A NEW BANACH SPACE WITHOUT THE KADEC-KLEE PROPERTY G.A. Alexandrov and V.D. Babev

An example of a Banach space is given which does not contain isomorphically l_1 and does not admit the Kadec-Klee property.

1. INTRODUCTION

We say that a Banach space X admits a Kadec-Klee property if it has an equivalent norm $\|.\|$ such that the weak and norm sequence convergences coincide on the unit sphere $\{x \in X : \|x\| = 1\}$.

It is known that the space l_{∞} and all spaces containing it isomorphically do not admit the Kadec-Klee property [4]. Alexandrov [1] has recently constructed a class of Banach spaces engendered by Boolean rings with a so-called subsequential interpolation property that have no Kadec-Klee property. Some of them do not have a subspace isomorphic to l_{∞} but they contain l_1 [2]. In this paper we give an example of a Banach space which does not contain l_1 and does not admit the Kadec-Klee property.

2. DEFINITIONS, NOTATIONS AND REMARKS

Let L be the following union

$$L=\bigcup\left[0,\,\omega_1\right)^{\left[0,\,\alpha\right)},\,$$

all functions t whose domain dom(t) is some interval $[0, \alpha)$ for countable ordinal α and whose codomain is $[0, \omega_1)$ (ω_1 the first uncountable ordinal). When $\alpha = 0$, $[0, \omega_1)^{[0,0)}$ has one trivial element; we denote this element by 0. We may regard L as an uncountable branching tree all of whose branches have length ω_1 . We give an order on L in the following way: if $s, t \in L$ then we say that $s \leq t$ if and only if dom(s) \subseteq dom(t) and the restriction $t \mid_{\text{dom}(s)} = s$.

If $t \in L$, we denote by t^+ the set of all immediate successors of t, that is $u \in t^+$ if and only if, if s < u then $s \leq t$.

We equip L with the order-topology in a standard way: we take the intervals $(s, t] = \{u \in L : s < u \leq t\}, (\forall s \leq t), to be the basic neighbourhoods of the point$

Received 4 June 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

t > 0 and declare the element 0 to be an isolated point. The topological space L with the order-topology is locally compact and scattered [3].

Let $C_0(L)$ be the space of all continuous functions vanishing at infinity.

We let $[t, \infty) = \{u \in L : u \ge t\}$ and let $\chi_{(s,t]}$ be the characteristic function of (s, t].

3. MAIN RESULT

THEOREM. The space $C_0(L)$ does not admit the Kadec-Klee property.

LEMMA. ([3]) Let ||.|| be an equivalent norm on $C_0(L)$, $x \in C_0(L)$ and $s \in L$. Then there exists u > s such that for every v > u we have

$$||x + \chi_{(x,v]}|| = ||x + \chi_{(s,u]}||.$$

PROOF: Let $u_0 = s$. If u_{n-1} has been defined, we set

$$\nu_n = \sup\{\left\|x + \chi_{(x,v)}\right\| : v > u_{n-1}\}$$

and choose $v_n > u_{n-1}$ with

$$\left\|x+\chi_{(s,v_n]}\right\| \geqslant \nu_n-2^{-n}$$

Let $g \in C_0(L)^*$ such that ||g|| = 1 and $g(x + \chi_{(s, v_n]}) = ||x + \chi_{(s, v_n]}||$. The space $C_0(L)^* = l_1(L)$ and we may regard g as a summable scalar family $g = (g_l)_{l \in L}$. Since the uncountable family $\{[v, \infty) : v \in v_n^+\}$ is disjoint, we can choose $v_0 \in v_n^+$ such that $[v_0, \infty) \cap \{s \in L : g_l \neq 0\} = \emptyset$.

We set $u_n = v_0$ and note that for every $v > u_n$ we have

$$\left\|x+\chi_{(s,v]}\right\| \ge g\left(x+\chi_{(s,v]}\right) = g\left(x+\chi_{(s,v_n]}\right) = \left\|x+\chi_{(s,v_n]}\right\| \ge \nu_n - 2^{-n}.$$

We continue this process inductively and we construct a sequence $u_0 < u_1 < \ldots < u_n < \ldots$ in L and a sequence of positive scalars $\nu_0 \ge \nu_1 \ge \ldots \ge \nu_n \ge \ldots$ such that for every $v > u_n$ we have

(1)
$$\nu_n - 2^{-n} \leq \left\| x + \chi_{(s,v)} \right\| \leq \nu_n.$$

Let $\nu = \lim \nu_n$ and let $u > u_n$ for all n. Then from (1), we get

$$\|x+\chi_{(s,v]}\|=\nu$$

for all $v \ge u$ and the lemma is proved.

PROOF OF THEOREM: Let $\|.\|$ be any norm equivalent to the sup-norm $\|.\|_{\infty}$ in the space $C_0(L)$. We apply the lemma with the norm $\|.\|$, x = 0 and s = 0. Then there exists $u \in L$ such that

(2)
$$\|\chi_{(0,v]}\| = \|\chi_{(0,u]}\|$$

for all v > u.

We take a sequence $\{v_n\}_{n=1}^{\infty} \subseteq u^+, v_n \neq v_m \ (n \neq m)$. From (2) we have

$$\|\chi_{(0,v_n]}\| = \|\chi_{(0,u]}\|$$
$$\lim_{n} \chi_{(0,v_n]}(t) = \chi_{(0,u]}(t)$$

for all $t \in L$, then we find that the sequence $\chi_{(0,v_n]}$ tends to $\chi_{(0,u]}$ weakly.

On the other hand, obviously $\chi_{(0, v_n]}$ does not tend to $\chi_{(0, u]}$ in norm topology because

$$\|\chi_{(0,v_n]} - \chi_{(0,u]}\| = 1$$

for all n.

and since

Consequently, the space $C_0(L)$ does not admit the Kadec-Klee property and the theorem is proved.

REMARK. The main result is true for all Banach spaces $C_0(K)$, when K is a τ branching tree ($\tau \ge \text{card } \omega_1$) all of whose branches have length greater than or equal to ω_1 with the order-topology.

References

- [1] G.A. Alexandrov, 'Banach spaces without Kadec-Klee property', Canad. Math. Bull. (to appear).
- [2] R. Haydon, 'A non-reflexive Grothendieck space which does not contain ℓ_∞', Israel J. Math. 40 (1981), 65-73.
- [3] R. Haydon, 'A counterexample to several questions about scattered compact spaces', (preprint).
- [4] S.L. Troyanski, 'On the equivalent norms and minimal systems in non-separable Banach spaces', Studia Math. 43 (1972), 125-138.

Department of Mathematics University of Sofia Sofia Bulgaria