BOUNDARY-VALUE PROBLEMS OF A DEGENERATE SOBOLEV-TYPE DIFFERENTIAL EQUATION

 \mathbf{BY}

C. V. PAO

ABSTRACT. The purpose of this paper is to study a degenerate Sobolev type partial differential equation in the form of $Mu_t + Lu = f$, where M and L are second order partial differential operators defined in a domain $(0, T] \times \Omega$ in R^{n+1} . The degenerate property of the equation is in the sense that both M and L are not necessarily strongly elliptic and their coefficients may vanish or be negative in some part of the domain $(0, T] \times \Omega$. Two types of boundary conditions are investigated.

1. Introduction. Let Ω be a bounded domain in \mathbb{R}^n and let L, M be differential operators defined by:

$$Lu = \sum_{i,j=1}^{n} (a_{ij}(t,x)u_{x_{i}})_{x_{i}} - a(t,x)u, \qquad Mu = \sum_{i,j=1}^{n} (b_{ij}(t,x)u_{x_{j}})_{x_{i}} - b(t,x)u.$$

We consider the following Sobolev type differential equation

$$(1.1) Mu_t + Lu = f(t, x) (t \in (0, T], x \in \Omega).$$

This equation is of regular Sobolev type when the operators L and M are uniformly strongly elliptic and the function b is positive on the closure \bar{D} of $D = (0, T] \times \Omega$. In this paper, we treat a degenerate equation in the sense that the operators L and M are not necessarily strongly elliptic and the function b may not be strictly positive in D. Specifically, we allow the function b taking zero or negative values in D and the matrices $A = (a_{ij})$, $B = (b_{ij})$ being positive semi-definite in D. (In fact, A and B may even be indefinite.) In particular, if $b_{ij} = 0$ for all i, j Eqn. (1.1) becomes a degenerate parabolic equation and if, in addition, b = 0, it is reduced to a degenerate elliptic equation. When b_{ij} and b are not all zero we consider the following boundary and initial conditions

(1.2)
$$u(t, x) = 0 (t \in (0, T], x \in \Gamma)$$

(1.3)
$$u(0, x) = u_0(x) \quad (x \in \Omega),$$

Received by the editors March 1, 1976 and, in revised form, July 28, 1976.

where Γ is the boundary of Ω . However, if L, M are in the form

(1.4)
$$Lu = \sum_{i,j=1}^{n} (a_{ij}(x)u_{x_j})_{x_i} - a(t,x)u, \qquad Mu = \sum_{i,j=1}^{n} (\alpha(x)a_{ij}(x)u_{x_j})_{x_i} - b(t,x)u$$

we treat the following more general boundary condition

$$(1.2)' \quad \partial u/\partial \nu + \beta(x)u = 0 \ (x \in \Gamma_1), \qquad u(t, x) = 0 \ (x \in \Gamma_2), \qquad (t \in (0, T])$$

where $\alpha \ge 0$, $\beta \ge 0$, $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\partial/\partial \nu$ is the conormal derivative on Γ_1 with respect to the matrix $B = (\alpha a_{ij})$, that is, $\partial u/\partial \nu = \nu \cdot (B\nabla u)$. In the boundary condition (1.2)', either Γ_1 or Γ_2 is allowed to be empty. The purpose of this paper is to study the existence and uniqueness of a weak solution for the above boundary value problems.

Sobolev type equations arise from various physical phenomena such as in the non-steady flow of fluids, heat conduction, resonant radiation in a gas and seepage of liquids in fissured rocks (cf. [1, 2, 11, 12]). These equations and their generalizations have recently been discussed in [5, 9, 10]. In most of these papers, it is assumed that L and M are uniformly strongly elliptic and b is positive on \bar{D} . These requirements insure that M is invertible and the composite operator $M^{-1}L$ generates a semi-group (in fact, a group) of bounded operators in some function space. However, for a degenerate operator M the invertibility of M no longer holds and even if M is not degenerate it is not clear whether $M^{-1}L$ is the generator of a semi-group when L is degenerate. In this paper, we use a variational approach to the problem and seek a weak solution in a suitable function space. Our essential idea is the construction of a suitable norm for this function space.

