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Small droplets in turbulent flows can undergo highly variable deformations and
orientational dynamics. For neutrally buoyant droplets smaller than the Kolmogorov
scale, the dominant effects from the surrounding turbulent flow arise through
Lagrangian time histories of the velocity gradient tensor. Here we study the evolution
of representative droplets using a model that includes rotation and stretching effects
from the surrounding fluid, and restoration effects from surface tension including
a constant droplet volume constraint, while assuming that the droplets maintain
an ellipsoidal shape. The model is combined with Lagrangian time histories of
the velocity gradient tensor extracted from direct numerical simulations (DNS) of
turbulence to obtain simulated droplet evolutions. These are used to characterize
the size, shape and orientation statistics of small droplets in turbulence. A critical
capillary number is identified associated with unbounded growth of one or two of the
droplet’s semi-axes. Exploiting analogies with dynamics of polymers in turbulence,
the critical capillary number can be predicted based on the large deviation theory
for the largest finite-time Lyapunov exponent quantifying the chaotic separation of
particle trajectories. Also, for subcritical capillary numbers near the critical value,
the theory enables predictions of the slope of the power-law tails of droplet size
distributions in turbulence. For cases when the viscosities of droplet and outer fluid
differ in a way that enables vorticity to decorrelate the shape from the straining
directions, the large deviation formalism based on the stretching properties of the
velocity gradient tensor loses validity and its predictions fail. Even considering the
limitations of the assumed ellipsoidal droplet shape, the results highlight the complex
coupling between droplet deformation, orientation and the local fluid velocity gradient
tensor to be expected when small viscous drops interact with turbulent flows. The
results also underscore the usefulness of large deviation theory to model these highly
complex couplings and fluctuations in turbulence that result from time integrated
effects of fluid deformations.
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1. Introduction
Improving understanding and characterization of drop deformations and possible

breakup in turbulent flows is relevant to a wide range of applications, including
engineering processes such as emulsification, homogenization, mixing, blending
and multiphase chemical reactions (Davies 1985; Lefebvre 1989; Sundaresan 2000).
Transport and mixing processes occurring during oil spills and design of remediation
strategies also depend critically upon knowledge of oil droplet dynamics and breakup
processes occurring in the ocean (Li & Garrett 1998; Yang, Chamecki & Meneveau
2014).

Models for the breakup process are dependent upon characterization of the droplet
deformations that precede and facilitate breakup. Much work has focused on breakup
and deformations in turbulence when drops are larger than the Kolmogorov dissipation
length. The phenomenological model proposed by Kolmogorov (1949) and Hinze
(1955) focuses on distorting turbulent stresses as a function of scale in the inertial
range and compares these with the restoring forces owing to surface tension. This
phenomenological model forms the basis of most of the current models for predicting
drop breakup in turbulent flows. Numerical simulations based on fully resolved
fluid–fluid interface have also been recently performed to study such complex situation
(Perlekar et al. 2012). The paper by Lasheras et al. (2002) reviews the salient aspects
of large droplets subjected to inertial forces. Even without breakup, the understanding
of droplet deformation is important in various applications such as predicting effective
rheological properties of suspensions or understanding the behaviour of red blood
cells interacting with flows including localized large shearing regions. In the latter
context several studies have been carried out, relying on an analogy between red
blood cells and drops, in order to quantify the haemolysis phenomenon (Arora, Behr
& Pasqualis 2006; de Tullio et al. 2012).

Deformation of droplets may also be due to purely viscous shear forces rather than
inertial ones. This is of particular importance for droplet-laden turbulent flows when
droplets are smaller than the Kolmogorov scale. At such scales deformations arise due
to viscous drag associated with the shear in the surrounding flow being resisted by
surface tension effects. First analyses of droplets in simple viscous shear flow were
performed in Taylor (1932). For particular laminar shearing flow, droplets achieve
elongated equilibrium shapes. If the shear is strong enough, a droplet may continue to
deform and the resistance to deformation due to surface tension is insufficient, leading
to unbounded growth of one or two of the droplet’s semi-axes. This then provides a
possible condition for breakup of droplets when subjected to a simple laminar shear
flow. The dimensionless number comparing viscous and surface tension forces is the
capillary number Ca = µoRG/Λ (µo is the surrounding fluid viscosity, R a droplet
characteristic scale, G is the shear rate, an inverse timescale, and Λ the surface tension
parameter). The capillary number can be used to characterize the critical conditions
(a critical capillary number, Cac), under which stable stationary droplets are no longer
possible and hydrodynamic instabilities develop followed by eventual droplet breakup.

