tools offer
unique analysis capabilities not available from these tools. For example,
iobio is the only variant prioritization tool that integrates access to the
primary data (i.e., to the BAM format read alignments), allowing the
analyst to examine the underlying sequencing data and uncover
potential data quality issues. For example, in our gene.iobio tool,
variants are displayed directly adjacent to the corresponding read
coverage at that location, reducing the potential for making incorrect
calls due to insufficient sequencing data. In addition, iobio tools uniquely
offer variant calling on demand, enabling analysis before batched
variant calling is complete. Furthermore, iobio is the only tool to offer
real-time analysis capabilities beyond variant filtering and sorting, and a
sophisticated visual interface promoting intuitive analysis with minimal
training.

In this study, we used our iobio tool suite to analyze >60x WGS
lllumina data from an EIEE patient that had previously received a
nondiagnostic panel test for neurodevelopmental disorders involving
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seizures, and was then recruited into a research study. Our
analyses uncovered the likely diagnostic variant in SCN2A. Though
SCN2A is a well-characterized cause of EIEE, it was not included in the
previous genetic testing for this patient because of her complex phe-
notypic presentation including epilepsy and hypotonia, and later by
profound neurodevelopmental impairment. The case illustrates the
difficulty in selecting the appropriate panel test for genetically and
phenotypically heterogeneous conditions, even when epilepsy (EIEE)
symptoms are a prominent feature. The mutation has since been
confirmed, the family has received counseling, and treatment has
proceeded accordingly.

We note that our iobio analyst was able to confirm data quality and
identify the SCN2A mutation using a standard laptop within minutes of
selecting the BAM files, bypassing the need for any large-scale com-
puting. The analysis did not require the upload of large BAM files
(because iobio only accesses the relevant portions of the data files from
their storage location). Furthermore, the analyst was able to carry out
the analysis without running a whole-genome variant calling pipeline
(because iobio has the ability to call variants “on demand” in the regions
of selected genes).
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In the EIEE case presented here, 60 X WGS data was available as part
of the research study. Importantly, the large size of our data set
compared with an exome or gene panel data set did not reduce the
speed or ease of our iobio analysis. The physician’s expertise and
familiarity with clinical information of the patient was especially helpful
to narrow in on the most common genes and variants and to deter-
mine mode of inheritance. Although gene.iobio allows the analyst to
highlight, for example X-linked dominant, recessive, or autosomal
dominant variants, physician knowledge led us to search for de novo
mutations in the patient presented above. Like a hypothesis-based
panel test, gene.iobio operates by analyzing subsets of genes with a high
likelihood of association with the disease, reducing the functional
search space to cover the “usual suspects” first. However, unlike a
panel test, if the causative variant is not discovered in the first pass, the
search can be broadened immediately and iteratively to include any
additional gene or subset of genes, rather than ordering another panel
test. This is currently accomplished by the embedded Phenolyzer tool
that can pull in additional genes potentially associated with a given
condition, enabling discovery of novel genes and variants. Thus, the
gene.iobio tool offers the advantages of a targeted, hypothesis-based
panel approach, with the option to expand the search iteratively across
the entire exome or genome when necessary.

Although our team included informatics experts who were able to
help our clinicians, we believe that these tools are easy to utilize
without help from such informatics specialists. In order to use iobio
apps, a clinician needs access to their patient’s/research subject’s
sequence alignment files (BAM [6]) and/or VCF [16] file(s). These files
need to be indexed (a standard step performed in modern bioinfor-
matics pipelines) to allow access to specified genomic regions
(e.g., genes), and must either be accessible as a URL, or be stored
locally on the clinician’s own computer. The “Files” tab in gene.iobio
provides the interface to select the files for analysis. The GNomEx [8]
genomic data LIMS at the our institution simplifies this process by
providing clickable links for our physician/analysts to commence
analysis on a given patient. Similar integration at the research/clinician’s
own institution may provide substantial convenience. Although basic
functionality in gene.iobio is intuitive, we have provided a host of
educational materials to help with the many advanced features this tool
offers: instructional videos are available on the gene.iobio landing page,
and topical tutorials and explanatory blog posts are accessible from the
tool’s “Help” tab.

The analysis presented here demonstrates that our novel iobio web
tools are already effective for fast and intuitive diagnostic variant
investigation and prioritization. We continue to develop these tools
both to add new functionality and to improve ease of use for our
clinician users. One planned improvement is the incorporation of
functionality to evaluate variants of unknown significance according to
the complex American College of Medical Genetics and Genomics
criteria [22]. We suggest that clinicians using gene.iobio will be able to
diagnose a large fraction of clinical cases quickly and conclusively,
eliminating further rounds of testing for many patients and their
families. Some fraction of analyses will reveal variants with clinically
uncertain effects that must be functionally validated before impacting
patient treatment. Though these findings may not be immediately
actionable in the clinic, such novel discoveries will expand our
understanding of disease etiology, guide translational research, and
help future patients.
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