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Abstract

Objective: To examine the relationship between unit-wide Clostridium difficile infection (CDI) susceptibility and inpatient mobility and to
create contagion centrality as a new predictive measure of CDL

Design: Retrospective cohort study.

Methods: A mobility network was constructed using 2 years of patient electronic health record data for a 739-bed hospital (n = 72,636 admis-
sions). Network centrality measures were calculated for each hospital unit (node) providing clinical context for each in terms of patient transfers
between units (ie, edges). Daily unit-wide CDI susceptibility scores were calculated using logistic regression and were compared to network
centrality measures to determine the relationship between unit CDI susceptibility and patient mobility.

Results: Closeness centrality was a statistically significant measure associated with unit susceptibility (P < .05), highlighting the importance
of incoming patient mobility in CDI prevention at the unit level. Contagion centrality (CC) was calculated using inpatient transfer rates,
unit-wide susceptibility of CDI, and current hospital CDI infections. The contagion centrality measure was statistically significant
(P < .05) with our outcome of hospital-onset CDI cases, and it captured the additional opportunities for transmission associated with inpatient
transfers. We have used this analysis to create easily interpretable clinical tools showing this relationship as well as the risk of hospital-onset
CDI in real time, and these tools can be implemented in hospital EHR systems.

Conclusions: Quantifying and visualizing the combination of inpatient transfers, unit-wide risk, and current infections help identify hospital
units at risk of developing a CDI outbreak and, thus, provide clinicians and infection prevention staff with advanced warning and specific
location data to inform prevention efforts.

(Received 15 March 2019; accepted 23 September 2019; electronically published 28 October 2019)

In the United States, nearly 500,000 cases of hospital-onset
Clostridium difficile infection (CDI) occur annually, with ~29,000
deaths.! Infection prevention teams attempt to reduce this incidence
using many approaches: decreasing patient contact with CDI spores,
bleach-based or terminal room cleaning, contact precautions, per-
sonal protective equipment (PPE), hand hygiene, and antibiotic
stewardship programs.” Despite these efforts, CDI is still a promi-
nent healthcare-associated infection (HAI), suggesting additional
factors may facilitate transmission.
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Although prevention efforts to reduce exposure in the immediate
patient environment are well established,>* little has been done to
analyze how inpatient mobility between units may influence CDI
transmission. Inpatient mobility (transfers) increases contact oppor-
tunities, making risk of CDI transmission difficult to measure.
Current retrospective surveillance methods, primarily contact trac-
ing, are used to examine CDI transmission,* but may not prevent
future outbreaks.” To construct a prospective surveillance method
for CDL, it is essential to examine indirect contact opportunities
due to patient mobility. One potential method is to assume broad
environmental exposure based on physical location in the hospital,
namely inpatient units. Patients may be transferred between units
during their stay, which occurs more frequently with severe illnesses,
precisely the setting in which CDI risk is high. Each inpatient trans-
fer provides additional opportunities for CDI exposure. Thus,
combined with patient specific risk (eg, antibiotic treatment,
immunosuppression), the mobility of patients between hospital
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units is likely an important risk factor for CDI transmission within
hospital units.

In this study, we built an in-hospital patient mobility network
and analyzed the relationship between network measures and CDI
at the hospital-unit level.® Network analysis has been used to exam-
ine interhospital transfers and ambulatory care,”~ but studies of
intrahospital mobility are limited.'®"! We quantified the degree
of unit connectedness using network centrality, a class of network
measures.® We hypothesized that centrality measures can quantify
inpatient unit risk of CDI related to patients with CDI moving
between units. We considered the relationship of hospital-onset
CDI: unit (population) susceptibility, patient mobility, and envi-
ronmental exposure. We describe 2 practical clinical tools that
could be implemented in facility EHR systems to quantify and
visualize this relationship, providing infection prevention teams
with easily interpretable, prospective data with which to identify
units at risk for CDIL This application goes beyond the current
measures of identifying individual patient CDI risk!>-!* and further
examines population risk of CDL

Methods
Human subjects protection

This proposal was reviewed and approved by the University of
Rochester Human Subjects Review Board (protocol no.
RSRB00056930). Data were coded such that patients could not
be identified directly in compliance with the Department of
Health and Human Services Regulations for the Protection of
Human Subjects (45 CFR 46.101(b)(4)).