In laminar flow, the external fluid shear can be characterized by one or a few
parameters associated with the velocity gradient tensor. Conversely, in a turbulent
flow, droplets are subjected to a wide distribution of shear/strain rates. In particular,
due to inner intermittency, as the Reynolds number grows so does the range of values
of the local strain and/or shearing rates. Locally, these can achieve values that exceed
the mean value by a several orders of magnitude. Therefore, one expects that locally
some fraction of the droplets will encounter shear rates such that instability and
unbounded elongation results. Clearly one would wish to characterize the resulting
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d1

d2

d3

X(t)

FIGURE 1. (Colour online) Typical ellipsoidal shape of one droplet along the turbulent
trajectory. The droplet centre of mass X(t) is supposed to follow the evolution of a fluid
particle and the droplet deformation is governed by the statistics of the fluid velocity
gradients along the trajectory, ∂iuj(X(t), t). We denote by µo the viscosity of the carrying
fluid and by µi that inside the droplet. The droplet is always assumed of ellipsoidal shape
with the three semi-axes ordered as d1 > d2 > d3.

droplet dynamics statistically. For example, one is interested in probability distribution
functions (p.d.f.) of the characteristic scales (e.g. semi-axes in the case of ellipsoidal
droplets), or orientation dynamics of the droplets with respect of the turbulent flows.
If some fraction of the droplets is subjected to unbounded elongation, can statistical
descriptions still be formulated? How to characterize statistical distributions of small
deforming droplets in turbulence remains an interesting challenge that has not received
sufficient attention.

Cristini et al. (2003) considered the case of droplets that are smaller than the
Kolmogorov scale. Detailed calculations that combined simulations of turbulent flows
at moderate Reynolds numbers with Reλ ∼ 50–60 (λ being the turbulence Taylor
microscale) were coupled to a refined boundary integral simulation of local drop
dynamics. Such modelling of the droplets was capable of reproducing highly complex
shapes such as necks, their instabilities and precursors of satellite droplet formation.
Further work along these directions include those from Terashima & Tryggvason
(2009) and Can & Prosperetti (2012). However, the turbulent Reynolds numbers
that can be considered for such highly detailed simulations are relatively limited. It
becomes of interest to seek appropriate simplifications that enable one to explore
a broad range of turbulent fluctuations of the shear rates to which small droplets
can be expected to be subjected in a turbulent flow at more elevated Reynolds
numbers. Assuming that the initial shape of the droplets is spherical, the initial
deformations lead to ellipsoidal shapes. Being characterized by three major axes
and their orientations, an ellipsoidal drop shape is much easier to describe and
parameterize. The fate of deforming ellipsoids in turbulence raises a number of
interesting questions such as: denoting the ‘size’ of droplets as the scale of its
largest semi-axis d1 (see figure 1), we may ask what is the resulting p.d.f. of d1 in
turbulence as function of capillary and Reynolds numbers? Under what conditions can
equilibrium distribution functions be found? What are the characteristic aspect ratios
among largest and smallest semi-axes? Do ellipsoidal droplets tend to be axisymmetric
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or triaxial? What are the orientation statistics of deforming droplets? Do their major
axes tend to align with the vorticity (as happens with rigid elongated particles) (Parsa
et al. 2012; Chevillard & Meneveau 2013), do they align with the most extensive
strain-rate direction, or with some other direction? How do such orientation trends
depend on capillary and Reynolds numbers? How are these alignments related to the
deformation rates? These are some of the questions we will address in this paper.

Many models are available for the droplet evolution in turbulent flows. As a first
step, it is important to clarify if one is interested in small or large droplets (with
respect to the Kolmogorov scale), if they are passive tracers or have a feedback on the
flow, if the collision/aggregation of different droplets can be neglected (large dilution
limit), if they have inertia (i.e. their centre of mass follows or diverges from a fluid
particle trajectory). Finally one also needs to specify the flow properties of the carrier
fluid. In this study we apply several simplifying assumptions in order to be able to
exploit state-of-the-art numerical simulations of turbulent flows and to track many
droplets simultaneously. We focus on the simple (but still interesting) case of sub-
Kolmogorov-scale inertialess droplets, in the highly diluted case, therefore neglecting
the feedback on the flow and the interactions between different droplets. Moreover, we
assume that the droplet shape can be parameterized by an ellipsoid. Even considering
this basic case, different models can be adopted. Among them, a popular one has been
proposed by Maffettone & Minale (1998) (hereafter referred to as the ‘M&M model’).
This model is based on the idea that the droplet deformation is the result of the
balance between the local stretching terms of the velocity gradient and the restoring
surface tension force. An extra nonlinear constraint is added in order to enforce the
preservation of the droplet volume during its evolution. The above dynamics can be
parameterized by introducing two functions which depend only on the viscosity ratio
between the droplet and the surrounding fluid.