2. The main results. Throughout the paper we assume that $a_{ij} = a_{ji}$, $b_{ij} = b_{ji}$ and the coefficients of L and M together with their first partial derivatives and the mixed partial derivatives of b_{ij} in t and x are all bounded measurable in D. The functions f, u_0 , α , β are assumed bounded measurable in their respective domains. We also assume that $b(0, x) \ge 0$ in Ω and the matrix $B_0(x) \equiv (b_{ij}(0, x))$ is positive semi-definite in Ω .

Let $C^2(D)$ be the set of functions $\phi(t, x)$ such that ϕ is continuous on \overline{D} and ϕ_t and its second partial derivatives in x are continuous in D. Set

$$C_0^2(D) = \{ \phi \in C^2(D); \quad \phi(t, x) = 0 \text{ in } [0, T] \times \Gamma$$

and $\phi(T, x) = \phi_x(T, x) = 0 \text{ in } \Omega \}.$

For any $\phi, \psi \in C_0^2(D)$ and any $n \times n$ matrix $P \equiv (p_{ij}(t, x))$ we set

(2.1)
$$\begin{cases} \langle \phi, \psi \rangle = \int_{D} \phi(z)\psi(z) dz, & \|\phi\| = \langle \phi, \phi \rangle^{1/2} \\ \langle \phi, \psi \rangle_{P} = \int_{D} \sum_{i,j=1}^{n} p_{ij}(z)\phi_{x_{i}}(z)\psi_{x_{j}}(z) dz \end{cases}$$

where $dz = dx \, dt$. When P is positive semi-definite in D we write $\|\phi\|_P = \langle \phi, \phi \rangle_P^{1/2}$. Similarly, we set for $\phi, \psi \in C_0^2(D)$,

(2.2)
$$\begin{cases} (\phi, \psi)_{b_0} = \int_{\Omega} b(0, x)\phi(0, x)\psi(0, x) dx, & \|\phi\|_{b_0} = (\phi, \phi)_{b_0}^{1/2} \\ (\phi, \psi)_{B_0} = \int_{\Omega} \sum_{i,j=1}^{n} b_{ij}(0, x)\phi_{x_i}(0, x)\psi_{x_j}(0, x) dx, & \|\phi\|_{B_0} = (\phi, \phi)_{B_0}^{1/2} \end{cases}$$

Our main idea for insuring the existence problem of (1.1)–(1.3) is the introduction of the functional

$$\langle \psi, \phi \rangle_{\mathcal{A}} = \langle \psi, \phi \rangle_{A} - \frac{1}{2} \langle \psi, \phi \rangle_{B_{t}} + \langle \psi, (a - b_{t}/2)\phi \rangle + \frac{1}{2} (\psi, \phi)_{B_{0}} + \frac{1}{2} (\psi, \phi)_{b_{0}}$$

$$(\phi, \psi \in C_{0}^{2}(D))$$

where $\langle \psi, \phi \rangle_A$ and $\langle \psi, \phi \rangle_{B_t}$ are defined in (2.1) with P = A and $P = B_t \equiv ((b_{ij})_t)$, respectively. Since the matrices A and B are symmetric it is clear that $\langle \circ, \circ \rangle_H$ is a symmetric bilinear functional on $C_0^2(D)$. Assume that for some constant $\delta > 0$,

(2.4)
$$\langle \phi, \phi \rangle_H \ge \delta \langle \phi, \phi \rangle \qquad (\phi \in C_0^2(D)).$$

Then $\langle \circ, \circ \rangle_H$ defines an inner product on $C_0^2(D)$. We denote the completion of $C_0^2(D)$ with respect to the norm $\|\phi\|_H = \langle \phi, \phi \rangle_H^{1/2}$ by H. In view of (2.4), the space H is contained in $L^2(D)$ both algebraically and topologically.

A function $u \in H$ is said to be a weak solution of (1.1)–(1.3) if

$$\langle u, \phi \rangle_{A} - \langle u, \phi \rangle_{B_{t}} - \langle u, \phi_{t} \rangle_{B} + \langle u, a\phi - (b\phi)_{t} \rangle = (u_{0}, \phi)_{B_{0}} + (u_{0}, \phi)_{b_{0}} - \langle f, \phi \rangle$$

$$(\phi \in C_{0}^{2}(D)).$$

Equation (2.5) is obtained from (1.1) by a formal integration by parts and using the conditions (1.2), (1.3). In obtaining the equation we have used the relations

$$\langle Mu_t, \phi \rangle = -\langle u_t, \phi \rangle_B - \langle u_t, b\phi \rangle$$

$$(2.6) = (u_0, \phi)_{B_0} + \langle u, \phi \rangle_{B_t} + \langle u, \phi_t \rangle_B + (u_0, \phi)_{b_0} + \langle u, (b\phi)_t \rangle, (\phi \in C_0^2(D))$$