Data source and study population

Deidentified patient electronic health record (EHR) data from a
739-bed hospital in New York State were acquired for a 2-year
period from approximately January 2013 to December 2014 (n =
209,694). These records included patient demographics, medica-
tion administration, International Classification of Disease,
Ninth Revision (ICD-9) diagnosis codes, laboratory test results,
and individual hospital unit admission data.

An admission was defined as an inpatient stay >24 hours on a
hospital unit, either via the emergency department (ED) or
directly. This definition ensured inclusion of patients at risk of
exposure to CDI as a hospital-onset case, with a positive CDI test
result during their current admission. Multiple admissions for
single patients were included because individual transfer and sus-
ceptibility data contribute to overall unit susceptibility regardless
of CDI case classification. Newborn, neonatal, and pediatric
patients were excluded because they are not considered to be an
at-risk population for CDI. We adopted the following inclusion
criteria: admission to a hospital unit beyond the ED, admission
>24 hours, and patient age >18 years. Ultimately, we gathered data
on 72,636 admissions that occurred over 2 years.

A positive CDI outcome was defined by enzyme immunoassay
(EIA) and nucleic acid amplification test (NAAT), and was further
categorized as hospital onset (ie, positive test occurred after a neg-
ative test, or 24 hours after admission) or community onset (ie,
positive test within 24 hours of admission) because we did not
have access to infection control data to further specify National
Healthcare Safety Network (NHSN) standards.'® Variables such
as length of stay and medication administration (eg, antibiotic, pro-
ton pump inhibitor, and histamine H2-receptor (H2) antagonist)
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were adjusted to capture administration prior to a patient’s first pos-
itive CDI test.

Network construction

Relative inpatient unit admission date and time were used to con-
struct a 2-year inpatient mobility network. Weekly unit-to-unit
transfer rates were calculated using the following equation (Eq 1):

YLW + Yz.w
Hyw = 2 >

where 1,1y is the patient transfer rate between units x — y in week
W, x is the transferring unit, y = receiving unit, W is the calendar
week, Y7, is the weekly data from year 1, and Y, ,, is the weekly
data from year 2. Total weekly transfers from units x — y for each
calendar week were calculated by averaging the total weekly trans-
fers across 2 years of data.

Centrality measures, statistical values representing the con-
nectedness of individual nodes in the network, were calculated
for each node.” Network construction and centralities were
performed using R version 1.0.143 (R Foundation for Statistical
Computing, Vienna, Austria), Python-igraph (https://igraph.org/
python/) and graph-tool (https://graph-tool.skewed.de/), and
Gephi version 0.9.2 software (https://gephi.org/users/download/).

Statistical analysis

To capture patient CDI susceptibility within each inpatient unit, a
logistic model was constructed using the training and test-set
method,'”8 with the outcome of hospital-onset CDI as defined
above. Data were randomly split 7:3, and hospital-onset CDI cases
were randomly split by the same ratio. The resulting training set
had n;,4;, = 50,845 patients with c;,4;,, = 321 CDI cases, and the test
set had n,.; = 21,791 patients with ¢, = 138 CDI cases.

Purposeful model selection,'® a method designed to include var-
iables of clinical significance that would have been omitted using
traditional statistical significance testing (P <.05), was used to
construct a predictive model for hospital-onset CDI. The P-value
cutoff points for first univariate, multivariate, and second univari-
ate steps were 0.2, 0.05, and 0.15, respectively. Daily mean individ-
ual patient risk (susceptibility) of CDI was calculated using the
logistic model, and the overall mean unit susceptibilities were
calculated based on patient unit residence for that day using the
following equation (Eq 2):

where Sy, is the daily susceptibility of a given unit and Sy, is the
susceptibility of individual patients residing in that unit that
day, divided by N units. Association between overall mean unit
susceptibility (outcome variable) and unit centrality (predictor)
in the mobility network were determined using multivariate linear
regression.

