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A small sphere fixed at various drafts was subjected to unidirectional broad-banded surface
gravity wave groups to investigate nonlinear exciting forces. Testing several incident
wave phases and amplitudes permitted the separation of nonlinear terms using phase-
based harmonic separation methods and amplitude scaling arguments, which identified
third-order forces within the wave frequency range, i.e. third-order first-harmonic forces.
A small-body approximation with instantaneous volumetric corrections reproduced the
third-order first-harmonic heave forces very well in long waves, and at every tested
draft. Further analysis of the numerical model shows these effects are primarily due
to instantaneous buoyancy changes, which for a spherical geometry possess a cubic
relationship with the wave elevation. These third-order effects may be important for
applications such as heaving point absorber wave energy converters, where they reduce the
first-harmonic exciting force by ∼10 % in energetic operational conditions, an important
consideration for power capture.

Key words: surface gravity waves, wave-structure interactions

1. Introduction
One key design consideration for offshore structures is the exciting force induced by
surface gravity waves. In calm seas where wave amplitudes are small, linear potential
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flow theory suffices for predicting the dominant linear force. However, due to the
nonlinear nature of wave–structure and wave–wave interactions, nonlinearities become
increasingly important as the wave amplitude increases. While the super- and subharmonic
nonlinear forces can excite high-frequency structural resonances in fixed or taut-moored
structures (Huseby & Grue 2000; Jagdale et al. 2022) and low-frequency motion
responses of soft-moored floating structures (Coulling et al. 2013; Orszaghova et al. 2021),
respectively, wave-frequency forces are predicted sufficiently well by linear theory for
most applications. Studies of nonlinear potential flow effects within the wave frequency
range are therefore relatively scarce.

In this study, we provide substantial evidence of a nonlinear term known to manifest
in the wave frequency range with third-order amplitude scaling. Such third-order first-
harmonic loading terms are rarely addressed explicitly in the existing literature (Newman
(1996) and Orszaghova et al. (2021) are examples) and existing third-order diffraction
theories generally consider the superharmonic component only (Faltinsen et al. 1995;
Malenica & Molin 1995; Teng & Kato 2002). However, for wave energy converters
designed to resonate with incident waves, nonlinearities in the wave frequency range are of
most interest. Improving our understanding of these effects should lead to more efficient
designs and more accurate power capture estimation.

Numerous partially nonlinear studies have implicitly modelled some third-order first-
harmonic terms within their total exciting forces (Ferri et al. 2013; Zurkinden et al. 2013;
Giorgi & Ringwood 2017; Nielsen et al. 2018), without explicitly separating individual
harmonic terms. The present paper explores a simple example of this term in greater detail
using both experimental and numerical results to confirm its properties and comment on
its origin.

2. Experimental set-up
The experiments were conducted in the wave flume (see figure 1 for dimensions) at
the Coastal and Offshore Research Laboratory, University of Western Australia. A HR
Wallingford hinged wavemaker was used to generate unidirectional waves. An aluminium
sphere, supported from above by a three-axis 50 N Interface load cell, was positioned along
the longitudinal symmetry axis of the flume and close to the wavemaker, to maximise the
time window prior to wave reflections from the beach, whilst far enough away to avoid
evanescent waves. An Edinburgh Designs resistance wave gauge array was used to measure
the wavefield. The instruments sampled data at 256 Hz or higher and were synchronised
through an electronic trigger.

The incident waves were NewWave-type focused wave groups (Tromans et al. 1991;
Taylor & Williams 2004) derived from a JONSWAP spectrum, with the first-harmonic
(assumed linear) content given by

ηNW
ψ (t)=

∑
i

Ai cos (ωi t +ψ), Ai = A

σ 2S(ωi )�ω. (2.1)

Here, Ai is the amplitude of the i th angular frequency ωi , ψ is the focus phase, A is
the linear wave group amplitude at focus, σ 2 is the zeroth moment of the spectrum S
and �ω is the angular frequency spacing. The focus time is assumed at t = 0. The input
wave spectrum spans from 0 to 2.5 times the peak frequency f p. Six focus amplitudes,
three peak periods, two phases at focus and five model drafts were tested, with select
combinations excluded as the wave runup overtopped the sphere (see table 1).

