THE FRECHET VARIATION, SECTOR LIMITS,
AND LEFT DECOMPOSITIONS

MARSTON MORSE anp WILLIAM TRANSUE

1. Introduction. The Fréchet variation of a function g defined over a 2-
interval I? was introduced by Fréchet to enable him to generalize Riesz's
theorem on the representation of functionals linear over the space C [7].
Recently the authors have found this variation fundamental in the study of
functionals bilinear over the Cartesian product 4 X B of two normed linear
spaces with certain characteristic properties, and in the further use of this
theory in spectral and variational analysis. The recent discovery by the auth-
ors of several new properties of the Fréchet variation has made it possible to
to give new and natural tests for the convergence of multiple Fourier series
generalizing the classical Jordan, de la Vallée Poussin, Dini, Young and Lebes-
gue tests under considerably less restrictive hypotheses than those now accepted.

Many of the tests which generalize the classical tests make use of the Vitali
variation V(g). The theory so developed depends in essential ways on the
decomposition of g into the difference of two monotone functions P — N, follow-
ing the model of Jordan. No such decomposition is possible or needed when
the Fréchet variation isused and p > 1. The classical second law of the mean
has a counterpart in a fundamental inequality (see §9) governing multiple
integrals, such as the Dirichlet integral. The use of the Fréchet variation
makes this inequality possible and relieves a tendency to overuse absolute
values.

As a result of the theorems of this paper the Fréchet variaticAm now parallels
the Jordan variation in striking fashion. The assumptions F on g are that
the variation P¥*(g) is finite and that there is at least one r-section (r =1, ..., u)
of the interval I* parallel to each coordinate r-plane, on which P7(g) is finite.
The condition P*(g) < « is much weaker than the condition V(g) < « [12].
We enumerate the points of similarity of the Fréchet variation with the Jordan
variation. R

(1) If g satisfies F over I*, g is bounded and L-measurable [9] over [*. Its
points of discontinuity lie on at most a countable number of (g — 1)-planes
parallel to the coordinate (u — 1)-planes (see Theorem 8.4).

(2) With each point ¢ in p-space let 2* sectors S, be associated, being the
respective open regions into which the p-space R* is divided by the (u — 1)-
planes intersecting @ parallel to the coordinate (u — 1)-planes. Extending
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the notion of the left and right limits for a function of bounded Jordan varia-
tion, we here prove that when g satisfies conditions E, g(s) hasa limitass —a
from any one of the open sectors S,. These 2* limits may be different at a.

(3) Generalizing left and right continuity, a function g defined over I* may
be termed S-continuous (S-continuous) of orientation type S,, if g(s) — g(a)
ass—a from S, (S,) for each point a of I*. Given a g which satisfies con-
ditions F over an open u-interval I*#, and given a sector S, invariant in orienta-
tion as a is varied, there exists a unique function g° equal to g at the points of
continuity of g and S-continuous (S-continuous) of type S, (S,). Certain
additional properties of P*(g%)asa minimum modulus of multilinear functionals
cannot be described in the space of this introduction (See [8] and §8).

(4) When p = 1, the Jordan variation of g on a subinterval Q! of I' tends to
zero as the vertices of Q!approach any point soof I' from the open right or
open left of so. If @ is any point of I* the Fréchet variation of g over an r-
interval Q7 in a fixed open sector S, wi ith vertex at a tends to zero as the vertices
of Qr tend to a, provided g satisfies F over I# (see Corollary 6.2).

The theorem [13] which extends the Jordan test in 1-dimension is as follows:

TuEOREM 1.1. Let g satisfy F over a closed w-interval I#[0, 2xi] and have the
period 2w in each coordinate. Then the multiple Fourier series for g converges in
the sense of Pringsheim to the mean of the 2* sector limits of gata. If gis continu-
ous in addition, this convergence is uniform. (See [13].)

For a statement of the more restrictive Hardy Krause test generalizing the
Jordan test, see [6], where other tests are compared and developed. For the
more recent use of spherical means in Fourier theory see [2] and [3]. For a
theorem on convergence almost everywhere see [4]. Theorem 1.1 will be
proved in paper [13]. The left decomposition of g obtained in §7 and the
existence of a variation modulus (Theorem 7.3) are essential for the u-
dimensional proof.

2. Definitions and notations. Let R* denote a Cartesian space of points s

with coordinates s = [s!,...,s*]. Leta =[a%...,a*]and b = [0, ..., b*]
be two points in R* witha” < b" (r = 1,...,pu). Let J, represent an interval
for s” chosen from the intervals

(2.0 (@, b7), (a7, b7), la", b7, la", b7).

By a p-interval in R* determined by ¢ and b we mean a Cartesian product
(2.1) IP= X T X ... X T,

When J, = (a”, b") for each r, we shall denote I* by I* (a, b). The intervals
I* (a, b], I*[a,b) and I* [, b] are similarly defined. Thus I* (@, b) is open
and I* [a, b] closed. By the left r-closure C,J, of J, is meant the union of J,
and the point s™ = a”. The left r-closure C.I* is then defined to be

(22) C,I“=Jlx...XJr_.lxcr]rXJH_l...an.
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Note that forr,m =1,...,

(2.3) C,Cul* = CnC.I*, C.C.I* = C,I*

By an r-segment QT in R* is meant a Cartesian product of the form (2.1) in
which p — 7 of the J,'s are points and the remaining r of the J,'s are intervals
as above (r = 1,...,u). If Jn,isan interval, the left m-closure CnQ" is de-
fined as above. The orthogonal projection on a coordinate (u — 1)-plane
[s™ = 0] of an r-segment Q7 will be denoted by X,,Q". Observe that for m,
n=1...,u

(2.4) XnXnQ" = XuXn0Q"; X.X.Q0" = X,0".
‘Let an r-segment QT in R* be given in the form
(2.5) Q=71 X...XJ, [r=1,...,u

By an n-face of Q7 will be meant an n-segment F* (0 < n < 7) of the form
(2.6) Fr=J1X...XJ,

in which J'; = J;if J; is a point, while J'; is an end point of J;, or one of the
intervals (2.0) in case J; is one of these intervals. In particular Q7 is included
as one of its own faces as is its closure Q7. It will also be convenient to refer
to the vertices of QT as O-faces of Q.

An r-segment Q7 of the form (2.5) will be said to be left-closed or left-open
according as all of the 1-intervals J; in the product (2.5) are closed, or open at
the left. The terms right-closed and right-open are similarly defined.

Let g be a function mapping a closed u-interval I* [a, b] in R* into R

A PARTITION 7. A partition = of I* [a, b] will be defined by giving parti-
tions =7 of the respective intervals [a”, 5] (r = 1,...,u). The points of par-
tition of [¢7, b"] in =" shall satisfy the condition (r = 1, ..., ),

a" =t <t <...<tTp=0b" [where m = n"(x)].

Corresponding to #" let 4 be an integer on the range 1, ..., n" () and set

2.7 Arg(sy, ..., s™1, ., s™H L sk)
=g(st,...,s" 7, sTT L, %)
—g(sy, ...y ST T, ST L, SR,

A dot is used in place of an argument s to indicate that a function over the
range of s” is represented with the remaining displayed variables constants.

For t7; and ¢";_, fixed the right member of (2.7) gives the values of a function
to be denoted by AT; g, mapping the (u-1)-segment X ,I* into R'. We under-
stand that the differencing operator A™; may be applied not only to g but to
any function defined on an m-segment in R* whose orthogonal projection on
the rth coordinate axis is [a", b"].
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With this understood suppose that u > 2. For a fixed partition = of I*[a,b],
Aly, A%, g m=1,...,nt (x);n=1,...,n% ()]

is a function mapping the (u — 2)-segment X;X,I* into R.. In general for
1< m< p, for fixed , and for

(2.8) nt=12...,n () 1< r< g,
the function
(2.9) At A%z, .. A mg

is defined over X1 X, ... Xnl*.
Corresponding to the partition = we introduce u sets of constants

e =[ely,...,ehnw),

e' = [el‘ly ceey e“n"(f)]r

associating e”; with the sth interval of =". It will be convenient to set
et ..., el =e.

We admit only those constants e”; whose absolute values are at most 1.