(2.7)
$$\langle Lu, \phi \rangle = -\langle u, \phi \rangle_A - \langle u, a\phi \rangle, \qquad (\phi \in C_0^2(D)).$$

Let $\phi \in C_0^2(D)$ be fixed. Define a linear functional $B[\circ, \phi]$ on H by:

$$(2.8) \quad B[\psi,\phi] = \langle \psi,\phi \rangle_{A} - \langle \psi,\phi \rangle_{B} - \langle \psi,\phi_{t} \rangle_{B} + \langle \psi,a\phi - (b\phi)_{t} \rangle \qquad (\psi \in H).$$

It will be shown in the following section that for each $\phi \in C_0^2(D)$, $B[\circ, \phi]$ is a bounded linear functional on H and there exists a closable operator $S: C_0^2(D) \to H$ such that $B[u, \phi] = \langle u, S\phi \rangle_H$ for $u \in H$, $\phi \in C_0^2(D)$. Denote the closure of S by \overline{S} . Then we have the following result.

THEOREM 1. Assume that (2.4) holds for some $\delta > 0$. Then the problem (1.1)–(1.3) has a weak solution $u \in H$. Furthermore, for any two solutions $u_1, u_2 \in H$ there exists $w \in R^{\perp}(\overline{S})$ such that $u_1 = u_2 + w$, where

$$R^{\perp}(\bar{S}) = \{ \psi \in H; \langle \psi, \phi \rangle = 0 \text{ for all } \phi \in R(\bar{S}) \}.$$

For the mixed boundary-value problem (1.1), (1.2), (1.3), where L and M are in the form of (1.4) we seek a solution in the Hilbert space \tilde{H} which is defined as follows: Let

$$\zeta_0^2(D) = \{ \phi \in C_0^2(D); \phi(t, x) = 0 \text{ on } [0, T] \times \Gamma_2, \phi(T, x) = \phi_{x_0}(T, x) = 0 \text{ in } \Omega \}.$$

Define a symmetric bilinear functional on $\zeta_0^2(D)$ by

$$\langle \psi, \phi \rangle_{\tilde{H}} = \langle \psi, \phi \rangle_{A} + \langle \psi, \phi \rangle_{\beta} + \langle \psi, (a - b_{l}/2)\phi \rangle + \frac{1}{2} [(\psi, \phi)_{B_{0}} + (\psi, \phi)_{\beta_{0}} + (\psi, \phi)_{b_{0}}]$$

$$(2.9) \qquad (\psi, \phi \in \zeta_{0}^{2}(D)),$$

where $\langle \psi, \phi \rangle_A$, $\langle \psi, \phi \rangle$, $(\psi, \phi)_{B_0}$, $(\psi, \phi)_{b_0}$ are given in (2.1), (2.2) and

(2.10)
$$\langle \psi, \phi \rangle_{\beta} = \int_{0}^{T} \int_{\Gamma_{1}} \beta(x) \psi(t, x) \phi(t, x) dS dt, \qquad \|\phi\|_{\beta} = \langle \phi, \phi \rangle_{\beta}^{1/2}$$

$$(\psi, \phi)_{\beta_{0}} = \int_{\Gamma_{1}} \alpha(x) \beta(x) \psi(0, x) \phi(0, x) dS, \qquad \|\phi\|_{\beta_{0}} = (\phi, \phi)_{\beta_{0}}^{1/2}.$$

Assume that for some constant $\delta > 0$,

(2.11)
$$\langle \phi, \phi \rangle_{\tilde{H}} \ge \delta \langle \phi, \phi \rangle \quad (\phi \in \zeta_0^2(D)).$$