In the present work we examine the fate of small ellipsoidal droplets being
transported and distorted by homogeneous isotropic turbulence following the M&M
model. We study different statistical properties of the droplets’ shape and its
correlation with the underlying turbulent fluctuations when changing the viscosity
ratio. It is worthwhile noticing that, when the surrounding fluid and the droplet
inner fluid have the same viscosity, the M&M model is very similar to studying
the advection/stretching of a small fluid volume together with a relaxation towards a
spherical shape. This is also the set-up describing the evolution of the second-order
conformation tensor of simple passive polymers in the Oldroyd-B model. In both
cases, the deformation rate can be predicted in terms of the statistics of the Lyapunov
exponents governing the chaotic properties of particle trajectories; we will exploit
this similarity in order to predict the critical capillary number Cac where all droplets
will break with probability one for such viscous ratio.

However, when the viscosity ratio of the fluids strongly differs from unity, the
above analogy does not hold and the prediction of the critical capillary number
fails. While many typical applications have viscosity ratios different from unity
(e.g. oil droplets in water), the present analysis for unity viscosity ratio is still of
interest since there are examples of real liquids with viscosity ratios equal to or
close to one that are relevant in technology or nature. One of them is the pair
polydimethylsiloxane/polyisobutylene that are both Newtonian fluids, widely used as
lubricants and in a large variety of other applications. Their dynamic viscosities at
23 ◦C are, respectively, 103 and 101 Pa s and their interfacial tension is 2.4 mN m−1

(Guido, Minale & Maffettone 2000a). Another relevant context is the red blood cells
in the plasma matrix: in this case the viscosity ratio between the haemoglobin inside
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the cells and the plasma is less well defined since it depends on the link with O2 or
CO2 of the haemoglobin molecules and on the inner cell cytoskeleton consisting of
proteins. Nevertheless a viscosity ratio in the range 3–5 is commonly adopted as a
reasonable parameter for a healthy human being (Pozrikidis 2003). In this case the
role of the surface tension is played by the cell cytoplasmatic membrane.

The paper structure is as follows: in the next section the M&M model is described
and briefly derived so that the actions on the droplet of its different terms can be
understood. As stated before, the shape dynamics depends upon the Lagrangian time
history of the strain and rotation rates of the surrounding turbulent fluid. Full direct
numerical simulations (DNS) of turbulence can provide such information (Benzi et al.
2010) under the assumption of one-way coupling. The latter has been used extensively
to study particle relative dispersion (Bec et al. 2010), Lagrangian statistics properties
of turbulence (Meneveau 2011) and the fate of non-isotropic particles in turbulence
(Parsa et al. 2012; Chevillard & Meneveau 2013). In § 3 we simulate an ensemble of
droplets, each drop obeying the M&M model following the Lagrangian trajectories
of fluid particles in DNS, at two Reynolds numbers. Statistical characterizations of
resulting droplet sizes are provided based on the p.d.f. of the largest diameter (the
ellipsoid’s largest principal axis). Particular attention is placed on the tails of the
distributions, to explore the fate of the most deformed droplets and how often these
phenomena occur. Viscous drops deform because of hydrodynamical stresses and
tend to maintain their shape owing to surface tension. Polymers, described by purely
elastic springs, share similar characteristics and analogies with the case of polymers
will thus prove useful. Polymers in turbulent flows in fact may undergo the so-called
coil-stretch transition if the local straining exceeds the restoring spring force of the
polymer for a time long enough during the particle evolution. Such transition can be
described by the tendency toward an unbounded growth of the polymer conformation
tensor for continuum models as, e.g. the Oldroyd-B (Balkovsky, Fouxon & Lebedev
2000; Boffetta, Celani & Musacchio 2003).