THE FRECHET VARIATION P*[g, I*]. In the following definition and sub-
sequent applications the summation convention of tensor algebra will be used.
It will not be used in other connections. For u = 1, set

Pk, I'] = sup €', Al g [n=1,...,nm)]

taking the sup over all admissible partitions #! of [a!, b'] and associated sets
¢!. Observe that when u=1 this is the ordinary total Jordan variation T7g, I']
of gover I'. For the case u = 2 see [5] and [7]. For a general u we introduce
the preliminary sum

(2.10) ot g, I*, m, €] = eyl Alpl. .. etpn APpu g,

where n” has the range (2.8). The Fréchet variation of g over I* is then
defined by setting
P* (g, I*] = sup o* [g, I, m, €].

T, ©
This variation may be finite or infinite. On the right of (2.10) the order of
the differencing operators A", is immaterial.

The following lemma is fundamental. There is just one relation when p = 2,
established by Fréchet.
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LeEmMA 2.1.  The variation P* [k, I*] has the values

sup P*71[e'nt Al g, X11%]

T, €

sup P*2[el,1 Al €22 A% g, X1 X, 1¥]
T, €

I

sup P'lelyt ALy, . e 1 AR 1 g, X0 X L0 X ¥,
, e

where the range of n™ is given in (2.8).

To establish these relations recall that

(2.11) P g, I*] = sup o*[g, I*, m, e€].
T, e

We shall obtain the sup in (2.11) in two steps. Taking the sup of o* [g, I*, 7, €]
over all admissible partitions #"*1,..., 7 and associated sets e™!, ..., e,
keeping #,...,w"and ¢!, ..., e" fixed, one obtains the relation
(2.12) o* g, I*, 7, €]

S Prel gt Alyl. .., eTnr ATpr g, Xo X . . . X 1¥]

< P+ g, IM.

Completing the process indicated in (2.11) we now take the sup of the first
two members of (2.12). The definition of P* [g, I*] then implies that

Prlg, 1< sup &< P+[g, I*,

where & is the middle term in (2.12). The lemma follows.

THE GENERAL VARIATION P7 [g, Q7). The preceding definition has been
given for the case of a closed p-interval I* [a, b]. If Q* is a general p-interval,
we give the definition

P lg, Q¥] = sup P*[g, I"],
IM

taking the sup over all closed p-intervals I* C Q¥. We shall also define
P g, Q]in case Q" is an r-segment in I*. Such an r-segment lies in an r-plane
67. Referring 67 to any coordinate system with axes parallel to coordinate
axes in R* and corresponding coordinates ¢ = [#!, . .., ¢"], the function g given
over I* defines a function % over Q" with values 2(f). In 87, P" [k, Q7] is well
defined and we set

Pr(g, Q"] = P"[h, Q']
It is evident that when Q1" C QF,
(2.13) Prlg, Q1< Prg, Q7).

If Q7 = Q.7 \J Q.", where Q1" and Q." are two non-overlapping closed r-seg-
ments, it is clear that
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pr [gr QT] < pr [gv er] + Pr[g' er]‘

Finally, as shown in [7, Lemma 3.4] in the case u = 2, for a general u one can
restrict the constants e; to values & 1 in defining P* g, I*] without changing
the variation thereby defined.

3. Conditions F and ¥.  Let g be defined on a general p-interval I* of R*,
and let Q7 be any r-segment in I*. Condition F on g over Q" requires that
Pr g, Q7] be finite. Conditions F on g over Q7 also require that PT g, Q7]
be finite and that there shall be an m-section H™ of Q™ by an m-plane parallel
to an arbitrary m-face of Q7,0 < m < 7, such that P™ [g, H™| is finite.

THEOREM 3.1. If g satisfies F over I#, then P [g, Q7] is bounded over all
r-segments Q7 of I*.

The theorem is clearly true when » = u since P*[g, I*] is finite. Taking
account of the definition of the Fréchet variation for non-closed intervals Q7
it is sufficient to prove the theorem for closed r-segments Q.

We begin with the case in which » = u — 1. Without loss of generality
we can suppose that Q*7! lies in a (u — 1)-plane [s! = a!]. By hypothesis
there is at least one (p — 1)-section H*™! of I* by a (u — 1)-plane s! = &' such
that

Pefg, H* Y < o,
We shall show that
(3.0) Prilg, Q1S Pelg, I4 + P+l (g, H*TY,

thereby establishing the theorem whenr = y — 1. Whena'= b, Q*1C H*!
and (3.0) holds trivially. For definiteness suppose that a! < b'. The case
a' > b' will be seen to be similar.

Let Q¢* ! be the orthogonal projection of Q*~! into H*™! and let J* be the
p-interval with the faces Q*™! and Q¢*™!. Let 7 be an arbitrary partition of
J* specialized in that the only vertices in the partition 7! of [a!, '] are to be a!
and 5. In the set e of constants associated with 7= we suppose that e!; = 1.
With J* represented as an interval I* [a, b], let 7’ be the partition of the (u — 1)
interval

[a?, 82 X ... X [a*, b#],

with =’ defined by #?%, ..., n*, and let e’ be the subset of the constants e
associated in 7 with the intervals defined by #’. Then

s1=pt
s1=q1?

ot g, J*, m,e] = [e2,2 A%z . .. e¥pn A¥pu g]
or otherwise written

o“[g, J*, 7, €] = *71[g, Q7w €] — ¢* 71 [g, Q*7, ', €'].
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Hence
(3.1) o g, Qv ', €] S P¥g, J¥ + P g, Qo]

On taking the sup of the left member of (3.1) over all admissible #’, e’ defined
as above, one has

(3.2) Prilg, Q* < Prlg, J¥ + P g, Qv
< Prlg, IY] + P+ [g, H* .

The lemma follows for (u — 1)-segments in I*.
If Q7 is an arbitrary closed r-segment of I*, we shall refer to the condition

(3.3r) Prlg, Q71 < B,

in which B" is a constant independent of Q7. Condition (3.3y) is satisfied for
proper choice of B¥, since g satisfies F Proceeding inductively we shall assume
that [3.3(r + 1)] holds for proper choice of B™*! for closed (r 4+ 1)-segments
of I* (1 < r 4+ 1 £ u), and show that (3.3r) holds for proper choice of B”. By
hypothesis there exists an r-section H" of I* parallel to Q" for which P [g, H"]
< ». As a matter of elementary geometry, there then exists a sequence,

Q" O, O = QF, 0L »< p—r]

of closed r-segments of I* parallel to the given closed r-segment Q7, such that
Q¢ isin H" and, if » > 0, Q;—1" and Q;" are r-faces of a closed (r 4 1)-segment
Qi of I*. As in the proof of the preceding paragraph, it follows here that

Prlg, Q1< B™ 4 P g, Qi1'] t=1,...,9].
We infer that

Pr[g, Q1< v B 4 PT[g, Q']
s VBr+1 + Pr [g, Hr] — Blry

introducing Bi". The constant B;" is a bound for the left member of (3.37)
whenever Q7 is parallel to H". It is clear that there are a finite number of
sections H;" (such as H") such that each r-segment G* is parallel to H;" for
some ¢, and PT [g, H,;"] is finite for each 7, and we accordingly infer the existence
of a bound BT for the left member of (3.37) as required.

The theorem follows.

COROLLARY 3.1.  Under conditions F on k over a general interval I*, |k(s)| is
bounded for s € I*.

If u = 1, the corollary is true. Proceeding inductively we can assume that
|k(s)| has a bound B over a (u — 1)-section H*™ of I*. According to the
theorem, P! [k, Q'] taken over all 1-sections Q' of I* orthogonal to H*™! has a
bound B;. Hence |k(s)| & By + Bfors € I*.

CoroLLARY 3.2. IfE satisﬁei F over I*, the function k|QT defined by k over
any r-segment Q" in I* satisfies F over Q.
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4, The Fréchet variation in the small. Let Q" be an r-segment in R*. By
the vertex distance of QT from a point s € R* is meant the maximum of the dis-
tances of the vertices of Q" from s.

We write Q"— s in case the vertex distance of a variable Q™ from s tends to zero.

In the following sections it will be convenient to refer to a u-interval deter-
mined by the origin O and the point ¢ all of whose coordinates are 1. For this
purpose we shall set!

0=1[0,...,0], i=1,...,1],

understanding that 0 and i are vectorial representations of O and ¢ in the space
R* unless the context indicates otherwise. There will be no loss of generality
in replacing an interval I* (g, b) by I* (0, 1) in the study of the Fréchet vari-
ation, since these intervals are images one of the other under 1-1 affine linear
mappings of R* onto itself.

The following notation will aid in the proof of Theorem 4.1. Referring to
(2.10), let it be understood that the typical term on the right of (2.10) corres-
ponds to an elementary u-interval whose Cartesian product representation is

(41) [tlnl_l, tlnl] X... X [t"n“—-ly t“nﬂ].