Then $\langle \circ, \circ \rangle_{\tilde{H}}$ defines an inner product in $\zeta_0^2(D)$. We denote by \tilde{H} the completion of $\zeta_0^2(D)$ with respect to the norm $\|\phi\|_{\tilde{H}} = \langle \phi, \phi \rangle_{\tilde{H}}^{1/2}$. A function $u \in \tilde{H}$ is called a weak solution of (1.1), (1.2)', (1.3) if

$$\langle u, \phi \rangle_{A} - \langle u, \phi_{t} \rangle_{B} + \langle u, \phi - \alpha \phi_{t} \rangle_{\beta} + \langle u, a\phi - (b\phi)_{t} \rangle$$

$$= (u_{0}, \phi)_{B_{0}} + (u_{0}, \phi)_{B_{0}} + (u_{0}, \phi)_{b_{0}} - \langle f, \phi \rangle \qquad (\phi \in \zeta_{0}^{2}(D)).$$

As in the previous case the definition of a weak solution is obtained from (1.1) by a formal integration by parts and using the conditions (1.2)', (1.3). In the present situation the formal integration yields the relations

$$\begin{cases} \langle Mu_{t}, \phi \rangle = \langle u, \phi_{t} \rangle_{B} + \langle u, \alpha \phi_{t} \rangle_{\beta} + \langle u, (b\phi)_{t} \rangle + (u_{0}, \phi)_{B_{0}} + (u_{0}, \phi)_{\beta_{0}} + (u_{0}, \phi)_{b_{0}} \\ (\phi \in \zeta_{0}^{2}(D)) \end{cases}$$

$$\langle Lu, \phi \rangle = -\langle u, \phi \rangle_{A} - \langle u, \phi \rangle_{\beta} - \langle u, a\phi \rangle$$

$$(2.13)$$

For each $\phi \in \zeta_0^2(D)$ we define a linear functional on \tilde{H} by

(2.14)
$$\tilde{B}[\psi, \phi] = \langle \psi, \phi \rangle_{A} - \langle \psi, \phi_{t} \rangle_{B} + \langle \psi, \phi - \alpha \phi_{t} \rangle_{\beta} + \langle \psi, a\phi - (b\phi)_{t} \rangle$$

$$(\phi \in \zeta_{0}^{2}(D)).$$

It is easily shown that for each $\phi \in \zeta_0^2(D)$, $\tilde{B}[\circ, \phi]$ is a bounded linear functional on \tilde{H} and there exists a closable operator $S_1: \zeta_0^2(D) \to \tilde{H}$ such that $\tilde{B}[\psi, \phi] = \langle \psi, S_1 \phi \rangle$ for $\psi \in \tilde{H}$, $\phi \in \zeta_0^2(D)$. Denoting by \bar{S}_1 the closure of S_1 , we have the following conclusion:

THEOREM 2. Assume that (2.11) holds for some $\delta > 0$. Then the problem (1.1), (1.2)', (1.3) with M and L given by (1.4) has a weak solution $u \in \tilde{H}$. Furthermore, for any two solutions $u_1, u_2 \in \tilde{H}$ there exists $w \in R^{\perp}(\bar{S}_1)$ such that $u_1 = u_2 + w$.

REMARKS. (a) By a transformation $u \to e^{-\lambda t}u$ in the problem (1.1)–(1.3) for some real constant λ , the condition (2.4) is satisfied if either one of the following conditions holds:

- (i) $(A + \lambda B B_t/2)$ is positive semi-definite and $a + \lambda b b_t/2 \ge \delta$ in \bar{D} .
- (ii) $(A + \lambda B B_t/2)$ is positive definite and $a + \lambda b b_t/2 \ge 0$ in \bar{D} .

In particular, if Eqn. (1.1) is of the form

$$\sum_{i=1}^{n} (b^*(t,x)u_{tx_i})_{x_i} - b(t,x)u_t + \sum_{i=1}^{n} (a^*(t,x)u_{x_i})_{x_i} - a(t,x)u = f(t,x)$$

which was considered in [1, 2, 10, 11, 12] then the above conditions become, respectively,

- (i) $a^* + \lambda b^* b_t^*/2 \ge 0$ and $a + \lambda b b_t/2 \ge \delta$ in \overline{D} ,
- (ii) $a^* + \lambda b^* b_t^*/2 \ge \delta$ and $a + \lambda b b_t/2 \ge 0$ in \bar{D} .
- (b) If $B \equiv 0$, the problem (1.1)-(1.3) becomes the degenerate parabolic equation considered in [8] (see also [3, 4, 7]) and if, in addition, $b \equiv 0$ it reduces to a degenerate elliptic equation (cf. [8]). In the latter situation, the initial condition (1.3) should be disregarded.

