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ON THE COMPLETE RING OF QUOTIENTS 

BY 

KWANGIL KOH 

In [2: p. 415], P. Gabriel proves that if R is a ring with 1 and S is a non-empty 
multiplicative set such that 0$ S, then S~*R exists if and only if for every pair 
(a9 s)eRxS9 there is a pair (b9t)eRxS such that at=sb and if ^ = 0 for some 
sx in S then as2=0 for some 5*2 in S. The purpose of this note is to give a self con­
tained elementary proof of Gabriel's result. 

THEOREM 1. Let R be a ring (not necessarily with 1) and S be a non-empty 
multiplicative set such that 0$S. Then the following statements are equivalent: 

(1) For every pair (a, s)eRxS9 there is a pair (b9t)eRxS such that at=sb 
and if a is an element ofR such that stf—Ofor some sx in S then asz=0for some s2 

is S, 
(2) There is a non-zero ring S~XR with an identity element and a ring homo-

morphism & from R into S~XR such that (i) For every se S, 6(s) is a unit in S^R, 
(ii) 6(a)=0 implies that as=0 for some s e S9 (iii) Every element of S~XR is of the 

form Q(a)d(s)~x for some ae R and s e S9 (iv) If there is a ring homomorphism g 
from R into a ring B such that g(s) is a unit in Bfor every s in S and every element of 
B is of the form g(a)g(s)~1 for some ae R9 s e S9 then there is a unique homo­
morphism h from S~*R into B such that h ° d=g. 

The fact that (1) is a consequence of (2) is fairly easy to see. For if (a9s)eRxS 
then e(s)-1d(d)=e(b)d(t)~1 for some (b9t)eRxS. Since every element of S^R 
is of the form 0(6)0(O_1 for some (b9t)eRxS. Hence d(a)0(t)=0(s)6(b) and 
Q{at—sb)=0. Thus (at—sb)sx=0 for some sx in S and atsx—absv Since {t9 sJ^S 
and S is a multiplicative set, tsx is an element of S. 

In order to prove that (1) implies (2), we use a concept of partial homomorphism 
which is introduced in [1] and [3]. Recall that if R is a ring, and B and A are right 
/^-modules, and if D is any i£-submodule of B9 then a iMiomomorphism of D 
into A is called & partial homomorphism from B into A. 

LEMMA 1. Let RR be the regular right R-module (i.e. the module operation is the 
given ring multiplication). Let H be the set of all partial R-homomorphisms from RR 

into RR. Define H(S)={feH\ d o m / n S^<j>}. For every f g in H(S)9 define 
(f+g)(x)=f(*)+g(x) M every xedomfndomg and (f°g)(x)=f(g(x))for 
every x e g~1(domf). Then (H(S)9 + ) is an abelian group and (H(S)9 0) is a semi­
group. 
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Proof. Let se S n dom/and t e S n dom g. Then there exist ^ e S and é e R 
such that ss1=tb. Hence S n (dom/ n dom g)^(f> and / + g G //(£). Since g(t) is 
an element of R, there is ^ in S and a in R such that g(t)s2=sa. Therefore ts2 e 
S n g - ^ d o m / ) and / o g G if (S). It is clear that (i/(S), + ) is an abelian group 
and (H(S), 0) is a semigroup. 

LEMMA 2. For every f g in H(S), define f^g if and only iff(s)=g(s)for some s in 
S. Then ~ is a congruence relation with respect to the addition and multiplication 
of H(S) and H{S)j~ is a ring with an identity. 

Proof. Clearly, the relation is reflexive and symmetric. Suppose f~g and g~h 
for some/, g and h in H(S). There exist s and tin S such thatf(s)=g(s) and g(t)= 
h(t). There exist s±e S and a e S such that ss1=ta. Hence f(ss1)=g(ss1)=g(ta) = 
h(ta)=h(ss1) a n d / ^ A . Thus the relation is an equivalence relation on H(S). Now 
suppose/-^g a n d / ' ~ g ' for s o m e / , / ' , g and g' in #(S). Then there exist s, tin S 
such that/($)=g(s) a,ndf\t)=g'(t). Let ae R and ^ 6 S such that ssx=ta. Then 

and 

Now, there exist s1eS and a e i? such that f'(t)s1=sa. Hence 

f<>f\ts^f(f\ts^)=f(sa)=g(3a)^g(f\tsd)=g(g'(tsd)=gog'(tsù. 

Thus / ° / ' ~ g °g' . I f /G #(S) , let [/] be the equivalence class represented by / 
Define [ / ]+ [g]= [/+£] and [f]-[g]= [f° g\ f o r every/, g in #(S) . For every/, g 
and A in H(S) we claim that [ /K[g] + [A]) =[fV[g]+[fV[h] and ( fe ]+M)- | / ] = 
[#]•[/] + W'[f]. Recall that if ^0 e S n dom/, ^ e 5 n dom g and f G S n dom A, 
then ssx edovng+h for some sx in *S and ss^—s^a for some s2 in 5 and aeR 
such that w^a e S n (g+A) -1 (dom/) (refer a proof of Lemma 1). Hence 
f° (g+h)~f°g+f° h. Similarly, (g+h) °f~g °f+h of Thus H(S)j~ is a ring 
with an identity. 