It will be convenient to break I* up into the union of several non-overlapping
intervals I# (¢ =1, ..., w) and to give a corresponding decomposition of the
sum ¢* [g, I*, 7, e]. We suppose that the vertices of I;# (¢ = 1,...,w) are

among the vertices of w. In this case, = defines a partition of I;# which will
be denoted by x|I;#. Corresponding to the set e of constants associated with
the l-intervals of 7 [typified by the factors of (4.1)], let e|I# denote the sub-
set of constants thereby associated with respective 1-intervals of #|I#. We
extend this notation to closed n-faces 6, of I.* so that 7|6," is well defined and
the associated set of constants is e|6;*. With this understood we have

(4.2) ot g, I*, m, €] = E o* (g, I*n|I#, e|I*].
s

The principal theorem of this section follows.

THEOREM 4.1p. If g satisfies F over U* = I* (0, 1), then P*[g, 0] >0 as
an arbitrary p-interval Q* — O tn U*.

Theorem 4.1u is true when p = 1, as is well known. Proceeding inductively
we shall assume p > 1 and that Theorem 4.1m is true form = 1,2, ... ,u — 1.
We shall then establish Theorem 4.1u. To that end we shall assume Theorem
4.1u false and arrive at a contradiction with the fact that P* [g, U*] is finite.
The assumption that Theorem 4.1y is false can be equivalently stated as follows
For a suitably chosen positive constant 7 there exist u-intervals I* [u, v] C U*
with arbitrary small vertex distances from O and such that

'We are confining our use of boldface symbols for points to 0 and i to avoid the ambiguity
which arises in the representation of these points, although one should logically extend the
use of boldface to the general point s.
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(4.3) Pelg, I¥] > 9

We continue the proof with the following lemma.
LeEMMA 4.1. Let K* [a, b] be an arbitrary closed u-interval in U*. Under the

assumption that Theorem 4.1m is true for m = 1,...,u — 1, and that (4.3)
holds as stated, there exists an interval H*[u,b] C U* with 0 < u? < a?
(p=1,...,u) such that

(4.4) P+ g, HY] > P*[g, K*] + n/2.

The interval K*[a, b] is given and fixed. We shall choose an interval
I* [u, v] C U* such that

(4.5) 0 <u? <? <a? p=1,...,u],

subjecting I* to other conditions which we now describe. Let 7 be a partition
of the u-interval H* [u, b] such that the vertices of I* and K* are vertices of .
We are concerned with 1-intervals

[up) vp] = Ipy [ap' bp] = pr

[, 0% = 7, (w7 = H, p=1....u
Note that
H,=1,VJ, VK, p=1,...,ul
If I indicates a Cartesian product,
(4.6) H“=I}[I,,UJ,,\JK,,] b=1,..., 4

The set of constants e associated with = will be determined in three steps.
We first require that the constants in e associated with the subintervals of

Jo(p =1,...,u) be zero. We next require that the partition «|K* and
associated constants e|K* be such that
4.7) a* g, K*, |K*, e|K*] > P*[g, K*] — 7/4.

So chosen | K* and e|K* will be fixed. There remains the choice of I*, «|I¥,
e|I*, subject to (4.5).
Withp =1,...,4,

(48) H*D (I11,) U (1 K,) U (Union Q%) = I*\U K*\U (Union Q),
b4 4

where Q* is any p-interval of the form
(4.9) =1, X...XI,XKn X...XKn, [n+p =4l

in which r,...7, m1...m, is a permutation of the integers 1,...,u with
0 < n < p. The p-intervals on the right of (4.8) include all those in the ex-
pansion (4.6) which contain elementary intervals in the partition of H* by =
making a non-zero contribution to ¢ [g, H#, v, €¢]. That is
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(4.10) o* (g, H*, =, €] = o* g, I*, 7|I*, e|]¥] .
+ o [g, K+, TIK“y elK“] + Z ot [g’ Q“r rIQ“v e[Q“]'
QK
Relative to the choice of I*(x, v) the following will be established.

(A) Let DI* be the vertex distance of I* from O. With w|K* and e|K* fixed
as above there exists a positive constant & so small that when DI* < 8, then

(4.11) I%; o* [g, Q% 7|Q“ elQ]| < n/4,

regardless of the choice of «|I* and e|I*.
The term in the sum o in (4.11) contributed by the general elementary
interval of the partition «|Q* has the form (without summing),

e AT, ... €T, ATn, o,

where ¢ has the form (without summing),

(4.12) @ = ¢eMg A™g, ... e"‘ppp A"'ppp g,
and ¢ is defined over the n-interval 6" = I,, X ... X I, in a space R* with
coordinates [s™, ..., s"s].  Hence
lo* [g, Q*, w|Q*, €[Q]|
(4.13) S Tleng A,y ... ene, A" | [ay, ..., a, summed]
®

< ; |P™ [o, 6711,

summing over all ¢ given by (4.12). The number of such ¢ is at most the
number N of elementary intervals in #|K*. The integer a; is the index of the
a;th interval of 7|1, and B, the index of the B;th interval of #|K,. In (4.13)
(a1, ..., as) determines the general interval of =|8”, and the sum as to
(a1, . . - , an) is OVer |0

We are assuming Theorem 4.1m true whenm =1,...,u — 1. In partic-
ular, Theorem 4.1n is assumed true. Hence there exists a positive constant §
so small that when DI* < §,

n n 1’
(4.14) 1P Lo, 07]] <

for each ¢ given by (4.12). Account has here been taken of the fact that
6™ — (the origin in R™) as I* — 0, and that for a fixed partition | K", ¢ satisfies
F over the m-interval (0 < s1<1)...(0 <s™ < 1). Hence (4.14) and
(4.13) imply that

" " " w]| < n
(4.15) “7 lg, Q% "T‘Q ’ e‘Q ]l X 1.9
Finally there are 2¢ — 2 < 2# different intervals Q* so that (4.15) yields
(4.11), thus establishing (A).
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Proof of Lemma 4.1. Returning to (4.10), we choose I* subject to (4.5)
and to the condition DI* < §, together with «|I* and e|I* so that the first
sum on the right of (4.10) exceeds 5. This is possible since (4.3) holds as
stated, by hypothesis. From (4.10), making use of (4.7 and (A),

Un[ngpr ™y e] > n + [P“[g) K"] - 7]/4] - 7)/4
> P*[g, K*] + 1/2.

Relation (4.4) follows.

This completes the proof of Lemma 4.1.

The theorem follows at once from Lemma 4.1, since Lemma 4.1 implies the
existence of p-intervals in U* with arbitrarily large Fréchet variations. Hence
the hypothesis that Theorem 4.1y is false is untenable, and the proof is com-
plete.

5. A sector limit. The problem of the existence of sector limits mentioned
in §1is a part Pf the more general problem of the boundary values of a function
g, satisfying F over the open interval U* = I* (0,i). We are not concerned
with boundary values in the classical sense but in limits of g(s) as s € U*
approaches an open (u — 1)-face I*™! of U* on a straight line orthogonal to
I*71. We shall extend g over I*! and then be concerned with the limits of
the extension of g as s € I*7! approaches an open (p — 2)-face [*7% of [*™}
on a straight line orthogonal to I*72, and so on down through the open faces
of U* of every dimension. It is convenient to regard the problem of extending
g, originally defined only on U* over the boundary of U*, as a special case of
extending or transforming the boundary values of a function g defined over a
more general p-interval V* such that

(5.1) I* (0,i) C V* C I*[0, ).
We begin with a general definition.

THE FUNCTIONS g'. Suppose that the domain of definition in R* of a func-
tion g includes a line segement of points with coordinates

(Y .. s ST 8, 5T L M),

where (s}, ..., s*) is fixed and ¢ ranges over an open interval 0 < ¢ <c¢. We

then set

(5.2) g(sty .oy s s 48, sTH UL ) = g7 (s),

provided the implied limit exists and regardless of whether g(s) is defined or
not.

It is not practical to transform or extend the boundary values of g in one
step. Thefaces X V*which are incident with O will be successively considered.
Observe the inclusion relations
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(5.3) VEC CVE C CCVEC ... CC,... CiVA

Corresponding to this sequence of intervals, we shall define a sequence of
operations on g, progressively exter}ding or transforming the boundary values
of g. We suppose that g satisfies F over the p-interval V* of (5.1). Let 7 be
any one of the integers 1, ..., u. The operator E, which we shall now define
extends or modifies the boundary values of g over X,V*. Observe first that

g" exists at each point s € X, V* regardless of whether g(s) is there defined or
not.