3. Proof of the theorems

Proof of Theorem 1. For any ϕ , $\psi \in C_0^2(D)$, the relation

(3.1)
$$|\langle \psi, \phi \rangle_{P}| = \left| \int_{D} \sum_{i,j=1}^{n} p_{ij}(z) \psi_{x_{i}}(z) \phi_{x_{j}}(z) dz \right|$$

$$= \left| \int_{D} \psi(z) \sum_{i,j=1}^{n} (p_{ij}(z) \phi_{x_{j}}(z))_{x_{i}} dz \right|$$

with P representing A, B, and B_t , respectively, implies that

(3.2)
$$|B[\psi, \phi]| \le K_{\phi} \|\psi\| \le \delta^{-1/2} K_{\phi} \|\psi\|_{H} (\psi \in C_{0}^{2}(\bar{D})),$$

where K_{ϕ} is a constant depending only on ϕ and the matrices A, B. Thus

 $B[\cdot, \phi]$ is a bounded linear functional on $C_0^2(D)$ and so it can be extended to H. In view of (2.5) and (2.8), it suffices to find a $u \in H$ such that

$$B[u, \phi] = (u_0, \phi)_{B_0} + (u_0, \phi)_{b_0} - \langle f, \phi \rangle \qquad (\phi \in C_0^2(D)).$$

Now for each $\phi \in C_0^2(D)$ the Riesz Theorem insures the existence of $S\phi \in H$ such that

$$(3.4) B[u,\phi] = \langle u,S\phi \rangle_H (u \in H,\phi \in C_0^2(D)).$$

Clearly, S is a linear operator on $C_0^2(D)$ to H. We show that S is closable. For each fixed $\psi \in C_0^2(D)$, the second equality in (2.6) and the relation (3.1) imply that

$$\begin{aligned} |\langle \psi, \phi \rangle_{B_{t}} + \langle \psi, \phi_{t} \rangle_{B} + \langle \psi, (b\phi)_{t} \rangle| &= |\langle \psi_{t}, \phi \rangle_{B} + \langle \psi_{t}, b\phi \rangle + (\psi, \phi)_{B_{0}} + (\psi, \phi)_{b_{0}}| \\ &\leq K'_{\psi} \|\phi\| + \|\psi\|_{B_{0}} \|\phi\|_{B_{0}} + \|\psi\|_{b_{0}} \|\phi\|_{b_{0}} \\ &\leq K''_{\psi} \|\phi\|_{H} \qquad (\phi \in C_{0}^{2}(D)), \end{aligned}$$

$$(3.5)$$

where K'_{ψ} , K''_{ψ} are some constants independent of ϕ . In view of (3.4), (2.8), (3.5), and (3.1) we have

$$|\langle \psi, S\phi \rangle_H| \le |\langle \psi, \phi \rangle_A + \langle \psi, a\phi \rangle| + K_{\psi}'' \|\phi\|_H \le K_{\psi} \|\phi\|_H \qquad (\phi \in C_0^2(D))$$

for some constant K_{ψ} . The above relation shows that $C_0^2(D)$ is contained in the domain $D(S^*)$ of S^* , where S^* is the adjoint operator of S. Now if $\{\phi_k\}$ is a sequence in $C_0^2(D)$ such that $\phi_k \to 0$ and $S\phi_k \to g$ as $k \to \infty$ then for each $\psi \in C_0^2(D)$,

$$\langle \psi, g \rangle_H = \lim_{k \to \infty} \langle \psi, S \phi_k \rangle_H = \lim_{k \to \infty} \langle S^* \psi, \phi_k \rangle_H = 0.$$

Since $C_0^2(D)$ is dense in H we conclude that g=0 and thus S is closable. It follows from the closed property of \bar{S} and (3.4) that

(3.6)
$$B[u, \phi] = \langle u, \overline{S}\phi \rangle_H \qquad (u \in H, \quad \phi \in D(\overline{S})).$$

where $D(\bar{S})$ is the domain of \bar{S} . We next show that

(3.7)
$$\langle \phi, \bar{S}\phi \rangle_H = \|\phi\|_H^2 \qquad (\phi \in D(\bar{S}))$$

