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ON THE COMPLETE RING OF QUOTIENTS

BY
KWANGIL KOH

In [2: p. 415], P. Gabriel proves that if R is a ring with 1 and S is a non-empty
multiplicative set such that 0 ¢ S, then SR exists if and only if for every pair
(a, s) € Rx S, there is a pair (b, #) € RX S such that at=sb and if s;a=0 for some
s, in S then as,=0 for some s, in S. The purpose of this note is to give a self con-
tained elementary proof of Gabriel’s result.

THEOREM 1. Let R be a ring (not necessarily with 1) and S be a non-empty
multiplicative set such that 0 ¢ S. Then the following statements are equivalent:

(1) For every pair (a,s) € RXS, there is a pair (b,t) € RX S such that at=sb
and if a is an element of R such that s,a=0 for some s, in S then as,=0 for some s,
is S,

(2) There is a non-zero ring SR with an identity element and a ring homo-
morphism 0 from R into S7IR such that (i) For every s € S, 0(s) is a unit in S7'R,
(ii) 0(a)=0 implies that as=0 for some s € S, (iii) Every element of S71R is of the
Jform 0(a)0(s)™* for some a€ R and s € S, (iv) If there is a ring homomorphism g
from R into a ring B such that g(s) is a unit in B for every s in S and every element of
B is of the form g(a)g(sy™ for some a€ R, s€ S, then there is a unique homo-
morphism h from SR into B such that h o 0=g.

The fact that (1) is a consequence of (2) is fairly easy to see. For if (a, s) e RX S
then 6(s)"0(a)=0(b)0(t)™* for some (b, t) € RxS. Since every element of SR
is of the form 0(b)0(t) for some (b,t) e RXS. Hence 0(a)0(t)=0(s)0(b) and
0(at—sb)=0. Thus (at—sb)s;=0 for some s, in S and ats,=abs,. Since {t, 5;} =S
and S is a multiplicative set, ¢s, is an element of S.

In order to prove that (1) implies (2), we use a concept of partial homomorphism
which is introduced in [1] and [3]. Recall that if R is a ring, and B and A are right
R-modules, and if D is any R-submodule of B, then a R-homomorphism of D
into A is called a partial homomorphism from B into A.

LeMMA 1. Let Ry, be the regular right R-module (i.e. the module operation is the
given ring multiplication). Let H be the set of all partial R-homomorphisms from Rp,
into Rp. Define H(S)={f€ H |domf N S#@}. For every f,g in H(S), define
(fH8X)=f(x)+g(x) for every x edomfNdomg and (feg)(x)=f(g(x)) for
every x € g~X(dom f). Then (H(S), +) is an abelian group and (H(S), 0) is a semi-
group.
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Proof. Letse S N dom fand 1 € S N dom g. Then there exist s; € Sand b € R
such that ss;=1tb. Hence S N (dom f N dom g)#¢ and f+g € H(S). Since g(z) is
an element of R, there is s, in S and a in R such that g(t)s,=sa. Therefore fs, €
S Ngl(domf) and fo g e H(S). It is clear that (H(S), +) is an abelian group
and (H(S), 0) is a semigroup.

LEMMA 2. For every f, g in H(S), define f~g if and only if f(s)=g(s) for some s in
S. Then ~ is a congruence relation with respect to the addition and multiplication
of H(S) and H(S)|~ is a ring with an identity.

Proof. Clearly, the relation is reflexive and symmetric. Suppose f~g and g~h
for some f, g and & in H(S). There exist s and ¢ in S such that f(s)=g(s) and g(¢)=
h(t). There exist s; € S and a € S such that ss;=ta. Hence f(ss;)=g(ss,)=g(ta)=
h(ta)=h(ss,) and f~h. Thus the relation is an equivalence relation on H(S). Now
suppose f~g and f'~g’ for some f, f’, g and g’ in H(S). Then there exist 5, ¢ in S
such that f(s)=g(s) and f'(t)=g’(?). Let a € R and s, € S such that ss;=ta. Then

() ssD=f (ss)+f " (ss1)=g(s51)+g&" (ta) =g (ss1)+g (ss)=(g+g)(s51)
and
JHf ~g+e.
Now, there exist s; €.S and a € R such that f’(t)s;=sa. Hence

feof's)=f(f"(ts))=f (sa)=g(sa)=g (f" (ts1)) =g (g (ts1))=g ° &'(¢51).

Thus fof'~gog' If fe H(S), let [f] be the equivalence class represented by f.
Define [f]+[gl=[f+g] and [f]-[g]l=[f° g] for every f, g in H(S). For every f, g
and & in H(S) we claim that [/]-((g]+[A)=[f1[g]+ [/} [A] and ([g]+[AD-[f1=
[g) [f1+[A)[f]. Recall thatif s, € S Ndomf,seS NdomgandteS Ndomh,
then ss, € dom g+# for some s; in S and ssy5,=s0a for some s, in S and a € R
such that ss;5, €S N (g+h)(domf) (refer a proof of Lemma 1). Hence
fo(g+h)~fog+foh. Similarly, (g+h)of~gof+hof. Thus H(S)/~ is a ring
with an identity.

DEerivITION. For each a in R, let z,(x)=ax for every x in R.