THE TRANSFORM E,g OF g. With g satisfying £ over V*, E,g will be defined
over C,V* by setting

(5.4) E.g(s) = g(s), [for s € V* — X, V¥
(5.4)" E.g(s) = g7(s), [for s € X, VH.

LeEmMA 5.1.  If g satisfies F over V¥, then for any m-segment Q™ C C,V* with
o™ # X0,

(55) pm(E,g Q™ = P" [gv Q™ — X.Q™ [r,m=1,...,u.

U (X,Q™) M Q™ is the null set, (5.5) is trivially true, since E,g = g over
Q™ in this case.

To proceed we first suppose Q™ closed. In this case and with X,.Q™ M Q™
non-empty, the orthogonal projection of Q™ on the s"™-axis is a closed interval
[0, 57]. Let w be a partition of Q™. Referring to the partition = let ¢ be a point
on the s"™-axis between so” = 0 and s,". Let Q™ Le the m-segment obtained
from Q™ on removing from Q™ the subinterval of Q™ on which s* < ¢, and le t
m: be the partition of Q;™ obtained from = by replacing so" = 0 by 50" = &.

We associate the same set € with 7 as is given with w. It follows from the
definition of E.g that for fixed r, e,

(5.6) o™ [g, Q¢ w1, €] = ¢™ [Erg, Q™ m, €]
ast—0 +. Since 0™ — X.0™ D Q;™,

(5.7 P g, Q™ — X.Q"] 2 o™[g, Q™ Ty, €].
From (5.6) and (5.7) we infer that

(5.8) P g, Q" — X,Q™ 2 o™ [E,g, Q™ =, €].

On takirg the sup of the right member of (5.8) over admissible =, e, we conclude
that

(5.9) Pm[g, Q™ — X.Q"] 2 P™[E,g, Q]
in case Q™ is closed.

Relation (5.9) holds even when Q™ is not closed. In this case, let K™ be
an arbitrary closed m-segment in Q™. Then K™ = X,K™ and
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Pmlg, Q™ — X,Qm 2 P™[g, K™ — X,K™] [by (2.13]
2 P™[E.g, K™ [using (5.9)].

By virtue of this relation and the definition of P™ over a non-closed interval
Q™, (5.9) holds without exception. But (5.9) also holds with the inequality
reversed since

Pm[g, Q™ — X.Qm] = P™[Ewg, Q™ — X.Q] [cf. (5.4)']
S Pm[E.g, Q] [by (2.13)].
Thus (5.5) holds as stated.
We note the following consequence of Lemma 5.1.
LeEMMA 5.2. If g satisfies F over V», E.g satisfies F over C, V.

It follows from Lemma 5.2 that forn,r = 1,..., 4, E.E,g and E,E,g are
well defined over the interval

(5.10) CnCrV” = CrCn V“,
but there is no simple a priori reason why
(5.11) E.E.g = E,Eng

over the interval (5.10). In factif g did not satisfy Fover V¥, simple examples
would show the falsity of (5.11) even when the limits necessary to define the
two members of (5.11) existed. Until this difficulty is resolved in §6 the
order in which the operators Ej, . . . , E, are applied is very material. Bearing
this in mind, note that forr = 1,..., 4,

(5.12) EE....Eyg

is well defined and satisfies F over
C.Crcr... CLV*

whenever g satisfies F over V.

LeMMa 5.3. If g satisfies F over Ve, then
PrE,E,y...Eyg, Q™ =P™[g, Q™ — X.0™ — ... — X.0™
forr,m =1,..., uand for any m-segment such that
Q" C CiCry. .. C1V¥, o Z X.Q™\U ... U X,0m

As a consequence of Lemma 5.2, E,E,.; ... Eg satisfies F over C,C,_,
... CiV* The application of Lemma 5.1 then gives the successive relations
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pm [ErEr_l [P E1g, Qm]
= pPm™ [E,-_1E,_2 PN E1g, Qm _— Xer]

= Pm[Elg) Qm —Xer —Xr—lom  ees ™ X],Qm]
=P"[g, Q" — X,Q" — X,Q™ — ... — XuQ"],

thus establishing Lemma 5.3.
It will be convenient to set

CuCur...CLV® = Clp* V¥,
and refer to Clp* as the left closure of V*. When g satisfies F over V* we also
set
EE, ;...Eyg = Go*g.
LEMMA 5.3 gives the following:
LeEmMMA 5.4. If g satisfies F over V=, then
P [Go*g, Q™ = P™[g, Q" N I* (0, ]]

for each m-segment Q™ C Clo*V* intersecting I* (0,i]. As a consequence Gotg
satisfies F over Clo*V*.

We come to a major theorem:

THEOREM 5.1u. If g satisfies Fover o u-interval V* of type (5.1), then g(s) has
a unique limit g(O +) as s = O in U* = I* (0, i).

Theorem 5.1y is true when u = 1. We shall suppose p > 1 and fixed.
Proceeding inductively, let m be any integer such that 1 < m < p. We shall
assume that Theorem 5.17 is true for 0 < r < m, and establish Theorem 5.1m.

With s€ Um™set I™ [0, s] = H,™ Let g and V™ be the function and interval
in Theorem 5.1m. Then €y™g satisfies F over Clo™V™ by Lemma 5.4, and

(5.13) Pm(Gomg, H™ = P™[g, H™ N U™.

The right member of (5.13) tends to 0 as s — O in U™ by Theorem 4.1 so that

(5.14) P»[Go™g, H™ — 0 [as s > Oin U™
Use will be made of a partition » of H,™ in which the only vertices are those

of H,™. The differencing operator A? (p = 1,..., m) will then correspond to

the interval [0, s?], and (5.14) implies that, for g’ = Go™g,

(5.15) ALA?, . A™g'(s) >0

as s > 0 in U™ Two of the terms in the sum (5.15) when expanded are
g'(s) and (— 1)™g’(0). Each of the other terms is of the form = g'(s,), where
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5 is the orthogonal projection of s on one of the open r-faces A of U™ incident

with O (r =1,...,m — 1). Let the coordinates of sy which are variable
over A, taken in the order of their superscripts, be denoted by #4, ..., ¢". Then
t = (#,...,17) ranges over U™ as s ranges over U™ with sx = (&, ...,¢t"). For

s EUmset g'(sn) = o(). Since Gp™g satisfies P over Clo™U™ by Lemma 5.4,
¢ satisfies F over U” C Clo™U™ by Corollary 3.2. By our inductive hypo-
thesis ¢(f) tends to a limit as t— 0 in U". It follows from (5.15) that g'(s)
tends to a limitas s — O in U™ Butg'(s) = g(s) fors € U™, and the theorem
follows.

The limit g(0+) proved to exist in Theorem 5.1y is the sector limit correspond-
ing to the sector Sp on which s >0 (1 = 1,..., ).

6. Canonical left boundary values. The transform
Co#g = E,E,~1...Eg

of g defined in §5 does not in reality depend upon the order of application of
the operator E, (r = 1,..., u) when g satisfies F over V. To establish this
it will be sufficient to show that Ep*g has canonical left boundary values in
the sense of the following definition.

DEFINITION. If an interval V* of type (5.1) is left closed (cf. §2) a function
g defined over V* will be said to have canonical left boundary values if for s € X, V*,

(6.1) E.g(s) = g(s) r=1,...,u

We term the union X,.V* (r = 1, ..., u) the left boundary of V* and note
that V* is left closed if and only if it contains its left boundary. Condition
(6.1) is automatically fulfilled if V*isleft closed and g continuous over V*. In

general (6.1) will not be satisfied if g is discontinuous. At a point a¢ € V*
for which

an=a2=...=a" =0, 0<n< 4
and for which the remaining coordinates a® # 0, (6.1) imposes the conditions
gn() = gne) = ... =g"() = g(a),

not in general satisfied. We shall, however, show that when g satisfies Fover
V* the transform §p*g satisfies (6.1), and so has canonical left boundary values.

For this purpose it is useful to generalize the limits g” previously defined by
defining the limits gn1... ™. We suppose g defined over a p-interval in R*
and thatr; (1 = 1,...,n < pu)is an integer in the set 1, ..., u. Proceeding

inductively we suppose that g" ... "»—1 has well defined values at points with
coordinates

(6.2) DL L2 s S LT B A L R

where (s, ..., s*) is fixed and ¢ variable on an interval (0,c). We then set
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(6.3) (g ) "a(s) = gt Tas),
whenever the implied limit exists.

The following lemma is a corollary of Theorem 5.1.