Since for $\phi \in C_0^2(D)$,

$$\langle \phi, (b\phi)_{t} \rangle = \langle \phi, b_{t}\phi \rangle + \langle \phi, b\phi_{t} \rangle = \langle \phi, b_{t}\phi \rangle - \frac{1}{2}(\phi, \phi)_{b_{0}} - \frac{1}{2}\langle \phi, b_{t}\phi \rangle$$

$$= \frac{1}{2}(\langle \phi, b_{t}\phi \rangle - (\phi, \phi)_{b_{0}})$$

$$\langle \phi, \phi \rangle_{B_{t}} + \langle \phi, \phi_{t} \rangle_{B} = \int_{D} \sum_{i,j=1}^{n} \phi_{x_{i}}(b_{ij}\phi_{x_{j}})_{t} dz = -(\phi, \phi)_{B_{0}} - \langle \phi, \phi_{t} \rangle_{B},$$

and since the latter relation implies that

(3.9)
$$\langle \phi, \phi \rangle_{B_t} + \langle \phi, \phi_t \rangle_B = \frac{1}{2} (\langle \phi, \phi \rangle_{B_t} - \langle \phi, \phi \rangle_{B_0}) \qquad (\phi \in C_0^2(\bar{D})),$$

we see from (2.8), (3.8), (3.9), and (2.3) that

$$B[\phi,\phi] = \langle \phi,\phi \rangle_A - \frac{1}{2}\langle \phi,\phi \rangle_B + \frac{1}{2}\langle \phi,\phi \rangle_B + \langle \phi,(a-\frac{1}{2}b_t)\phi \rangle + \frac{1}{2}\langle \phi,\phi \rangle_{b_0} = \langle \phi,\phi \rangle_H.$$

It follows from (3.4) that the relation (3.7) holds for $\phi \in C_0^2(D)$. The closed property of \bar{S} implies that (3.7) also holds for $\phi \in D(\bar{S})$. At this point, the proof of the existence of a solution follows from a theorem of Lion's (cf. [6]). However, in order to show the second part of the theorem we use a different argument. In view of (3.7), the inverse \bar{S}^{-1} exists and $\|\bar{S}^{-1}\psi\|_H \le \|\psi\|_H$ for $\psi \in R(\bar{S})$. By the closed range theorem we have $R(\bar{S}^*) = H$, where \bar{S}^* is the adjoint of \bar{S} . But the functional

$$F(\phi) \equiv (u_0, \phi)_{B_0} + (u_0, \phi)_{b_0} - \langle f, \phi \rangle$$
 $(\phi \in C_0^2(D))$

is bounded on $C_0^2(D)$. By extending F to H we can find $v \in H$ such that $F(\phi) = \langle v, \phi \rangle_H$ $(\phi \in C_0^2(D))$. Let $u \in D(\bar{S}^*)$ such that $\bar{S}^*u = v$. Then by (3.6),

$$B[u,\phi] = \langle u, \bar{S}\phi \rangle_H = \langle \bar{S}^*u, \phi \rangle_H = \langle v, \phi \rangle_H = F(\phi) \qquad (\phi \in C_0^2(D)).$$

This shows that u is a solution of (3.3). Now if u_1 , u_2 are two solutions of (3.3) then $w \equiv u_1 - u_2$ satisfies the relation

$$\langle w, \bar{S}\phi \rangle_H = B[w, \phi] = 0 \qquad (\phi \in D(\bar{S})).$$

Hence $w \in R^{\perp}(\overline{S})$ which completes the proof of the theorem.

Proof of Theorem 2. It is readily seen from the positive semi-definite property of the matrix $\{a_{ij}(x)\}$ that for each $\phi \in \zeta_0^2(D)$

$$\begin{split} |\tilde{B}[\psi,\phi]| &\leq \|\psi\|_{A} \|\phi\|_{A} + \|\psi\|_{B} \|\phi_{t}\|_{B} + \|\psi\|_{\beta} \|\phi - \alpha\phi_{t}\|_{\beta} + \|\psi\| \|a\phi - (b\phi)_{t}\| \\ &\leq \tilde{K}_{\phi} \|\psi\|_{\tilde{H}}, \qquad (\psi \in \zeta_{0}^{2}(D)) \end{split}$$

where \tilde{K}_{ϕ} is a constant independent of ψ . Thus we may extend $\tilde{B}[\circ, \phi]$ to \tilde{H} . In view of (2.12), (2.14) it suffices to find a $u \in \tilde{H}$ such that