Undisturbed wave tests were run in the absence of the model, with a wave gauge position
corresponding to the sphere centre. All free surface data in this paper are from this wave
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Figure 1. (a) Elevation and (b) plan view of the experimental set-up with key dimensions labelled.
Corresponding photo in (c) and short video (graphical abstract) linked.

A (m) kp A d/R

0.020 0.017, 0.031, 0.052 0.6, 0.8, 1.0, 1.2, 1.4
0.030 0.026, 0.046, 0.078 0.6, 0.8, 1.0, 1.2, 1.4
0.040 0.035, 0.062, 0.104 0.6, 0.8, 1.0, 1.2, 1.4
0.050 0.043, 0.077, 0.130 0.6, 0.8, 1.0, 1.2, 1.4
0.060 0.052, 0.093, 0.156 0.6, 0.8, 1.0, 1.2
0.070 0.061, 0.108, 0.182 0.6, 0.8, 1.0

Table 1. Nominal experimental parameters. Steepness values kp A correspond to f p = (0.40, 0.60, 0.80) Hz.
Non-dimensional depth and radius are kph = (0.95, 1.70, 2.85) and kp R = (0.11, 0.19, 0.32). Here, d and R
denote the sphere draft and radius, h the water depth, f and k the wave frequency and wavenumber and �p the
quantities at the peak frequency.

gauge. A wave iteration technique (Stagonas et al. 2014; Buldakov et al. 2017) was used
where necessary to achieve the desired first-harmonic components at focus as per (2.1),
and second-order wave generation theory (Schäffer 1996) employed to minimise second-
order error waves. These steps were necessary to obtain demonstrably clean results (see
Tan et al. (2023) for an earlier campaign). Note that all the raw experimental data used
to produce the results in this paper are included as supplementary material (see data
availability statement). This comprises synchronised time series of the total undisturbed
free-surface elevation and the total heave force. Note that we define heave as positive
upwards.

3. Harmonic structure and separation
Within potential flow theory, any weakly nonlinear response, e.g. the free-surface
elevation, wave exciting force, can be decomposed into a Stokes expansion:

F(t)= F (11) + F (20) + F (22) + F (31) + F (33) +O(A4), (3.1)

where the superscripts in each term F (mn) represent the mth order and the nth harmonic,
i.e. a term that scales with Am and appears around n f p in the frequency domain (see
figure 6). Therefore, F (11) is simply the first-order first-harmonic (linear term) and F (31)

is the third-order first-harmonic which arises due to (+ + −) interactions of triplets of
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components. For an incident wave specified in (2.1), this third-order force has the form

F (31)(t)=
∑

i

∑
j

∑
k

AiA jAk

∣∣∣F (31)
∣∣∣ cos

(
(ωi +ω j −ωk)t +ψ + arg

(
F (31)

))
,

(3.2)
where F (31)(ωi , ω j , ωk) is the corresponding third-order first-harmonic wave-to-force
complex transfer function (TF).

For broad-banded incident waves, harmonic separation can be achieved using phase-
based techniques which combine different phase realisations to extract certain terms
(Fitzgerald et al. 2014). We use two-phase harmonic separation to firstly isolate the odd
harmonics:

Fodd(t)= 1
2

(
Fπ/2 − F3π/2

) = F (11) + F (31) + F (33) +O(A5), (3.3)

where Fπ/2 and F3π/2 are the resulting forces from up- and down-crossing incident wave
groups ηNW

π/2 and ηNW
3π/2. A low-pass filter removes F (33), leaving only F (11) + F (31) in the

wave frequency range. These phase-based techniques alone are, however, unable to further
separate F (11) and F (31) due to their identical phase dependence, no matter how many
phases are used. However, the initial inseparability of these two first-harmonic terms is
key to interpreting the results of this study.

Theoretically, one could simply subtract a numerically calculated F (11) from an
experimental F (11) + F (31) to isolate F (31), but this can produce unreliable results due
to small errors between the experimentally measured waves and forces. Even these small
errors are substantial when subtracting two large signals to find a small residual. Therefore,
most of the following analysis utilises the TF moduli which are less sensitive to these errors
(but the phases are also important in more general cases). We then use the TFs to derive
an experimental linear force for this purpose.