To quantify inpatient mobility, unit susceptibility, and current
infections in the hospital, we derived a new and unique network
centrality measure, contagion centrality. This term has also been
used to describe the risk of cascading financial failure in interbank
networks.?’ Contagion centrality was calculated for each unit on
every admission day using the following equation (Eq. 3):
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CC, = > S,Fy,

where CC, is the contagion centrality of receiving unit, S is the
mean unit susceptibility, F = patient flow (transfer rate), I is the
current number of CDI infections, x is the transferring unit, and
y is the receiving unit, which can also be called the SFI statistic.
The contagion centrality metric was evaluated using linear regres-
sion, with an outcome of actual CDI cases, unit-specific variance,
and distribution. Regression, contagion centrality calculation, and
data visualizations were performed using R version 1.0.143 and
Wolfram Mathematica version 11.3 (Wolfram Research,
Champaign, IL).

Results
Network

We constructed an inpatient mobility network using trace-route
mapping,”! which yielded 40 nodes (inpatient units) and 1,003
unique edges (unit-to-unit transfer pairs). Several units did not
have direct transfers to other units in our hospital and did not con-
tribute risk of CDI transmission to other units; thus, they were
unsuitable for our predictive tools. The network is shown in
Supplementary Fig. S1 (online) using a conventional graph.

Unit susceptibility

We performed logistic regression to identify variables significant
for individual patient CD], yielding an AUC (area under the curve)
of 0.81, sensitivity of 0.75, and specificity of 0.71 at a threshold of
0.006 (0.6% of the patient sample of n = 72,636 presented hospital-
onset CDI) (Table 1).

The HIV confidence interval was statistically insignificant,
resulting from initial variable elimination in purposeful model
selection. Subsequently the predictor was re-added into the model
later due to the more lenient cutoff points discussed in the Methods
section.!*?223 Despite a low HIV prevalence in this dataset (n = 3),
this variable may highlight the clinically significant CDI risk factor
of immunosuppression* and contributes to the overall accuracy of
the predictive model in conjunction with the other predictor
variables.

Daily unit susceptibilities were averaged over the 2-year period
of the dataset. We used linear regression to compare overall unit
susceptibility to unit network centrality measures and to determine
whether susceptibility can be predicted by how connected the
nodes are via patient transfers. We next compared linear regression
models for CDI susceptibility: (1) full admission variables with (2)
censoring to include only values prior to CDI diagnosis (Table 2).

The regression model outcome for full-admission variables
includes susceptibility variables from the logistic regression step
prior to recalculation and capturing the entire admission as
opposed to just the period prior to the first positive CDI laboratory
test (ie, a time-sensitive variable outcome). Using purposeful
model selection, 4 centralities were identified having a statistically
significant association with full-admission model susceptibility: in-
degree, weighted in-degree, closeness, and PageRank. In contrast,
time-sensitive model susceptibility was only statistically significant
with closeness centrality.® Additional centralities (ie, out-degree
measures, eigenvenctor, betweenness) were considered, but these
either exhibited correlation with other centralities or were elimi-
nated in model selection.

The difference between these 2 models lies in which part of the
patient admission is most significant. Incoming transfers are best
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Table 1. Time-Sensitive? Clostridium difficile Infection (CDI) Multivariate Logistic
Model Selection

Variable 0Odds Ratio (95% Cl) P Value
HIV 3.49 (0.85-9.44) .04
Respiratory failure 3.36 (2.53-4.43) <.01
Antibiotic use 2.93 (2.25-3.84) <.01
Acute kidney injury 2.25 (1.73-2.93) <.01
Gastrectomy 2.20 (1.28-3.53) <.01
PPl use 1.74 (1.36-2.22) <.01
Type 2 diabetes 1.86 (1.29-2.61) <.01
Bone marrow transplant 1.86 (1.17-2.82) <.01
Age >65y 1.54 (1.23-1.94) <.01

Note. HIV, human immunodeficiency virus; PPI, proton pump inhibitor.
2Medication administration variables occur prior to first positive CDI lab.

Table 2. Mobility Network Centrality Multivariate Linear

Full-Admission Time-Sensitive

Variables? Variables®
Centrality Measure (P Value) (P Value)
In-degree .02 NAC
Weighted in-degree .02 NA
Closeness <.01 <.01
Page rank .02 NA

2Model does not contain time-sensitive medication administration variables (ie, variables
included if they occur at any point during a patient admission).

®Model contains time-sensitive medication administration variables occurring only prior to
first positive CDI lab.