In § 4 the p.d.f.s of droplet sizes are related to the large deviation theory of the
largest finite-time Lyapunov exponent (FTLE) for the case of unity viscous ratio. The
formalism can be used to make quantitative predictions of the critical capillary number
above which moments of the droplet size distribution diverge. The results from DNS
are compared with these theoretical predictions.

In addition to the droplet size distribution, one is also interested in statistical
characterizations of droplet shapes and orientations with respect to the local flow.
Such properties are evaluated based on DNS and the M&M model, and are presented
in § 5. Variations of the ratio of droplet to carrier fluid viscosities are examined in
§ 6. Conclusions are presented in § 7.

2. Lagrangian model for viscous, tri-axial ellipsoidal droplets in viscous shear
flow

The model proposed by Maffettone & Minale (1998) considers a drop of a viscous
Newtonian fluid immersed in another viscous Newtonian liquid of the same density,
subjected to flow such that an ellipsoidal drop shape of constant volume is maintained
at all times. Of course, at significant deformations and especially close to the break-up
the ellipsoidal shape is lost. However, some results (Guido & Villone 1998) support
the idea that deformations away from ellipsoidal shapes develop only close to the
critical shape. Under the assumption of ellipsoidal shape, the drop morphology and
orientation can be entirely described by a positive-definite second-order tensor Mij.
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Deformation statistics of small drops in turbulence 189

The tensor M is symmetric and its three eigenvalues correspond to the square of the
semi-axes length while the eigenvectors give the orientations of the ellipsoid’s axes. It
can be understood as the inertia tensor of a droplet with constant density ρd:

Mij(X(t), t)= ρd

∫
V
(ri − Xi(t))(rj − Xj(t)) dV, (2.1)

where the integral is extended over the whole volume of the droplet around the
instantaneous position of its centre of mass, X(t).

In the M&M model the drop deformation and orientation dynamics is modelled
using the rotation and strain rate of the underlying flow field (whose velocity
components are ui), Ωkj = 0.5(∂juk − ∂kuj) and Skj = 0.5(∂juk + ∂kuj) as

dMij

dt
=ΩikMkj −MikΩkj + f2(µ)(SikMkj +MikSkj)− f1(µ)

τ
(Mij − g(IIM, IIIM)δij), (2.2)

where f1 and f2 are two functions that depend upon µ=µi/µo (the ratio of viscosities
of the inner, µi, and outer, µo, fluids), τ =µoR/Λ is the drop/bubble shape relaxation
timescale and R the initial radius of the droplet (which is assumed spherical, initially).
In (2.2) the first two terms on the right-hand side stem from the local rotation rate
while the terms multiplied by f2 define the stretching due to viscous forces. The last
term, proportional to f1, models the tendency to restore the spherical shape induced
by surface tension effects. Also,

g(IIM, IIIM)= 3
IIIM

IIM
(2.3)

enforces exact conservation of the droplet volume at all times as demonstrated by
Maffettone & Minale (1998). The factor g(IIM, IIIM) depends upon the invariants
of M:

IM =Mkk, IIM =− 1
2

(
MijMij − I2

M

)
, IIIM = 1

3

(
MikMkjMji − I3

M + 3IMIIM
)
. (2.4a–c)

Possible expressions for the rotation and stretching prefactors f1, f2 which match the
known exact asymptotic limits for small Ca, for infinite viscous ratio 1/µ→ 0 and
for µ= 1 are given by Maffettone & Minale (1998) as

f1(µ)= 40(µ+ 1)
(2µ+ 3)(19µ+ 16)

; f2(µ)= 5
2µ+ 3

. (2.5a,b)

A number of other droplet models exist and Minale (2010) provides a review of the
many other approaches available to predict droplet dynamics and deformations in
viscous flows. Here we use the above M&M model because of its relative simplicity
and successful testing under various smooth flow conditions (Guido, Minale &
Maffettone 2000b; Minale 2004, 2008, 2010). For neutrally buoyant small droplets
placed in a turbulent flow, the Lagrangian evolution of (2.2) must be solved together
with the droplet position advected as a fluid particle.