4. Experimental results
We first present results for the hemispherical draft (d/R = 1.0) in the longest waves
(kp R = 0.11). The first-harmonic undisturbed wave η(11) + η(31) and heave exciting force
F (11) + F (31) time series are plotted in figure 2. The six amplitudes tested are shown in
both raw and amplitude-normalised forms, where the normalisation is performed using the
peaks of the first-harmonic wave envelopes, A, all of which are within 1% of the nominal
values.

While the waves collapse under this first-order normalisation, the heave forces exhibit
noticeable amplitude separation such that the first-harmonic force scales slightly less
than linearly. This ordered amplitude separation suggests that nonlinear contributions are
present. The phase, however, seems to be largely unaffected. To further investigate this, we
form the first-harmonic wave-to-force TFs:

F (1)(ω)≈ F̂ (11) + F̂ (31)

η̂(11) + η̂(31) = F̂ (11)

η̂(11) +O(A2), (4.1)

where the ‘hat’ represents the equivalent quantity as a complex amplitude. The TF moduli
are plotted in figure 3 to examine the amplitude scaling across the linear frequency range.
The experimental results are plotted in thin blue lines while the bold blue line shows
the result from linear theory (other graphical features are introduced later). In this form,
the amplitude separation is far more apparent and shows a characteristic feature where
the separation is minimised around the peak frequency and increases towards the tails of
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Figure 2. Raw (a,b) and normalised (c,d) first-harmonic incident waves (a,c) and heave exciting forces (b,d).
Darker lines are smaller-amplitude tests.

the spectrum. This is indicative of nonlinear terms which possess broader bandwidths as
a result of sum- and difference-frequency interactions (a well-known property of broad-
banded nonlinear terms sometimes referred to as ‘spectral smearing’; Fitzgerald et al.
2014). As such, the linear term dominates around the peak wave frequency with minimal
influence of the nonlinear terms, whereas the relative contributions of the nonlinear terms
increase towards the tails of the spectrum, where the linear term subsides more rapidly
(see figure 6). We also highlight the utility of broad-banded wave groups, as this defining
feature would not be apparent in monochromatic waves.

While not shown here for brevity, the amplitude-normalised first-harmonic paddle
motion signals (used to generate the incident long-wave groups) collapse linearly to
within 0.7 % of each other at the peak (similarly to the undisturbed waves which
show 0.2 % separation, while the force separations are up to 8 %). This suggests that
no significant spectral evolution occurs between the paddle and model locations and
that η(31), arising from nonlinear wave–wave interactions (Madsen & Fuhrman 2012),
is negligible, consistent with expectations in these low-steepness conditions (kp A =
[0.017, . . . , 0.061]). We also approximate the theoretical η(31) in these conditions using
the Stokes wave coefficient and narrow-banded approximation (Walker et al. 2004; Zhao &
Liu 2022) which shows that the magnitude of η(31) is less than 1 % of η(11) and is therefore
neglected in the subsequent analysis. Referring back to (4.1), the nonlinear behaviour in the
first-harmonic TFs therefore appears to be largely a result of the nonlinear first-harmonic
force F (31) rather than nonlinearities in the wave.
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Figure 3. First-harmonic TF moduli for a hemisphere (d/R = 1.0) in long waves (kp R = 0.11). Thin solid blue
lines are experimental first-harmonic TFs derived from data in figure 2. The bold solid blue line is the linear
TF calculated by WAMIT (2020). Green, magenta and orange lines are experimentally extrapolated linear
TFs for A → 0 from second-, third- and fourth-order amplitude scaling, respectively. Thin dashed blue lines
are the modelled first-harmonic TFs using the small-body approximation equation (5.3). The inset plot shows
the fitting procedure at the frequency slice denoted by the dash-dotted black vertical line. The coefficient of
determination (R2) is given in the inset plot for each fit.