LEmmA 6.1.  If g satisfies F over an interval of V* of type (5.1), then
(6.4) Co*g (0) = g~ " (0)

where ry . . . r, is any permutation of the integers 1, ..., u.

The right member of (6.4) is a limit of values of g(s) for s € I*(0, ei) where
e is an arbitrarily small positive constant. It follows from Theorem 5.1 that
the right member of (6.4) equals g(O+)and is accordingly independent of the
permutation of the integers 1, ..., u. On the other hand it follows from the
definition of Gp¥g that

@O"g(O) = gn(u—l) v 1(0)'

so that (6.4) follows.
We can now obtain a representation of €y*g which shows its independence
of the order of application of the operator E,.

THEOREM 6.1. Suppose that g satisfies F over an interval V of type (5.1).
Let a be any point on'the left boundary of V* at which

(6.5) an=an=...=a™m =0 [n > 0],

while the remaining p — n coordinates a* % 0. Let my . . . m, be any permuta-
tion of the integers 1, ..., u. Then

(66) Eml e Emn g(a) = grl e (a),

where the ordering of the integers ry, ..., rn 0or my, ..., m, is immaterial.

In the ordered set m;, . .., m,, suppose that 74, .., r, appear in the order
p1, ..., pn. Let A,™ be the n-section of V* by the n-plane on which
6.7) (s"1,...,5%) = (@,...,a"p) [p=u—mnl
where the a’s on the right of (6.7) are the coordinates of a which are not zero.
On A,* the coordinates s°.,...,s"® are variable, and it follows from the
definition (5.4) of E, (r = 1, ..., u) that
(6.8) En ...En,g8(a) =E, ...E,, g).
On the other hand one has successively

Eﬂ g(s) = grl(s) [S E Xr.Aa"]y

(6'9) ET: ETl g(S) = grlr,(s) [S E X"zX"IAan]'

E, ...E,Eng(s) =g "n(s) [s€X, ...X A" =a]
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The existence of g% in (6.9) has been inferred from Lemma 5.2
@=1,...,n).

To show that the right member of (6.6) is independent of the order of
71,...,7n,0bserve that the function g|A," satisfies F over A,"in accordance with
Corollary 3.2. It then follows from Theorem 5.1 that as s — @ in A" with
s # a, g(s) — ¢, a constant. We conclude as in the proof of Lemma 6.1 that

(6.10) gn...™() =c¢

regardless of the ordering of the integers r;,...,7,. In accordance with
(6.9), (6.8) can be written in the form

Enpy...Eng(a) =g " (a).
Equation (6.6) then follows from (6.10), since p1, ..., pn is an ordering of
the integers ry, . . . ,7n.
CoOROLLARY 6.1.  For any ordering my, . .., m, of the integers 1, ..., p,
Co"g = Em, - .. Eng-

THEOREM 6.2. If g satisfies F over a left closed interval V* of type (5.1),
then a necessary and sufficient condition that g have canonical left boundary values
is that Go*g = g.

The condition Gp*g = g is sufficient. We have

g= Go*g=E.(E:Es...E,1Es1...E)g [by (6.6)],
E,-g = E,—@o“g = ErEr(E1E2 . e Er._1Er+1 . e E“)g [f =1,... ) p]
= Er(Esz e E,-._lE,-+1 o E,‘)g
= Go*g = ¢.

The condition is necessary. For E,g = g by hypothesis, so that
g=Eg=EEg=...=EFE,,...Eg=G§og
The proof of Theorem 6.3 requires the following lemma.

LeMMA 6.2. If g satisfies Fovera left closed interval V* of type (5.1) and has
canonical left boundary values, and if o is a left closed n-face of V* incident with
O, then glo has canonical left boundary values.

Let sn,...,s™ be the coordinates which are variable over ¢. To show
that g|o has canonical left boundary values, it is sufficient to show that

(6.11) (glo)™i = glo [over X,; a].
We have
(6.12) (glo)s = gile [over X,; al.

Since g"i(s) = g(s) for s € X,,0 by hypothesis, (6.11) follows from (6.12).
This completes the proof of the lemma.
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Theorem 4.1 concerns an interval Q* such that Q* — O in I*(0,i). In the
following extension of Theorem 4.1, Q" is a segment of any dimension r between
1 and u inclusive, and Q" — O in I#[0, i).

THEOREM 6.3. If g satisfies F over Vo = I* [0, i) and has canonical left
boundary values, then

Prig, Q1—0 r=1...,4
as an arbitrary r-segment Q™ — O in I* [0, i).

We shall refer to the theorem as Th (u, r), and first establish Th (g, u).
Observe that Gp*g = g by Theorem 6.2, so that

Pt g, Q1] = P*[Go* g, Q¥]
= P*g, Q* M I* (0, i)] [by Lemma 5.4].

This final variation tends to zero as Q* — O in accordance with Theorem 4.1.
Thus Th (u, x) holds.

To prove Th(g, ) we shall use a double induction. Let m be a fixed integer
with 1 < m £ u.  We shall assume the truth of

(6.13) Th (m — 1,1), Th(m —1,2),...,Th(m — 1, m — 1),

and establish

(6.14) Th (m, 1), Th (m,2),...,Th (m, m — 1).

For this purpose we assume the truth of the theorems listed in (6.13) and of
(6.15) Th (m, m), Th (m,m — 1),...,Th (m,r + 1), [0<r <m]

and prove the truth of Th (m, r).

When m = 2, the theorems in (6.13) reduce to Th (1, 1), which holds as
proved above. In (6.15) the theorems listed reduce to Th (m, m) when
r =m — 1, and Th (m, m) holds. We are concerned with increasing m and
decreasing . We proceed to establish Th (m, r) assuming theorems listed in
(6.13) and (6.15).

Casg I. In this case Q7 is assumed to lie in a left closed (m — 1)-face ¢
of V. Then

Prig, Q] =P [gldr Q]
But g|o has canonical left boundary values in accordance with the preceding
lemma. Here Th (m — 1, 7) is in the list (6.13), and implies that
P [glo, Q11— 0, [as Q" —> Oin o]

so that P"[g, Q"] > 0as Q" —>Oin¢

Case II. (Not Case 1.) In this case, there is an (m — 1)-face ¢ of V*
parallel to QT and not intersecting Q. We can suppose ¢ closed relative to
V#.  Let Qo" be the orthogonal projection of Q" into ¢, and let Q"*! be the
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(r + 1)-segment with faces Q, and Q,". Without loss of generality we can
suppose Q7 closed, taking into account the definition of the Fréchet variation
when QT is not closed. Then by a proof similar to that of (3.2), we infer that

(6.16) Prlg, Q1< P g, Q™ + P [g, Qo'
The last term in (6.16) tends to zero as (o" — O in ¢ (or in any of the other
(m — 1)-faces of V*) by virtue of the conclusion under Case I. Moreover,
Pr1g, Q™1 —0

as Q7, and hence Q"' — O, since Th (m,r + 1) is assumed true. Hence
Prlg,Q1—0asQ"—Oin V*

As Q" — O in the general case Q" may come under either Case I or Case II
as it varies, but it is clear that P" [g, Q"] — 0 in this case as well, as a conse-

quence of the conclusions under Case I and Case II. Thus Th (m, r) is true
for 0 < 7 < m, and the proof of the theorem is complete.

CoRrOLLARY 6.2. If g satisfies F over 1#(0, 1), then
(6.17) Prlg, Q1—0 [r=1...,4
as an arbitrary r-segment Q" — O in I*(0, i).

The function Gp#g has canonical left boundary values by Theorem 6.2.
Hence Theorem 6.3 implies that

(6.18) P [Go*g, Q1 —0
as Q" — 0 in I* (0,i). But Gp*g(s) = g(s) for s € QT so that (6.17) follows
from (6.18).

The follkoing theorem will enable us to extend properties oAf a function g
satisfying F over a closed interval I* to a function satisfying F over an open
interval.

THEOREM 6.4. A function k which satisfies F over U* = I# (0, i) admits an
extension g over U* which satisfies F over U*, has canonical left boundary values
and satisfies the relation

(6.19) pPr [kr Qr N U“] = Pr [gr Qr]r
where Q7 is any r-segment in U* which intersects U*.

Let s = ¢(t) be a (1-1)-linear transformation of U* onto itself which inter-
changes the vertices 0 and i. Set

He®] = £ it e v,
Gore'(t) = £"() It € 140, D),

(6.20) ¢ ()] = £7(5) [s € I+(0, il
Core”(5) = £05) [s € T4,

We shall see that g satisfies the theorem.
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Itis first clear that g’ satisfies F over U, and hence by Lemma 5.4 g’ satisfies
F over I# [0 i). Hence g'"’ satisfies Fover I* (0, 1], and again by Lemma 5.4
g satisfies Fover T* Set

= QN I*(0,i].