(3.10)
$$\tilde{B}[u,\phi] = (u_0,\phi)_{B_0} + (u_0,\phi)_{B_0} + (u_0,\phi)_{b_0} - \langle f,\phi \rangle$$

By the Riesz Theorem, there exists a closable operator $S_1: \zeta_0^2(D) \to \tilde{H}$ such that

(3.11)
$$\tilde{B}[\psi, \phi] = \langle \psi, \bar{S}_1 \phi \rangle_{\tilde{H}} \qquad (\phi \in D(\bar{S}_1), \psi \in \tilde{H})$$

where \bar{S}_1 is the closure of S_1 . Since by direct integration,

$$(3.12) 2\langle \phi, \phi_t \rangle_{\mathcal{B}} = -(\phi, \phi)_{\mathcal{B}_0}, 2\langle \phi, \alpha \phi_t \rangle_{\beta} = -(\phi, \phi)_{\beta_0}, (\phi \in \zeta_0^2(D)).$$

We obtain from (2.14), (3.12), (3.8), and (2.9) that

$$\tilde{B}[\phi,\phi] = \langle \phi,\phi \rangle_{A} + \frac{1}{2}(\phi,\phi)_{B_{0}} + (\phi,\phi)_{\beta} + \frac{1}{2}(\phi,\phi)_{\beta_{0}} + \langle \phi,(a-b_{l}/2)\phi \rangle + \frac{1}{2}(\phi,\phi)_{b_{0}} \\
= \langle \phi,\phi \rangle_{\bar{H}} \qquad (\phi \in \zeta_{0}^{2}(D)).$$

228 C. V. PAO

It follows from the closed property of \bar{S}_1 and (3.11) that

$$\langle \phi, \bar{S}_1 \phi \rangle = \|\phi\|_{\bar{H}}^2 \qquad (\phi \in D(\bar{S})).$$

Using the above relation and the closed range theorem, a similar argument as in the proof of Theorem 1 leads to the existence of $u \in D(\bar{S}_1^*)$ satisfying the relation

$$\tilde{B}[u,\phi] = \langle \tilde{S}_1^* u, \phi \rangle_{\tilde{H}} = (u_0,\phi)_{B_0} + (u_0,\phi)_{B_0} + (u_0,\phi)_{b_0} - \langle f,\phi \rangle.$$

This proves the existence problem. The second part of the theorem follows directly from the above relation.

REFERENCES

- 1. G. Barenblat, I. Zheltor, and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
- 2. P. Chen and M. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
- 3. W. T. Ford, The first initial boundary-value problem for a non-uniform parabolic equation, J. Math. Anal. Appl., 40 (1972), 131-137.
- 4. A. V. Ivanov, A boundary value problem for degenerate second order parabolic linear equations (Russian), Zap. Nauch. Sem. Leningrad Otdel. Math. Inst. Steklov., 14 (1969), 48-88.
- 5. J. Lagnese, General boundary value problems for differential equations of Sobolev-Galpern type, SIAM J. Math. Anal., 3 (1972), 105-119.
 - 6. J. L. Lions, Equations Differentielles Operationelles, Springer-Verlag, Berlin, 1961.
- 7. O. A. Oleinnik, On the smoothness of the solutions of degenerate elliptic and parabolic equations, Soviet Math. Dokl., 6 (1965), 972-976.
- 8. C. V. Pao, On a non-uniform parabolic equation with mixed boundary condition, Proc. Amer. Math. Soc., 49 (1975), 83-89.
- 9. V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in whole space, Arch. Rational Mech. Anal., 49 (1972), 57-78.
- 10. R. E. Showalter, Degenerate evolution equations and applications, Indiana Univ. Math. J., 23 (1974), 655-677.
 - 11. V. V. Sobolev, A Treatise on Radiative Transfer, Van Nostrand, New York, 1963.
- 12. T. W. Ting, Certain non-study flows of second order fluids, Arch. Rational Mech. Anal., 14 (1963), 1-26.

DEPT. OF MATH,

NORTH CAROLINA STATE UNIVERSITY,
RALEIGH, NORTH CAROLINA 27607
U.S.A.

Address until June 30, 1977: II. Mathematisches Institut Universitat Graz A-8010, Steyrergasse 17/5 Graz, Austria.