The amplitude scaling of these nonlinear first-harmonic forces should be cubic if they
are truly third-order terms. If we consider the first harmonic as a sum of the linear force
and a nonlinear force of an undetermined order m, then the TFs adopt the form

F (1)(ω)≈ F̂ (11) + F̂ (m1)

η̂(11) =F (11) +F (m1)
flat

(
η̂(11)

)m−1
, (4.2)

where F (11) is the linear wave-to-force TF and F (m1)
flat is the so-called quasi-TF or flat

nonlinear TF (Taylor et al. 2007; Grice et al. 2015; Zhao et al. 2021) which is a one-
dimensional approximation of the full m-dimensional quantity F (m1). For example, for
the third-order first-harmonic TF,

F (31)(ωi , ω j , ωk)≈F (31)
flat (ωi+ j−k), (4.3)

where F (31)
flat is a function of a single frequency – the output (+ + −) frequency ωi+ j−k

which spans the linear-wave frequency range and beyond due to spectral smearing
discussed above.

Therefore by fitting (4.2) for a given m to the experimentally obtained TFs, we can
determine the order of the dominant nonlinear contribution. In general, this can be done
by fitting complex coefficients F (11) and F (m1)

flat with the available experimental F (1) and
η̂(11). However, in our case where the nonlinear term simply appears to be in antiphase
with the linear term, as seen in figure 2, we can reduce the number of fitting degrees of
freedom to obtain more definitive fits. This is done by using the TF moduli,
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∣∣∣F (1)(ω)

∣∣∣ =
∣∣∣∣F (11) +F (m1)

flat

(
η̂(11)

)m−1
∣∣∣∣ , (4.4)

which can be expanded through standard complex arithmetic,
∣∣∣F (1)(ω)

∣∣∣ =
√∣∣F (11)

∣∣2 +
∣∣∣F (m1)

flat
(
η̂(11)

)m−1
∣∣∣2 + 2

∣∣F (11)
∣∣ ∣∣∣F (m1)

flat

∣∣∣
∣∣∣(η̂(11)

)m−1
∣∣∣ cos�θ.

(4.5)
Taking �θ = π , the phase difference between F (11) and F (m1)

flat , recognising
∣∣η̂(11)

∣∣ ∝ A
and utilising a perfect square, the expression simplifies to∣∣∣F (1)(ω)

∣∣∣ =
∣∣∣α− βAm−1

∣∣∣ , (4.6)

where α = |F (11)| and β is a real positive coefficient.
Consider the TF moduli at a given frequency slice. The inset plot in figure 3 shows an

example at 1.8 f p, where |F (1)| is plotted as a function of A. Three fits are shown, for m =
2, 3, 4. The y-axis intercept, i.e. the fitted value of α, is the modulus of the experimentally
derived linear TF, |F (11)|. This procedure is then repeated across the entire first-harmonic
frequency range and results are shown in the green, magenta and orange lines of the main
plot. Clearly, the experimental linear TF assuming third-order scaling is the best fit and
appears to agree very well with the numerical linear TF, confirming that the observed
nonlinear features are due to third-order effects.

The Morison-type drag force also manifests in the wave frequency range (Molin 2023)
and therefore could affect the first-harmonic TFs. In the long-wave limit, F (11) reduces
to buoyancy, which is proportional to η(11). On the other hand, vertical components of
the drag force (in the wave frequency range) largely follow the phasing of vertical fluid
velocity and exhibit a π/2 phase shift relative to F (11). This results in an increase of the
TF modulus, as adding a signal in quadrature increases the resultant amplitude. However,
this is clearly not the case for the observed data. We thus find strong evidence that the
observed nonlinear effects are in fact due to third-order first-harmonic force components.
Furthermore, this method derives an experimental F (11), which can be subtracted from
F (11) + F (31) to isolate F (31), shown in figure 6. We believe this is the first time this has
been accurately and robustly achieved.