“NA values in time-sensitive model indicate the centrality measure was not statistically
significant and was left out of the model.

captured by closeness, weighted in-degree, and in-degree, whereas
the importance of both incoming and outgoing transfers is cap-
tured best by PageRank. PageRank ascribes higher value to nodes
linked with other high-value nodes.® PageRank is typically known
as the algorithm that orders the results of a Google search query;
however, in a hospital network, a unit with high PageRank receives
more patients from high-centrality units and then distributes them
to other high-centrality units.

We conclude that PageRank centrality is useful for examining
the full patient admission for all-cause CDI cases. In contrast, the
statistical significance of closeness centrality with time-sensitive
outcomes suggests that incoming transfer edges are important
when analyzing susceptibility of hospital-onset CDI cases.

Inpatient mobility

Generating a mobility network graph allows us to compare hospital
unit closeness to overall susceptibility and to visualize transfers in
unit communities (Fig. 1). Larger node size indicates a higher value
of either closeness or susceptibility (depending on which network
is being viewed), and smaller node size indicates lower values. The
node coloring indicates unit communities within the network and
is denoted by groups A through G (see group classifications in
Supplementary Table S1 online).

Units with high closeness tend to have higher CDI susceptibility
and vice versa, however, with some exceptions (groups D, E, and F).
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Fig. 1. Patient mobility networks. Node size depicts nor-
malized “susceptibility” and “closeness,” respectively.
Not all nodes depicted in graphs. Unit group classifications
can be seen in Supplementary Table S1 online. Group A Group B Group C Group D Group E Group F Group G

Units in Group F may tend to be the last units in a patient’s journey
(low susceptibility), with high incoming rates and low outgoing
transfer rates to other units (high closeness). The units in groups
D and E may tend to transfer among each other without receiving
or redistributing patients back into the network (low closeness), but
they sometimes have patients with higher susceptibility.

Contagion centrality

To account for these exceptions while still capturing the important
relationship of closeness to susceptibility in other units, we adapted
the contagion centrality measure to CDI. The term “contagion cen-
trality” was originally developed to explain the spread of financial
instability in an interbank network?? and was used to quantify the
risk of a “spillover effect” or rapid spread of fear of financial insta-
bility to predict bank failure. Thus, failure of a bank with high
financial contagion centrality will likely increase the risk of failure
for the other banks it is connected to. In contrast, CDI contagion
centrality reflects the likelihood that a unit will receive patients
from other units with high CDI incidence. CDI contagion central-
ity is built from patient data within the current unit (quantifying
increased risk of CDI susceptibility) and from those units directly
transferring into that unit. Contagion centrality considers the flow
of incoming transfers captured by closeness (F), but adjusts for
susceptibility (S) and current infections (I). For example, a unit
with high susceptibility (S) receiving many patients from units with
CDI present (high F and I) would, in turn, have a high contagion
centrality and high risk of CDI appearing. The units with highest
overall contagion centrality (normalized between 0 and 100)
are the acute medicine units 4, 1, 3, and 2 (contagion centrality
values = 100, 99.9, 99.9, and 99.7, respectively).

Metric validation

The contagion centrality metric validation involved 3 steps: (1) lin-
ear regression, (2) sensitivity analysis, and (3) variance analysis. A
linear regression model with the outcome of actual CDI cases
(P <.05), supported the hypothesis that inpatient transfer rates
are associated with hospital-onset CDI (Fig. 2).

Notably, intensive care units (ICUs) are an exception to this
pattern, as demonstrated by fluctuation plots of unit-specific
contagion centrality over the 2-year data period (Fig. 3).

https://doi.org/10.1017/ice.2019.288 Published online by Cambridge University Press

Figure 3 examines contagion centrality variation, which was
greater in ICUs likely due to higher unit susceptibility, suggesting
that contagion centrality captures unit-specific factors. Unit-specific
contagion centrality interquartile ranges, median, and outlying val-
ues were also examined, and they confirmed the findings from the
fluctuation analysis. The units with the smallest and largest conta-
gion centrality ranges were the psychiatric and obstetric units, and
the intensive care and cardiovascular surgery progressive care units,
respectively (Supplementary Fig. S2 online). These findings also
suggest that contagion centrality should be interpreted on a unit-
specific basis because it captures unit-specific variability.