For future reference and convenience, we also provide a dimensionless version of
the M&M model that uses the velocity gradients (i.e. the small-scale turbulence
inverse timescale) to normalize time, and the initial droplet size to normalize
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length-scales (although since the dynamics is homogeneous with M , its non-
dimensionalization is not relevant). The reference inverse turbulent timescale we
use is defined as

Gt =
〈(

∂u1

∂x1

)2
〉1/2

. (2.6)

Also, we define a capillary number according to

Ca= µoRGt

Λ
= τGt. (2.7)

Defining S′ij = Sij/Gt, Ω ′ij = Ωij/Gt, and t′ = tGt, the equations are written in
dimensionless form as follows:

dMij

dt′
= [ f2(S′ikMkj +MikS′kj)+Ω ′ikMkj −MikΩ

′
kj

]− f1

Ca

(
Mij − 3

IIIM

IIM
δij

)
. (2.8)

Another characteristic timescale exists, the Lagrangian correlation time of the velocity
gradient tensor elements. This correlation determines the temporal persistence of the
applied straining and rotation rates. It is known that the correlation timescales of the
strain rate and vorticity differ (Guala et al. 2007; Yeung et al. 2007; Yu & Meneveau
2010a,b) but both are known to scale with the Kolmogorov timescale. Hence, they are
of the order of 1/Gt, but possibly with a large prefactor in the case of vorticity.

Among others, we are interested in determining whether there is a steady-state
solution for the ‘size’ of the droplets defined in terms of the three semi-axes of
its ellipsoidal shape. Let us denote the eigenvalues of M as d2

1, d2
2 and d2

3, ordered
according to d1 > d2 > d3 and where d1, d2 and d3 are the ellipsoid’s semi-axes.
We recall that the volume constraint implies that d1 d2 d3 (strictly speaking the
determinant det(M) = d2

1d2
2d2

3) remains constant in time. For large deformations,
i.e. d1 � d3, the trace of M (IM = d2

1 + d2
2 + d2

3) provides information essentially on
the largest semi-axis.

3. Results from DNS
In this section, numerical solutions of (2.2) are presented. As mentioned in the

previous section, we consider the case of droplets with a size much smaller than
the viscous scale and with a negligible mismatch in density with the surrounding
fluid. Under these conditions, the droplet centre of mass evolves as a passive tracer
in the fluid and we can extract the time history of the velocity gradients along the
Lagrangian trajectories of point-like particles following the equation:

Ẋ= u(X(t), t), (3.1)

where the Eulerian flow evolves according to the three-dimensional Navier–Stokes
equations:

∂tu+ u · ∇u=−∇p+ ν∇2u+F, ∇ · u= 0. (3.2)

The Lagrangian signals for the velocity gradient time histories, ∂jui(X(t), t), are
obtained from DNS of homogeneous isotropic turbulence at two Reynolds numbers.
The details about the DNS are given in table 1 (more details about the statistical
properties of the Eulerian and Lagrangian fields can be found in Cencini et al.
(2006) and Bec et al. (2010)): The statistically homogeneous and isotropic external
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N Reλ η δx ε ν τη tdump δt TL Gt

Run I 512 185 0.01 0.012 0.9 0.002 0.047 0.004 0.000 4 2.2 5.48
Run II 2048 400 0.0026 0.003 0.88 0.000 35 0.02 0.001 15 0.000 115 2.2 11.4

TABLE 1. Eulerian parameters for the two sets of data from the DNS of homogeneous and
isotropic turbulence. Here N is the number of grid points in each spatial direction; Reλ is
the Taylor-scale Reynolds number; η is the Kolmogorov dissipative scale; δx = L/N is
the grid spacing, with L= 2π denoting the physical size of the numerical domain; τη =
(ν/ε)1/2 is the Kolmogorov dissipative timescale; ε is the average rate of energy injection;
ν=µ0/ρ is the kinematic viscosity; tdump is the time interval between two successive data
recordings along particle trajectories; δt is the time step of the model integration; TL =
L/U0 is the eddy turnover time at the integral scale L= π, U0 is the typical large-scale
root-mean-square velocity and Gt is the reference inverse turbulent timescale. Averages are
performed over two large eddy turnover times.

forcing F injects energy in the first low-wavenumber shells, by keeping constant
their spectral content (Chen et al. 1993). The kinematic viscosity ν =µ0/ρ is chosen
such that the Kolmogorov length scale η ≈ δx, where δx is the grid spacing: this
choice ensures a good resolution of the small-scale velocity dynamics. The numerical
domain is cubic and 2π-periodic in the three directions of space. We use a fully
dealiased pseudospectral algorithm with second-order Adam–Bashforth time-stepping
(for details see Bec et al. (2006) and Cencini et al. (2006)). We analyse data from
two series of DNS: run I with numerical resolution of 5123 grid points, and the
Reynolds number at the Taylor microscale Reλ ≈ 185; Run II with 20483 resolution
and Reλ ≈ 400. Particle trajectories are recorded at a frequency of tdump ∼ τη/10 and
followed for a total time of the order of 2TL, with TL the large eddy turnover time of
the turbulent flow. We analyse a total of 15× 103 and 7× 103 trajectories for Run II
and Run I, respectively. The integration of (2.2) is further refined by making a linear
time interpolation by a factor 10 between two successive recorded data points along
the Lagrangian trajectory.