5. Small-body approximation

5.1. Comparison with experiments
To model the third-order first-harmonic forces, we start with the classical linear small-body
(SB) approximation (Newman 2017a; Falnes & Kurniawan 2020), according to which the
heave exciting force, in the frequency domain, becomes

F̂ (11)
SB (ω)� ρgS0η̂

(11)(ω)+ ρV0

[
â(11)(ω)

]
z̄

+ m(ω)
[
â(11)(ω)

]
z̄
+ b(ω)

[
û(11)(ω)

]
z̄
. (5.1)

This can be rewritten in the time domain as

F (11)
SB (t)� ρgS0η

(11)(t)+ ρV0

[
a(11)(t)

]
z̄

+
∫ ∞

−∞

(
m(ω)

[
â(11)(ω)

]
z̄
+ b(ω)

[
û(11)(ω)

]
z̄

)
eiωt dω,

(5.2)
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where ρ is the water density, g the gravitational acceleration, S0 and V0 the equilibrium
waterplane area and submerged volume, a(11) and u(11) the linear fluid vertical
accelerations and velocities, m and b the vertical added mass and radiation damping
coefficients and [. . . ]z̄ indicates the fluid kinematics evaluated at a chosen representative
spatial point. For an axisymmetric body, the inherent horizontal reference coordinate
lies on the vertical axis of rotational symmetry, while a natural choice for the vertical
coordinate is the centroid z̄ calculated from V0. While the diffraction forces (third and
fourth terms in (5.1) and (5.2)) are approximated in different forms depending on the
strictness of the SB assumptions (e.g. some authors forgo radiation damping terms but
others retain them), only the Froude–Krylov forces (the first and second terms) are
necessary to model the behaviour of interest, so any appropriate form of the diffraction
force will suffice.

The first term is the linearised excess buoyancy force, which we rewrite in a nonlinear
form as ρg(V (t)− V0) using the instantaneous submerged volume V (t). For consistency,
V0 in the second term is also replaced with V (t). The nonlinear SB model is then

FSB(t)� ρg (V (t)− V0)+ ρV (t)[a(t)]z̄

+
∫ ∞

−∞

(
m(ω)[â(ω)]z̄ + b(ω)

[
û(ω)

]
z̄

)
eiωt dω. (5.3)

Much of the observed nonlinear features in the first-harmonic forces can be successfully
modelled using (5.3), with V (t) calculated as per (5.4) using the undisturbed first-
harmonic waves, i.e. η→ η(11), and with linear theory used for a(t), â(ω), û(ω). However,
to improve modelling of the second-order forces (see figure 6), second-order incident
wave quantities are modelled according to Dalzell (1999), i.e. η→ η(11) + η(20) + η(22)

and similarly for the kinematics. Then FSB(t) is processed identically to the experimental
F(t) to obtain numerical first-harmonic TFs, plotted with dashed lines in figure 3.

The SB approximation evidently captures the amplitude separation features very
accurately. To understand why these simple volumetric corrections are so effective, we
first consider the relative size of the Froude–Krylov terms in (5.3). Under the tested low-
steepness wave conditions, a is significantly smaller than g, and buoyancy is dominant.
Since buoyancy solely depends on V (t), we further investigate this by assuming that η
is flat across the body (consistent with the SB assumptions and valid for kp R = 0.11).
The instantaneous submerged geometry is then a spherical cap whose volume adopts the
simple algebraic form

V (t)� 1
3
π

(
2R3 + 3R2η(t)− η3(t)

)
, (5.4)

where the constant first term is the equilibrium submerged volume, V0. This approximate
form clearly demonstrates that the instantaneous volume, and by extension the buoyancy
force, has third-order dependency on the wave elevation in antiphase with the first-order
dependency, exactly as the experimental results have shown.

We now introduce results for other drafts of the sphere and plot the experimental and
numerical first-harmonic TFs in figure 4. The amplitude separations at these drafts are also
modelled relatively well, with some discrepancies at the end of the high-frequency tail, but
nevertheless reproducing the correct behaviour between drafts. Since the linear coordinate
transformation η(t)→ η(t)+ d − R can be used in (5.4) for a sphere at an arbitrary draft,
the above discussion for the hemisphere and the efficacy of the SB model apply to these
drafts also. Therefore F (31) is in antiphase with F (11) at any draft, in long waves.