Clinical tools and application

Highlighting the effect of incoming inpatient transfers for unit-
wide susceptibility of hospital-onset CDI through the contagion
centrality metric can help infection prevention teams identify
at-risk units, and it provides additional contextual data (eg, trans-
fers, unit-specific patient susceptibility, current infection) for tar-
geted infection prevention. To illustrate this, we plotted the
components of contagion centrality (unit susceptibility vs flow
of infection) by day, graphically highlighting the factors contribut-
ing changes in contagion centrality (ie, flow of infection or unit
susceptibility) (Fig. 4).

Figure 4 shows all unit contagion centrality values on a sample
date. Units with higher flow of infection (y-axis) may have an
increased contagion centrality due to more transfers or potential
transfer of infection into that unit. Units with higher susceptibility
(x-axis) may have an increased contagion centrality due to the
patients they currently have in their unit that day and their suscep-
tibility to infection.

To supplement the calculation plot, we also developed an active
surveillance tool showing overall unit change (units with the most
positive or negative changes are highlighted) and subplots of
changes in unit-specific weekly CDI contagion centrality (Fig. 5).
Change plots allow monitoring of weekly change in all units simul-
taneously, as well on a unit-specific basis, but they still identify fac-
tors contributing to a high or low CDI contagion centrality. Use of
these tools together may provide unique and active surveillance
measures to prevention teams, and they may help hospitals prepare
for heightened, unit-specific CDI infection risk (eg, increased hand
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hygiene and PPE usage, targeted patient isolation, or minimizing
transfers to high-risk units).

Discussion

To our knowledge, this is the first clinical tool for the prediction
and surveillance of hospital-onset CDI accounting for hospital
mobility and generalized population risk from patient environ-
ment and healthcare worker contact. The inpatient mobility net-
work construction and analysis are strengths of this study. Prior
literature has focused primarily on interhospital transfers’™ as
opposed to intrahospital transfers.!!! Here, we quantitatively
show that higher incoming transfer rates from units with higher
numbers of CDI cases are statistically associated with new cases
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of hospital-onset CDI on the receiving unit. The contagion central-
ity measure and proposed prevention tools can be tailored to the
specific transfer patterns and patient risk factors in any facility.
They can even be adapted to different infections that require mod-
erate proximity or contact.

The limitations of this study include the use of inpatient, but not
outpatient, medication administration data. It is likely that patients
received an antibiotic, an H2 antagonist, or a proton pump inhibi-
tor medication from outside providers prior to their admission, a
susceptibility that cannot be captured by the data available for this
study. Future work would benefit from capturing outpatient med-
ications prior to hospitalization. Another limitation is the lack of
formal infection prevention hospital onset classification as
reported to the National Healthcare Safety Network (NHSN).!¢
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This classification standard is typically complex and cumbersome,
requiring individual case review. Our approach is simpler and
EHR driven, classifying hospital-onset cases as those occurring
>24 hours after admission or after a previously negative lab but
may slightly overestimate hospital-onset CDI cases. Several other
limitations of this work are situational. Units with low susceptibil-
ity but high hospital-onset CDI rates may indicate the importance
of factors not captured by our model (eg, decreased hand hygiene,
environmental contamination). These data were not available to us
for this study, and they would likely increase the accuracy and util-
ity of this approach.

Future studies may benefit from network analysis of unit com-
munity clustering to determine the risk of hospital-onset CDI on
unit communities instead of single units, as well as further calibra-
tion analysis to determine prediction probabilities by unit. Each hos-
pital unit in our data exhibited different levels of contagion centrality
variation during the period immediately prior to CDI cases, sug-
gesting different predictive periods for each unit. Implementation
of contagion centrality and the associated visualization tools in a
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hospital or facility should be performed to further validate our
model, to highlight facility-specific changes that should be made
to better capture CDI outbreak risk, and to allow for intervention
development to measure and reduce risk of hospital-onset CDI.
Finally, it is important to recognize the impact of inpatient
mobility on risk of infection, as well as the need for more targeted,
prospective infection prevention tools. This study quantifies the
significant association between inpatient transfers and unit risk
of CDI, and it provides the first attempt to our knowledge to
actively measure and predict CDI in patient populations.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2019.288
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