Two applications of Lemma 5.4, first to k and its extension g’’’/, and second to
pp
g’’’ and its extension g give

Pk, K" = P"[g"",H'] = P"[g, Q7],
where
Kr=H N\U*=Q N U~
Relation (6.19) follows.

7. A left decomposition of g. Suppose that g satisfies F over a left closed
interval V* of type (5.1) and has canonical left boundary values. Let o be
any face of V* incident with O and closed relative to V*. Each such ¢ is left
closed since V* is left closed by hypothesis. Special faces ¢ are the origin O
and V4 On o, g defines a function gle¢ which has canonical left boundary
values (Lemma 6.2). In case ¢ = O this condition is vacuous. Let s, be the
orthogonal projection of s € V*into ¢. We understand that s, = O when ¢ = O,
and that s, = s when ¢ = V&

DEFINITION. Let o be a face of V* incident with O and closed relative to V*.
A function g which has canonical left boundary values will be said to be a left
o-function if

(7.1) g(s) = g(s) [for s € V¥]
and if g(s) = 0 when s is on the left boundary of o.

When ¢ is the 0-face O, a left o-function g has but one value g(0). This
value need not be zero.

The following theorems are useful in the theory of multiple Fourier series,
and in particular in the treatment of the Dirichlet integral.

THEOREM 7.1. When g satisfies F over a w-interval V* of type (5.1) and has
canonical left boundary values, then g is a sum

(7.2) §=2¢
of left o-functions belonging to the faces o of V* which are incident with O and
closed relative to V*.

We term (7.2) a left decomposition of g.

The determination of g, when ¢ = V*. Let A* (1 = 1,...,u) be a differ-
encing operator corresponding to any interval [0, s?] of the s*-axis with s* > 0.
For ¢ = V*and s € V* set

https://doi.org/10.4153/CJM-1950-033-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1950-033-1

364 M. MORSE AND W. TRANSUE

(7.3) = ARART. . Alg,

We must show that g, satisfies F over V¥, has canonical left boundary values,
and is a left g-function. That g, satisfies F over V* follows immediately from
its definition (7.3). To prove that g, has canonical boundary values we must
show that E.g, = g, forr = 1,...,u. Since E,g = g by hypothesis,

E;ge =AM AEg = APAT L ANg =g,

as required. To show that g, is a left e-function requires a verification of the
relation g,(s) = g,(s,) for s € V¥, This relation is trivial when ¢ = V*, since
S¢ = swhen ¢ = V* Finally g,(s) = 0 on the left boundary of V*-as a con-
sequence of the definition (7.3) of g,.

The determination of g, when ¢ ¥ V*. The right member of (7.3) is the sum
of g and functions defined over V* with values obtained from g(s) by setting
some ‘of the coordinates s* = 01in g(s). It is clear that each of these derived
functions satisfies F over V* and has canonical left boundary values (Lemma
6.2). For r =1,...,u, let A(r) be the (u — 1)-face of V* on which s™ =
taken closed relative to V*. When ¢ = V*, denote g, by g1. It follows from
(7.3) that g admits the form

(7.4) =g+ 2f [with f+(s) = fr(sxin)]

where f, satisfies Fover V* and has canonical left boundary values. It follows
from Lemma 6.2 that the function ¢, defined over A(r) by the values f,(sa(r))
satisfies F over A(r) and has canonical left boundary values.

Proceeding inductively we assume that the theorem holds when p is replaced
by p — 1 (supposed positive), noting that the theorem holds when p = 1.
We seek to prove the theorem for the general u. Under our inductive hypo-
thesis, ¢, admits a left decomposition over A(r) of the form
(7.5) PCr = z q’m,

aCN(r)
taken over those faces ¢ of V* incident with O which are also faces of A(r).
From (7.5) we obtain a left decomposition of f, of the form

(76) fr(s) = fr(s)\(r)) = 0C§(') frv(s)'

For a given r f,, = 0if ¢ Z A(r). Decomposition (7.6), taken for r =1,
., 4, and substituted in (7.4), gives a left decomposition of g in which

% = 2 fre
This completes the proof of the theorem.
THEOREM 7.2. In the left decomposition of g given by (7.2), g, is uniquely

determined by g and o. Specifically if s™, ..., s™, are the coordinates which
are variable over ¢ and if s, is the orthogonal projection of s € V* into o, then in
casen > 0,
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(7.0 glo = A" ... A™(gls) [s € V4],
while g,(s) = g(O0) when n = 0.

Let w be an arbitrary one of the respective faces of V* incident with O and
closed relative to V#, There are 2* such faces w of which ¢ is one. Let fw be
the left boundary of w. According to (7.2),

(7.8) g=2 g

We shall prove the following. For the given o, for s € V¥, and s, the ortho-
gonal projection of s into o,

(7.9) g(ss) = gi(ss) + ;ﬁu gu(S0).
Proof of (7.9). It follows from (7.8) that for s € V*
(7.10) g(s) = X 2u(Sa)s

since g, is a left w-function. Then (7.10) implies that

(7.11) g(s.,) = g.,(S.r) + ‘”Z#’ g@(va)

since Sq; = S, Moreover for w # 7,

(7.12) Ses C oM w C (6N Bw) \J (0N Bo).
In case w ¢ Bo,

(7.13) w M Bo = Bw M B,

and (7.12) with (7.13) implies that s, C Bw. In this case g.(ss.) = 0 since w
is a left w-function. Hence (7.11) reduces to (7.9).

Proof of (7.7). The form of (7.7) suggests that (7.9) be written as a relation
between functions rather than between values. Thus (7.9) implies that

(7.14) glo = glo + ‘E’g, (gal0).-
We apply the differencing operator A™ ... A" to the respective functions in
(7.14). In particular
AT ... A"n(glo) = gdo,
since g,(s) vanishes when s is on the left boundary of . Moreover when w Cge,
AT, .. A" (gu|e) = 0.

For g.(ss) = g(ss») and at least one of the coordinates s": of s,, vanishes when

w C Po, so that ATi(gu|s) yields a null difference. Hence (7.14) implies (7.7)

when n > 0. The relation g,(s) = g(0) when #n = 0 requires no comment.
This completes the proof of the theorem.
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We have stated that the Fourier series of a function g which satisfies f“, is
continuous over I*[0, 2xi] and has the period 27 in each of its arguments,
converges uniformly in the sense of Pringsheim. In establishing this, the con-
cept of the variation modulus of g, as used in Theorem 7.3, will play a funda-
mental role. .

DEFINITION. The variation modulus of g. Let g satisfy F over an interval
I*. A function p with values p() > 0 defined for 0 < 4 < 1 is called a vari-
ation modulus of g over I* if p() — 0 as 7 — 0 and if for any r-segment Q" C I*,

Pf[g’Qf]<p(1’) [r=17-~-y#]
whenever the diameter of Q7 is less than 7.

A
THEOREM 7.3. (a). A funciton g which satisfies F and is continuous over
1[0, 1] admits a variation modulus p. (B8). Moreover 2#p is a variation modulus
common to the functions g, in a left decomposition of g.

Proof of (a). If statement (a) of the theorem were false, there would exist
some point a € I* [0, i] together with an integer m (0 < m < p) and a positive
constant ¢ > 0 with the following property. There exist m-segments Q™ C I*
[0, i] with arbitrarily small vertex distances from a and with

(7.15) P (g, Q™ > e.

But any such Q™ is the sum of at most 2* non-overlapping m-segments Q,™,
each of which lies in one of the 2* closed sectors S, with vertex at a. Taking
account of the continuity of g one may infer from Theorem 6.3 that P™[g, Q,™]
— 0 as ;™ — a, provided Q;™ remains in one of the sectors S.. Since

(7.16) Pmlg, QM < “/:. P g, Qi

a contradiction with (7.15) is evident. We conclude that g possesses a varia-
tion modulus.

Proof of (B). Statement (B8) follows from the existence of the variation
modulus p, as affirmed in (a) and the specific formula (7.7) for g,. In the
sum on the right side of (7.7) there are at most 2* different functions defined
over ¢ and obtained from g|s, by setting some or none of the coordinates of s,
equal to zero. Each of these functions has the variation modulus p of g so that
2-(s) has 2#p as a variation modulus.