In short waves (kp R = 0.32), the experimental TF moduli seen in figure 5(b) indicate
that linear theory appears to be largely sufficient for accurate predictions of the
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Figure 4. First-harmonic TF moduli extracted from experiments (thin solid) and calculated from the SB
numerical model (thin dashed) for non-hemispherical geometry cases. The graphic in each subplot shows the

equilibrium draft of the sphere.
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Figure 5. Experimental (thin solid) first-harmonic TF moduli for the hemisphere in the intermediate-wave
(a) and short-wave (b) conditions. Vertical black lines mark cross-mode frequencies of the wave flume. Note
that in these conditions, the iterated wave paddle motions (prior to inclusion of second-order wave generation
signals) do not scale linearly with A, indicating wavefield evolution between the paddle and model locations.

first-harmonic heave force. The TF phase, which is not shown here, also has little deviation.
The intermediate waves (kp R = 0.19) shown in figure 5(a) appear to be in a regime
between the long and short waves. Other drafts in the intermediate- and short-wave
conditions lead to similar conclusions. The SB model is not applied in these conditions
as they substantially violate the underlying assumptions and overestimate the third-order
corrections. Note that the sharp troughs in the TF moduli are caused by transverse modes
trapped between the sidewalls of the flume (Newman 2016, 2017b). The effects of these
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Figure 6. Experimentally measured (solid) and numerically modelled (dashed) heave exciting force harmonics
in the time (a,c,e) and frequency (b,d,f ) domains induced by wave groups of kp A = 0.061 and kp R = 0.11. The
graphic in each row shows the equilibrium draft of the sphere. Band-pass-filtered regions for each harmonic are
[0.60, 2.50] f p for (11), [0, 1.20] f p for (20), [1.45, 3.70] f p for (22), [0.10, 2.55] f p for (31) and [2.65, 4.80] f p
for (33).

cross-modes on the numerical linear TFs were calculated in WAMIT (2020), using the
channel width.

We now show the experimental and numerical forces induced by the largest-amplitude
(kp A = 0.061) long wave (kp R = 0.11) in figure 6. Force F (31) has been separated
explicitly by subtracting the experimentally derived F (11) from F (11) + F (31). With the
volumetric corrections and inclusion of the second-order potential, which primarily affects
F (20) and F (22), all harmonics up to third order are modelled rather accurately. While the
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largest nonlinear force is F (20) at d/R = 1.0 and F (22) at d/R = 0.8 and 0.6, F (31) is
comparable in magnitude. Even in these conditions, the F (31) peak in the time series is
∼10 % of the F (11) peak, a considerable component of the total force.

5.2. Further implications
It is of interest to examine the ratio of the F (31) correction terms discussed here to
F (11) at the same frequency. To simplify the analysis, we consider regular waves and the
hemispherical geometry (d = R) only. The third-order terms which emerge from (5.4)
are

V (31)(t)+ V (33)(t)� π

(
R2

(
η(31) + η(33)

)
− 1

3

(
η(11)

)3
)
, (5.5)

from which the amplitude of the first-harmonic terms may be separated as
∣∣∣V̂ (31)(ω)

∣∣∣ � π

(
R2k2 B(31) − 1

4

) (
A(11)

)3
, (5.6)

where B(31)(ω) is the Stokes wave coefficient corresponding to η(31) (Zhao & Liu 2022).
The ratio of amplitudes is then∣∣∣∣∣

F̂ (31)
SB (ω)

F̂ (11)(ω)

∣∣∣∣∣ �
∣∣∣∣∣
ρgV̂ (31)

F (11)A(11)

∣∣∣∣∣ � πρg

∣∣∣∣∣
4R2k2 B(31) − 1

4F (11)

∣∣∣∣∣
(

A(11)
)2
. (5.7)

To draw more accessible relationships from this expression, we consider deep-water
conditions and further approximate F (11) using (5.1), where m and b are rewritten with
expressions from Hulme (1982) and the kinematics are evaluated at z̄ = 0 for simplicity,

F (11)
SB (ω)= πρgR2

(
1 − 2

3
K R (1 + L +O (K R ln(K R)))− i O

(
(K R)2

))
, (5.8)

now in terms of K the deep-water wavenumber and L the zero-frequency added mass
(given by Hulme 1982). As the incident (31) velocity potential is zero (Zhao & Liu 2022),
there is no extra Froude–Krylov (31) term in this case. Thus,∣∣∣∣∣

F̂ (31)
SB (ω)

F̂ (11)
SB (ω)

∣∣∣∣∣ � 1
4

(
A(11))2

R2

(
1 + 2

3
K R(1 + L)+O

(
(K R)2

))
. (5.9)

The leading term is inherent in (5.4), but the results suggest that the correction becomes
more significant as the wavenumber increases from 0, for a small body. The correction
from the η(31) term is not important in deep water; however, it could be non-negligible in
shallower water.