The evolution of the morphology tensor is stopped when the maximum deformation,
defined as the ratio between d1/d3 exceeds a factor 103. While this is an arbitrary
criterion to define a threshold associated with possible subsequent droplet breakup, it
has been verified by various numerical tests (see below) that the dominant features
of droplet dynamics and statistics show little sensitivity to the threshold value. More
advanced criteria taking into account droplet shape instabilities could be used, but
especially under the limiting assumption that the shape remains ellipsoidal, this simple
type of criterion is deemed appropriate for the focused objectives of this study.

The initial drop size is assumed to be sufficiently smaller to the Kolmogorov scale
η so that even after severe deformations the largest scale still falls within the viscous
range. The cut-off ratio d1/d3= 103 means, due to the volume conservation, that d1 is
at most a factor of 100 times the original scale. In practice the viscous range extends
to scales of the order of 10η so that effectively, we are assuming that the initial
scale is smaller or equal to η/10. Note that due to the homogeneity of (2.2), we can
rescale Mij using the initial radius as characteristic length scale without modifying the
equation. Therefore, the initial physical length scale of the droplet does not explicitly
enter into the dynamics, except through the relaxation timescale τ .

We begin by showing some typical time evolutions of droplets for different values
of the capillary number. In figure 2 we show the time evolution of the square root

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.366


192 L. Biferale, C. Meneveau and R. Verzicco

Ca = 0.6

0 50 100 150 200

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200

Ca = 0.42

Ca = 0.33Ca = 0.16

10–2

10–1

100

102

101

10–2

10–1

100

102

101

10–2

10–1

100

102

101

10–2

10–1

100

102

101

d2

d1 d3(a) (b)

(c) (d)

d d

FIGURE 2. Time signals of the square root of the eigenvalues, d1(t)(= [λ(1)m ]1/2), d2(t)
and d3(t) in logarithmic units obtained from solving the M&M droplet model coupled to
Lagrangian time history of turbulent velocity gradients from DNS at Reλ = 185. We also
superpose the time history of |A11(t)|, the absolute value of one component of the velocity
gradient tensor (solid line).

di(t) = (λ(i)m )
1/2 of the three morphology tensor eigenvalues for different relaxation

times τ , and for µ=1, along a sample droplet trajectory. As one can see, at increasing
relaxation time, i.e. increasing capillary number for a given turbulence intensity, the
droplet tends to deform more and more. For instance, the time history here represented
shows a peak in the deformation at a time t ∼ 100τη during the droplet evolution
where only the droplet with Ca= 0.16 survives since it did not exceed the d1/d3= 103

threshold.
In figure 3 we show an enlargement of this event, where one can better see the

transition from an oblate to a strongly prolate shape during the droplet evolution. Only
later does the surviving droplet recover a spherical-like shape with d1 ∼ d2 ∼ d3 ∼ 1.
In figure 3(b) we show the time history of the three diagonal components of the
velocity gradient tensor, in order to highlight the noticeable correlation between events
where the droplet is strongly deformed and the underlying turbulent fluctuations
of the fluid velocity field rate of deformation. As one can see, the event around
t ∼ 100τη, where droplets with large capillary number break, is preceded by strong
intense oscillations in the turbulent stretching rates.