8. S-continuity. At each pointain R* the (u — 1)-planes on which s™ = a”
(r =1,...,pn) divide R* into 2* open regions or sectors. Let S, be any one
of these regions. As a varies over R*, we suppose that S, remains invariant
in orientation, and refer to S as a sector type. There are 2* sector types.

Let g be defined over a general u-interval I*. We say that g is S-continuous
(S-continuous) at a point a of I* if S, (S,) intersects I* and if g(s)—g(a) as
s—ain S, (S,). The following theorem is useful.
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TuEOREM 8.1.  If g satisfies F over an open u-interval I* and is S-continuous
over I* relative to a sector type S of invariant orientation, then g is S-continuous
over I*.

Letabe fixedin I*. Foranyu € S, N I* g(s) — g(u)as s > uin S, N S..
Since g(s) — g(a) as s > a in S,, it follows that g(s) — g(a) as s—a in S,.

THE FUNCTIONS g>. Corresponding to a function f of bounded Jordan varia-
tion with values f(s) over a l-interval [a, b], one commonly associates a func-
tion f T such that f *(a) = f(a),f T(b) = f(b),and f T(s) = f(s+)fora <s < b
Functions f ~ are similarly defined. It is necessary to preserve the end values
of fin defining f * or f ~ in order that f T or f ~ may be useful in applications
such as the Riesz-Stieltjes representation of functionals linear over C. For
the case p = 2 the generalizations are the functions £*” of [7]. The generaliza-
tions of f * and f ~ in the case of a general u are as follows.

Let g satisfy Fover I* [0, i], and let S be a fixed sector type. Let F" be any
open r-face on the boundary of I* (r = 1,...,u —1). Fort € F7, let S;"
denote the orthogonal projection of S; into the r-plane of F*. Then S;" is an
open r-sector? in this 7-plane with vertex f. With g we now associate a func-
tion g5 mapping I* into R! and defined as follows:

(8.1) g = :1|i<m5) g(s) It € I* (0, )],

(8.2) g2t = lim _ g@s) [t € F1],
s—t|(seSi)

(8.3) () = gt) [t a vertex of I*],

where (8.2) applies to all r-faces F” of I*[0,i]. That the limits implied in
this definition exist follows from Theorem 5.1. We note the following:

go|F = [g| F)".

The proof of the following theorem depends upon the lower semi-continuity
of P defined as follows. Let [gs] (n =0,1,2,...) be a sequence of func-
tions mapping an r-segment Q™ C R* into R! and such that for each s € Q7,
g2n(s) — go(s) as w — . Then PT is lower semi-continuous in the sense that

lim inf P [g,, Q7] 2 P [go, Q7).

The proof of this fact is essentially independent of the dimensions r and . In
the case u = r = 2, the proof is given in [7, §3], and need not be repeated here.

The following theorem is fundamental in the theory of functionals multi-
linear over Cartesian products of C.

THEOREM 8.2. Let g satisfy F over 1#(6,1] and let S be a sector type in R*
invariant in orientation. The function g° is S-continuous over I*(0, 1) and S'-
continuous® over each open r-face F™ of I*. Moreover for the closed interval I*

2S7 is a sector type associated with F” and derived from .S.
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(8.4) Pulgd, ¥ < Prg, I

By virtue of its definition g° is S-continuous over I*(0, i). The S™-continuity
of g5|Fr follows similarly. In general g° will not be S-continuous over I#[0, i]
nor S’-continuous over F”.

To continue, we suppose that Sis of the ‘‘right” type in which the coordinates
s>a'(t1=1,...,u) for points in S,. The cases of other sector types can
be reduced to the case of the ‘‘right”’ type on making a suitable affine mapping
of I#{0, i] onto itself.

To establish (8.4) let ¢, be a homeomorphic mapping of the 1-interval [0, 1]
onto [0, 1] leaving the end points of [0, 1] fixed and being such that

0 < onlx) —x<1/n 0<x<I1].
Such a mapping exists. Set
glen(sh), .oy en(s¥)] = ga(s) [s € I*]o0, i]].

It is clear that ga(s) — g°(s) as # — = for each s € I*[0, i], since gn(x) — x
from the right. A direct consideration of the definition of the Fréchet vari-
ation makes it clear [7, Lemma 3.3] that for the closed interval I*,

(8.5) P+ (g, I*¥] = P*[g,, I*].
Because of the lower semi-continuity of the Fréchet variation,
(8.6) lim inf P* [ga, I*] 2 P*[g°, I"].

7n—00

Relation (8.4) follows from (8.5) and (8.6).
THEOREM 8.3. If g satisfies F over I* [0, ], then
Pr[g°, IS PT[g, I',
where I" is any closed r-face;of I* (r > 0).

The proof of Theorem 8.2 yields a proof of Theorem 8.3, replacing u by 7,
I* by I'.
COROLLARY 8.1. If g satisfies F over I*0, 1], then g° satisfies F over I*[0, i.

THEOREM 8.4. If g satisfies F over T “10, 1], the points of discontinuity of g lie
on a countable set of (u — 1)-planes parallel to the coordinate (u — 1)-planes.

The proof of this theorem is similar to the proof of the corresponding theor-
em when p = 2 as given in [7, §6], and need not be repeated. It depends
upon the fact that whenever a is a point in I* [0, i] and S, intersects I*[0, i]
then g(s) has a limit as s — ¢ in S,. Theorem 5.1 implies the existence of
these sector limits.

The following theorem concerns a determination of the minimum modulus
of a multilinear functional defined and continuous over the u-fold Cartesian
product of the Banach space C by itself [8, Theorem 12.1].
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THEOREM 8.5. Let g satisfy F over I* [0, i] and let S and S’ be two sector types
in R*. Then

(8.7) Prig, I = P [¢%, I4.

Recall that g% satisfies Fover I* by Corollary 8.1. Hence [g5]° exists over
I*. We shall write [g°]° = g%, and prove that
(8.8) g =g

The points of continuity of g in I* form a set A everywhere dense in I* in
accordance with Theorem 8.4. From the definition of the sector limits it
follows that

(8.9) g(s) = g°(s) = £5(s) [for s € A].

By virtue of (8.9), g5 and [¢%]° may be evaluated at each point ¢t € I* (0, i)
as the limit of a common sequence of values of g(s) with s € 4. Hence (8.8)
holds not only for s € 4 but also for s € I* (0,i). That (8.8) holds at each
point of an arbitrary open r-face F" of I* is similarly established. Relation
(8.8) holds at the vertices of I* by virtue of the definition of g° and g% at a
vertex.
It follows from (8.8) that
Prlg’, I = P77 I

< peg’ I“] [by Theorem 8.2].

Since S and S’ can be interchanged in this relation, the equality must prevail

and (8.7) is estabhshed
If k satisfies £ over the open interval U* = I* (0, i), k5 can be defined over

U* by using (8.1) alone, and the following theorem can be proved.

THEOREM 8.6. If k satisfies F over U* and S is a sector type of fixed orienta-
tion, k5 satisfies F over U* and

(8.10) Pe[S, U¥ < Pelk, UH.

By virtue of Theorem 6.4, £ admits an extension g which satisfies Fover T»
and for which (6.19) holds. We have

Prlk, U] = P*[g, U¥] [by (6.19)]
2 P (g5, U] [by (8.4)]
2 P (g, U] [by (2.13)],

thereby establishing (8.10). Moreover g° satisfies F over U*, and in particular
over U*. Hence k5, which equals g° over U*, satisfies F over U*.

The existence of a sector limit function £° satisfying F over U* enables us,
as in [9, §2], to prove the following theorem.

TueoreM 8.7.  If k satisfies F over U*, then k is L-measurable over U*.

If g satisfies F over T*, g is then L-measurable over U* by Theorem 8.7,
and hence L-measurable over U* as well as over U,
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9. A replacement for the second law of the mean. Lemma 2.1 leads to a
basic inequality whose one-dimensional form is as follows. Let f and g with
values f(s) and g(s) map the open l-interval I' = (0, 1) into R%. Recall that
P'[g, I'] is the total Jordan variation of g over I

LeEmMMA 9.1. If f is in L over the 1-interval I' = (0, 1), if g has a finite total
variation over I*, and if moreover g(0+) = 0, then

9.1) MMmmmspmm2mﬁmwm

where) < a < 1.

This lemma is an easy consequence of the second law of the mean, and for
many purposes is an adequate replacement. We shall generalize Lemma 9.1
in Theorem 9.3.