LemMA 3. Let T'(R, S)=H(S)/~. Then there is a ring homomorphism 7 from R
into I'(R, S) such that n(s) is a regular element for every s in S. If every element of
S is regular in R, then 7 is a monomorphism and every element of I'(R, S) is of the
Sform n(a)n(s)™ for some ain R and s in S.

Proof. Define 7(a)=][t,] for every a in R. Clearly,  is a ring homomorphism of
R into I'(R, S). If [t,]-[f]1=0, for some s in S and fe H(S), then sf(s")=0 for
some s" € S N dom f. Hence, f(s")=s"=0 for some s” in S and [f]=0. If [f]-[t,]=
0, then f(ss;)=0 for some s, in S and [ f]=0. Thus #(s) is a regular element of
T'(R, S) for every s € S. Now, suppose every element of S is regular in R Then
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clearly, the kernel of # is zero and for every ¢,, there exist f, g in H(S) such that
t, o f(sx)=sx and g o t,(x)=x for every x in R. Hence f(s*)=g(fs? and [f]=[g]=
[t,]7*. Now, let [f] be an arbitrary element of I'(R, S). Then f(s)=a for some
s e Sand aeRand [f][t]=][t]. Thus [f1=[z,][z,] "

Proof of Theorem. We have already shown that (2) implies (1). So assume (1).
Then in the ring I'(R, S), 7(s) is a regular element for every s in S. Let S=#(S)
and let R=7(R). Then clearly S is a multiplicative set in the ring R, every element
of §is a regular element in R and furthermore, if [¢,] € S and [¢,] € R for some s
in S'and ain R, then [¢,] [t31]= [7,]-[#,] for some s, in S and b in R. Thus by Lemma
3, there is a monomorphism, say ¢ from R into the ring I'(R, S) such that ¢([z,]) is
a unit element for every [¢,] in S and every element of I'(R, S) is of the form
é([t,Dé ([t for some [z,] in R and [t,] in . Let S1R=I'(R, S) and define
0=¢ o . Then 0 is a ring homomorphism of R into S7'R and if 6(a)=0, then
#(n(a))=0 and 7(a)=0 since ¢ is a monomorphism. Hence [#,]=0 and as=0 for
some s € S. If as=0 for some a in R and s in S, then 7(a)7(s)=0 and 7(a)=0 since
n(s) is a unit and therefore 6(a)=0. By Lemma 3 and by the definition of 0,
if s € S, then 6(s) is a unit element in S~'R and every element of S~'R is of the
form 0(a)f(s)™* for some a € R and s € S. Suppose that g is a ring homomorphism
from R into a ring B such that g(s) is a unit in B for every s in S and if b € B, then
b=g(a)g(s)™* for some a € Rand s € S. Define 4 from SR into B by 2(6(a)0(s) )=
g(a)g(s)™ for every a€ R and s € S. If 6(a)0(s)*=0, then 6(a)=0 and as’=0 for
some s’ in S. Therefore, g(a)g(s')=0 and g(a)=0. Hence A(0)=0. Consider
h(0(a)0(s)~2+06(b)6(z)™*) for some a, bin R and s, ¢ in S. There exist s; in S and ¢
in R such that ss,=7c. Hence

8(a)0(s) ™ +0(b)0(1)™ = (B(a)b(s)~" +6(b)O(tY™)0(s)0(s)0(s)0(s) ™
= (6(a)0(s) +6(b)O()'6(s)0(s0))0(s1)6(s) ™
= (8(a)0(s) +6(b)6()[O(s)O(sD]™

since
()™ = 6(c)f(ss) 7.

Thus
h(6(a)0(s)~*+6(b)0(1)™) = [g(asy)+g(be)lg(ss)™

= g(@)g(s) +g(b)g(c)g(s)g(s) ™

= g(a)g(s) " +g(b)g(t)™?

= h(0(a)0(s)™)+h(B(b)O(£)™). Since g(H)™ = g(c)g(ss) ™.
Now consider A[0(a)0(s)"20(b)0(¢)2]. There exist s, in S and @, in R such that
bs,=sa,. Hence 0(b)0(s,)=0(s)0(a,) and

B(@)0(s)'0(bYB()™" = B(a)0(s)™0(s)0(an)B(s)0()~*
= 0(a)0(a,)0(s)'0() ™" = O(aay)b(ts,)™.
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Thus
h{6(@)0(s)0(b)6(1) '] = glaay)g(ts)™
= g(a)g(ag(s)™g(®)™
= g(@)g(s) " g(b)e(®)™
= g(a)g(s)"g(B)g()™" = h(B(a)0(s)™)h(O(bYO()™)
since g(s)"g(b)=g(a;)g(s)7 . Clearly, 4 o 6=g and 4 is unique.

REFERENCES

1. G. D. Findlay and J. Lamhek, 4 generalized ring of quotients I, Canadian Math. Bull.,
Vol. 1, no. 2, May 1958.

2. P. Gabriel, Des categories abeliennes, Bull. Soc. Math., France 90 (1962), 325-448.

3. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2
(1951), 891-895.

NoORTH CAROLINA STATE UNIVERSITY,
RALEIGH, NORTH CAROLINA 27607

https://doi.org/10.4153/CMB-1974-056-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1974-056-9