As a next step, we focus on the distribution of droplet sizes. Figure 4 shows the
p.d.f.s of the largest M eigenvalue, λ(1)m = d2

1, for various values of Ca for both runs
at the two Reynolds numbers. As can be seen for increasing capillary number, when
the surface tension is decreased (for a fixed mean turbulent straining timescale), longer
tails develop and very large droplet deformation can occur. The tails approach a power-
law form P(x)∼ x−q with q decreasing (i.e. the tails becoming less steep) at increasing
capillary number. Similar behaviour can be observed at larger Reynolds numbers as
shown in the (b) of the same figure.
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FIGURE 3. (a) Enlargement of the previous figure for Ca= 0.16 around the peak of the
deformation of the droplet. (b) The corresponding evolution for the three diagonal entries
of the velocity gradient tensor, A11(t), A22(t), A33(t).
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FIGURE 4. Probability density functions of largest eigenvalue λ(1)m of the morphology
tensor M , obtained from solving the M&M droplet model coupled to Lagrangian time
history of turbulent velocity gradients from DNS at (a) Reλ = 185 and (b) Reλ = 400.
Different curves correspond to different values of the capillary number, both below and
above the critical value, Cac ∼ 0.42. The solid line represents the power-law behaviour
∝ x−1. Curves are shifted vertically for the sake of presentation.

At capillary numbers above a threshold value, it is apparent that the p.d.f. develops
a −1 power-law tail, q→ 1.

For such tails, while for finite size systems we may operationally measure the p.d.f.s
due to the finite threshold imposed (we cannot exceed a maximum ratio between the
highest and the lowest eigenvalue), if one were to imagine a system without such
cutoffs, the p.d.f. could not be normalized because its integral diverges at large values.
The transition to this behaviour appears to occur near Cac ≈ 0.4 for both Reλ = 185
and Reλ = 400. We interpret such transition as follows: for Ca > Cac if one waits
long enough, with probability equal to unity all droplets would break eventually. For
smaller Ca, breaking is still possible for some droplets (as, e.g., shown in figure 2),
but large deformations become exponentially less probable. In the next section an
attempt will be made to predict this critical value of Ca based on knowledge about
turbulence small-scale statistics.

In figure 5 we show the dependence of the p.d.f.s on the d1/d3 threshold chosen
as a criterion for droplet breakup, i.e. as a rule to stop the droplet trajectory. As is
quite apparent, increasing the threshold leads to longer and longer tails of the p.d.f.
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FIGURE 5. Probability density functions of largest eigenvalue λ(1)m of the morphology
tensor M , obtained from solving the M&M droplet model coupled to Lagrangian time
history of turbulent velocity gradients from DNS at Reλ = 185. Different symbols denote
different imposed cutoff values for the maximum deformation value d1/d3 = 10, 102, 103.
Results are shown for two capillary numbers Ca = 0.16 below (a) and above (b) Cac.
We also superpose the power-law behaviour ∝ x−1 predicted for the saturation slope when
Ca>Cac.

without changing its main features. Using high threshold values enables us to exhibit
the power-law scaling of the p.d.f. that develops for large-scale disparities d1/d3.

4. Cramer function formalism and FTLEs
In this section we aim at establishing a semi-analytical tool to predict the p.d.f.

shape of the maximal elongation of the droplet in the case when the viscosity ratio is
unity, µ= 1. In such a case, the stretching and the rotation terms of the M&M model
coincide with those describing the stretching and rotation of an infinitesimal volume
of the fluid and therefore can be connected to the statistics of the Lyapunov exponent
of the particle trajectories inside the turbulent flow (Bec et al. 2006). It is useful in
this case to return to the dimensional description, (2.2), in order to have a clearer
understanding of the physical origin of all terms. When f2 = 1 (viscosity ratio unity)
the rotation rate and deformation rate tensors sum up to give the following evolution
for the morphology tensor of the droplet:

dMij

dt
= (AikMkj +MikAkj)− f1

τ

(
Mij − g(IIIM, IIM)δij

)
, (4.1)

where everything is expressed in terms of the velocity gradients, Aik = ∂ui/∂xk. It is
useful here to point out that the evolution given by (4.1) is very close to that of
polymer stretching by a turbulent flow as for the case of the approximation given by
the Oldroyd-B model. In the latter the role played by the morphology tensor M is
played by the polymer conformation tensor Cij(X(t), t)= Ri Rj (where R is the ‘ends-
to-ends polymer vector’ and the average is intended over the thermal noise applied
to each molecule inside an infinitesimal volume advected by the flow, see Balkovsky
et al. (2000) and Chertkov (2000) for a rigorous discussion). For the polymer case,
the linear damping is given by a relaxation timescale toward the equilibrium isotropic
extension. The only difference between the two cases is that for polymer there is no
need to enforce the volume conservation and therefore the term g is typically set to
unity in an equation such as (4.1). For the tails of the probability distribution of the
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largest eigenvalue of M , these differences are expected to have negligible effects since
along the tail we have Tr(M)� 1 and in that limit Mij − gδij ≈Mij (g tends to zero
since IIM grows while IIIM remains unity). The long time evolution of the droplet
morphology tensor, given by (4.1), will depend critically upon the balance between
two different mechanisms: the first is given by the accumulation of the stretching
effects induced by the underlying flow, as expressed by the terms (AikMkj + MikAkj)