DEFINITION. For each a in R, let ta(x)=ax for every x in i£. 

LEMMA 3. Let T(R9 S)=H(S)/~. Then there is a ring homomorphism rj from R 
into T(R, S) such that rj(s) is a regular element for every s in S. If every element of 
S is regular in R, then rj is a monomorphism and every element ofF(R, S) is of the 

form ^ ( t f ) ^ ) - 1 for some a in R and s in S. 

Proof. Define rj(a)=[ta] for every a in R. Clearly, r\ is a ring homomorphism of 
R into T(R, S). If fo]-[/]=0, for some s in S and feH(S), then sf(s')=0 for 
some s' eS n d o m / Hence,/(,s ')=s"=0 for some s" in S and [ / ]=0 . If [f]-[ts] = 
0, then f(ss1)=0 for some sx in S and [ / ]=0 . Thus rj(s) is a regular element of 
T(R, S) for every s e S. Now, suppose every element of S is regular in R Then 
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clearly, the kernel of YJ is zero and for every ts, there exist/, g in H(S) such that 
ts o f(sx)=sx and g o ts(x)=x for every x in R. Hence f($2)=g(fs2) and [/]=[g]= 
[tg]"1. Now, let [/] be an arbitrary element of T(R, S). Then f(s)=a for some 
seSzndaeRand \f]-[ta]=[ta]. Thus [f] = [ta]'[ts]-\ 

Proof of Theorem. We have already shown that (2) implies (1). So assume (1). 
Then in the ring T(R9 S), rj(s) is a regular element for every s in S. Let S=r)(S) 
and let R=rj(R). Then clearly Sis a multiplicative set in the ring R, every element 
of »? is a regular element in R and furthermore, if [ts] G S and [ta] e R for some s 
in S and a in R, then [ta]- [ts ]=[*,]• [f&] for some s± in 5 and b in i?. Thus by Lemma 
3, there is a monomorphism, say ̂  from R into the ring r(ÎÉ, S) such that <£([/,]) is 
a unit element for every [ts] in *? and every element of r(R, S) is of the form 
^(WWW)-"1 f o r s o m e M i n ^ anc* W i n 5- Let 5r-1i^=r(^, 5) and define 
0=<^ o rj. Then 6 is a ring homomorphism of R into S'XR and if 0(fl)=O, then 
<f>(rj(a))=0 and ^(a)=0 since ^ is a monomorphism. Hence [ta]=0 and &y=0 for 
some s e S. If &y=0 for some a in i? and s in £, then rj(a)rj(s)=0 and ?y(a)=0 since 
?7(» is a unit and therefore 0(a)=O. By Lemma 3 and by the definition of 0, 
if s e S, then 6(s) is a unit element in S^R and every element of S~XR is of the 
form 6(a)d(s)~1 for some a e R and s e S. Suppose that g is a ring homomorphism 
from R into a ring 2? such that g(s) is a unit in B for every ^ in S and if 6 e 2?, then 
£ =g(a)g(y)-i for some a e R and s e S. Define h from S^i* into £ by ^(a^Cy)-1)= 
gfàgis)-1 for every a e R and s e S. If fl^flC^-^O, then 0(tf)=O and ^ ' = 0 for 
some s' in 5. Therefore, g(a)g(s')=0 and g(<z)=0. Hence A(0)=0. Consider 
h(6(a)8(sy~1+6'(^(O-1) f°r s o m e a,bin R and £, f in 5. There exist ^ in S and c 
in iÊ such that ss^tc. Hence 

e(a)e(5)-1+0(h)e(o-1 = (d(a)e(s)-1+e(b)e(t)-1)d(s)d(sMsi)~1o(s)~1 

= (d(a)e(sd+e(b)e(tr%s)d(s1))d(sr%sr1 

= (0(a)d(s1)+d(b)d(c))[d(s)e(s1)]-1 

since 
e(r)-1 = ewecssi)-1. 

Thus 

= gWgisT'+gWgicMsj-'gisr1 

= gWgC^+gWgCO"1 

= /z(e(a)e(s)-1)+/I(0(t)e(O-1). Since gCO"1 = g&gissj-1. 

Now consider / ^ ( ^ ( ^ - ^ ( ^ ( O - 1 ] - There exist sx in 5 and ax in i? such that 
bs^sa^ Hence e(b)d(s1)=6(s)d(a1) and 

0(a)(9(5)-1e(ft)e(O"1 = 0(^)e(5)-1e(s)(9(a1)(9(s1)-
1e(O"1 

= e(a)e(a1)e(51)-
1e(r)-1 = diaajoitsj-1. 
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Thus 

hlOiamsT^Witr1] = giaaMtsù'1 

= g^giaMsù-'gitr1 

= gWgisT'gWgitr1 

= giahisr'gifygit)-1 = KdiaWsr'MOibm-1) 

since g(s)~1g(b)=g(a1)g(s1)-
1. Clearly, h o 0=g and A is unique. 
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