Finally, we consider some of the implications for general axisymmetric geometries
similarly dominated by buoyancy. The dynamic volume of an axisymmetric body with
a general vertical profile r(z) in long waves is

V (t)− V0 � π

∫ η(t)

0
r2(z) dz. (5.10)

Any profile r(z) can be written as the sum of even and odd functions and expressed as a
Taylor series around z = 0 (which is exact for a sphere). The integrand is therefore

r2(z)= (rodd(z)+ reven(z))
2 = r2

odd(z)+ r2
even(z)+ 2rodd(z)reven(z). (5.11)
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Only if the profile is neither odd nor even will there be an odd term in the integrand,
rodd(z)reven(z) �= 0. However, for a purely even or purely odd profile, the volume is only a
function of odd powers of η:

V (t)− V0 � C1η(t)+ C3η
3(t)+ C5η

5(t)+ · · · , (5.12)

where Ci is a constant coefficient. If the wave is mostly linear, η→ η(11), then the volume
and force harmonics will be mostly composed of odd harmonics. This simple property is
noteworthy as it applies to many point absorbers which are typically symmetrical around
the waterline, i.e. even vertical profiles. However, in cases where nonlinear waves are non-
negligible, e.g. consider η→ η(11) + η(20) + η(22), then F (20) can arise through πR2η(20)

in (5.4), as seen for the hemisphere in figure 6(a) as a setdown, slowly varying downwards
force.

When there are both odd and even powers of η in the volume, terms such as F (20) will
contain contributions from both (η(11))2 and η(20). For example, the non-hemispherical
drafts d/R = 0.6 and 0.8 considered in this study are neither odd nor even profiles around
the waterline and thus opposing contributions from (η(11))2 and η(20) cause the phase of
F (20) to ‘flip’ between these drafts, seen in figures 6(c) and 6(e). We note in passing that
in this general case there are also additional terms (e.g. η(20)η(11)) that contribute to F (31).

6. Conclusions and final remarks
The measured heave exciting force on a spherical body in long waves is shown to contain
substantial nonlinearity within the wave frequency range. These nonlinear forces are in
antiphase with the linear force and manifest as progressive reductions in the wave-to-force
TFs. Exploiting the amplitude scaling properties of nonlinear terms, the experimental TFs
are fitted to confirm these features are caused by third-order effects. Viscous drag is also
briefly considered since it would appear in a similar frequency range; however, its effect on
the amplitude and phase of the total first-harmonic force does not align with experimental
observations. These findings are further reinforced by numerical results produced from
a simplified SB model incorporating instantaneous buoyancy. The model is effective in
predicting terms up to third order, due to the dominant contributions of the buoyancy force,
but is inapplicable for shorter waves where the SB assumptions are violated. The SB model
is also used to derive an expression to estimate the magnitude of these third-order forces
on a hemisphere and infer properties of odd and even forces on general axisymmetric
geometries dominated by buoyancy.

This study of a simple third-order first-harmonic term may be useful for more general
efforts in this area. The methods derived for analysing and extracting the third-order first-
harmonic terms, which are typically challenging to isolate, may also be useful for other
cases where the primary driver of these nonlinear forces is not buoyancy, but another
mechanism. Furthermore, there are other terms formed through difference-frequency
interactions in the Stokes expansion, such as the fourth-order second-harmonic term,
which cannot be isolated by phase-based methods. These terms can be similarly treated.
These results are also important in the context of optimising wave energy converters
since they extract power from the wave frequency range and typically undergo large
motions which result in substantial nonlinear forces. Improving our understanding of and
ability to analyse these nonlinear terms is fundamental for the development of efficient
hydrodynamic models in applications such as real-time control systems or fast design
iteration processes. This analysis is also currently being extended to comprehensively
isolate and extract nonlinear terms from more complex interactions incorporating body
motions.
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