Let f, (r = 1,..., ) be in L with values f,(¢) defined over the l-interval
(0,1). Set
(9.2) M, =sup| [.f:(t) dt| r=1...4

for 0 <a < 1. Let g satisfy F over the interval I* [0,1]. According to
Corollary 3.1, g(s) is bounded over I#0, i] while Theorem 8.7 implies that g is
L-measurable. The L-integral

9.3)  JuAsh oo s =g (ST L fu(s®) (s, . s®) dsTHL L L ds#

is well defined for [s',...,s"] in I'[0,i] and 0 < r < . For the domain of
integration in (9.3) isa (u — r)-section of I* [0, i] on which g is again L-measur-
able by Theorem 8.7.

DEFINITION. If g satisfies F over a left closed interval V* of type (5.1), we

shall say (1) that g has null left boundary limits if for each r = 1, ..., pu,

(9.4) g’(s) =0 [for s € X, V*]

and (2) that g has null left boundary values if

(9.4)" g7(s) = g(s) =0 [fors € X,V*.
THEOREM 9.1. If g satisfies F over I* [0, 1] and has null left boundary values,

then J, satisfies F over I"[0,1] forr = 1,...,u — 1 and has null left boundary

values. Moreover,

(9.5)(u, 1) PJ,INS Polg, MM s1 . . . M*

forr=1,...,u—1.

Proof of (9.5)(n, p — 1). Observe that
(9.6) Juma sty ooy 2™ = [ f® glsh, ..., s* 7L 4] dt.
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For fixed ¢ € [0, 1], let g; be the function mapping I*7[0, i] into R with values

glst,...,s# 4. For an arbitrary partition = of I* and associated set e, let
7', ¢ be the partition 7' = [#',..., 7] of I*™! and associated set € =
e}, ..., e* ). Then

(9.7) o* [Jumr, I, ', €] = [ £u(0) B(D) d,

where for fixed =/, €/,

(9.8) h(t) = o*71 gy, I* 71, 7', €],

It follows from the last formula in Lemma 2.1 that

9.9 Pelg, I4] 2 P [k, I [ = [o, 1]].
Lemma 9.1 then implies that

(9.10) [3fu(t) h(t) dt < Pk, '] M, < P+ g, Il M,

since 2(04+) = 0 on account of the null left boundary values of g. On taking
the sup of the left member of (9.10) over admissible 7/, ¢/, (9.10) gives

(9.11) Pr [Jucy, I € P g, I M,
Thus (9.5) (s, g — 1) holds.

Proof that J, has null left boundary values. The integrand K(s) in the right
member of (9.3) satisfies the relation

KOS [ fran ™. [ fu () | B,

where B is a bound for |g(s)| over I*. We refer to the limits g™ of §6 (m = 1,
., u). A theorem of Lebesgue gives the result

Jm(s) =J.(s) =0 [for s € Xn,I7]
(m =1,...,r), taking account of the given relation
gh(s) = g(s) =0 [for s € Xn.I*).

Thus J, has null left boundary values.

Proof that J, satisfies F over I and that (9.5)(u, 7) holds. That J,_; satisfies
F over [ #71 follows from (9.5)(u, p — 1) already established. That J._;
satisfies F over I#! then follows from the fact that J,_; has null left boundary
values. Proceeding inductively, we shall assume that J, satisfies F over I"
and that (9.5)(k, 7) holds with 1 < n < p, and show that J,_; satisfies ¥ over
I" ! and that (9.5)(4, 7 — 1) holds.

Observe that
(9.12) Tacalshy ooy 5™ = [ fa(®) Tulst, ..., s77L, 8] dt.

We compare this relation with (9.6) and note that J, satisfies the same con-
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ditions as g in (9.6), with u replaced by # and I* by I*. We infer, as in (9.11),

that

(9.13) Pt [Ty, I" S P T, I7] M.

Thus Ja_; satisfies F over "1, By inductive hypothesis (9.5)(u, #) holds so
that

9.14) PYJa IS Pelg, Il Muyr. .. M,

Relations (9.13) and (9.14) imply (9.5)(u, 7 — 1). This completes the proof.
THEOREM 9.2. Under the hypothesis of Theorem 9.1, the integml

(9.15) Jo = Ll, .. .f;fl(s‘) e fuls®) g(sty ..., s%) dst. . ds
satisfies the relation
(9.15) |Jo| € Plg, I¥| My... M,

Observe that
Jo = [ f(t) Ja(t) at.

Moreover J1(0+) = 0 and J, has a finite total Jordan variation over [0, 1] in
accordance with Theorem 9.1. It follows from Lemma 9.1 that

(9.16) [Jo| & My P[]y, I'] (1* = [o, 1],
so that (9.15)" holds as a consequence of (9.16) and of the relation
Py, IS PHg, I M M;... M,

implied by Theorem 9.1. This completes the proof of Theorem 9.2.
Theorem 9.2 is not a precise extension of Lemma 9.1 since the interval I*
in Theorem 9.1 is closed while the interval (0, 1) in Lemma 9.1 is open. Theo-
rem 9.2 leads, however, to a precise extension of Lemma 9.1 once Lemma 9.2
is established.
The proof of Lemma 9.2 requires the introduction of limits g™ (s) (r = 1,
., u), defined as were the limits g"(s), using a left limit instead of a right
limit. More generally, if ry,. .., r, are distinct arbitrarz integers chosen from
the set 1,...,u, the 1irr‘1\its g™ "n(s) may be supposed well defined.
Suppose that k satisfies F over U* = I*(0,i). Let a be any point on the
boundary of U* at which
am =ag™m=...,=a" =0,
(9.17) [m; = mjif 1 # j]
an=aq"2=...=a"" =1,
with the remaining coordinates (if any) neither 0 nor 1. By an obvious
extension of Theorem 6.1, the limit

(9.18) BT tmam L ma(a)

exists and is independent of the order of writing of the superscripts.
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LEmMA 9.2. A function k which satisfies F over U* = I*(0,1i) and has null
left boundary limits, admits an extension g over U* which satisfies F over U*, has
null left boundary values and satisfies the relation

(9-19) Pk, Q"N U*] = P7[g, Q7]
where Q7 is an arbitrary r-segment in U* intersecting U*.

This lemma is identical with Theorem 6.4 except that k is here assumed to
have null left boundary limits and g is then affirmed to have null, instead of
canonical, left boundary values. We accordingly define g as in (6.20), and
seek to prove that g has null left boundary values. As stated in Theorem 6.4,
g has canonical left boundary values so that forr = 1,..., u,

(9.20) g7(a) = gla) [for ¢ € X,I*0,i] = X,U*.

It remains to show that g(a) = 0 in (9.20). Suppose that ¢ has coordinates
given by (9.17) with the remaining coordinates (if any) neither zero nor one.
Note that for a point @ in (9.20), p > 0 in (9.17). The definition of g(a) in
(6.20) is such that

g(a) = k'-l I S ST mp(a).
But as noted in writing (9.18), g(e) also has the form
(9.21) gla) = k™ ""™mp ™1 "a(g) [p > 0l

But 2™ ...™s(s) = 0 fors € Xm, ... Xm, U*, since k has null left boundary
limits. It follows that g(¢) = 0 in (9.21). Thus g has null left boundary
values.

This establishes the lemma.

Although no use will be made of the following, the preceding analysis im-
plies the following theorem of which Lemma 9.2 is a special consequence.

THEOREM 9.3. A function k which satisfies F over U* admits an extension g
over U* with the following properties. The function g is continuous at each
vertex of U*. At each point u on any open r-cell o, of the boundary of U*(r = 1,
eo,m—1), g(u) is the limit of k(s) as s > u with s € U* N wu_, where
I,_, is the (u — r)-plane orthogonal to o, at s = u. Moreover,

Pk, Q"M U¥] = Pg, Q] [r=1,...,4)

for each r-segment Q7 in U* intersecting U*.
The generalization of Lemma 9.1 is as follows:

THEOREM 9.4. If k satisfies F over U» = I* (0, i) and has null left boundary
limits, then Jo, as defined by (9.15) with k replacing g, satisfies the relation

(9.22) |Jo| & Pk, Ul M;. .. M,.
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If g is derived from k as in the preceeding lemma, Theorem 9.2 holds while
Jo is unchanged in value if g is replaced by % in (9.15). Moreover,

P+ [k, U* = P*[g, U¥],

according to (9.19), so that (9.22) follows from (9.15)".

_Theorem 9.1 can be similarly generalized with & replacing g, U* replacing
U*, and null boundary limits replacing null boundary values, with the con-
clusion

P T, U1 Poll, U My . .. M,
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