on the right-hand side of (4.1). The second mechanism is given by the relaxation
toward an isotropic configuration as expressed by the term ( f1/τ)(Mij − gδij). If the
former is strong enough to dominate the long-term behaviour, the droplet will be
in a stretched configuration (and it keeps stretching with one or two of its length
scales growing in an unbounded fashion if not resisted by additional nonlinear stiffness
mechanisms). In the opposite case it will be, on average, in a coiled configuration,
where we have used this term to stress the analogy with the polymer dynamics. In
order to predict the critical capillary number where stretching will overwhelm the
surface tension effects it is possible to apply the same balance already successfully
used for the polymer case by Balkovsky et al. (2000) and Boffetta et al. (2003). The
idea is to control the asymptotic behaviour of the trace of the morphology tensor,
Tr(M(t)) observing that thanks to (2.1) it is equivalent to the tensorial product of
two infinitesimal vectors defining the position of a generic particle inside the droplet,
Ri = xi − Xi(t). We therefore can restrict ourself to study the evolution of a fluid line
element in the fluid:

dRi

dt
= AikRk (4.2)

and then taking the square of it in a suitable sense. To characterize the long-time
evolution of (4.2) it is useful to introduce the so-called FTLEs:

γ (t)= 1
t

log
( |R(t)|
|R(0)|

)
, (4.3)

which for large t tends with probability one to the largest Lyapunov exponent
governing the chaotic properties of particles trajectories in the turbulent flow,
λL = limt→∞ γ (t). However, if we do not perform the limit t → ∞, the FTLE
exhibits deviations from the mean. These fluctuations are described by the p.d.f. of
γ at various times via the large deviation theorem (Frisch 1995):

P(γ , t)∼ exp(−tS(γ )), t→∞. (4.4)

The function S(γ ) is the so-called Cramer function (see Frisch 1995 for a text book
introduction and also Eckmann & Procaccia 1986 and Paladin & Vulpiani 1987) which
must be convex, semi-positive definite and vanishing at γ = λL, because for t→∞
we must have with probability one that the FTLE converge to the largest Lyapunov
exponent, λL. Combining (4.3) and (4.4) one may write for the qth-order moments of
the vector growth:〈( |R(t)|

|R(0)|
)q〉
=
∫

exp[t (qγ − S(γ ))]dγ ∼ exp(t L(q)), (4.5)

where the last passage is obtained in the saddle point limit of large t subject to the
condition:

L(q)=max(qγ − S(γ )). (4.6)
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Moreover, one can show that the Lyapunov exponent λL = L′(0) = (dL(q)/dq)|q=0.
We must now just note that the stretching part of the evolution (4.1) is twice the
right-hand side of (4.2), i.e. Mij ∼ RiRj. As a result, we have that the large deviation
properties of the largest eigenvalue of the morphology tensor are controlled by L(2q)
instead of L(q). Considering also the linear relaxation induced by the surface tension
terms and neglecting the O(1) terms in fronts to the δij, which must not be important
when Tr(M)� 1, we end up with the prediction that for large times:

〈[Tr(M(t))]q〉 ∼ exp
[

t
(

L(2q)− q
f1

τ

)]
. (4.7)

It is possible now to derive a criterion for the existence of a stationary probability
distribution for the morphology tensor. A stationary p.d.f. must be normalizable
at all times, i.e. the exponent L(2q) − qf1/τ must be zero when q = 0, such that
limq→0

∫
xqP(x) dx = ∫ P(x) dx = 1. The latter condition implies that there exists a

critical relaxation time τ c such that

lim
q→0
[L(2q)− qf1/τ

c] = 0, or τ c = lim
q→0
( f1/L(2q))= f1/(2L′(0))= f1/(2λL). (4.8a,b)

For τ > τ c the tensor does not reach a stationary distribution and it is indefinitely
stretched. In that limit we will have that all moments diverge (which corresponds to
the Weissenberg criterion for the coil-stretched transition in the case of polymers). For
τ < τ c, when the p.d.f. of the trace, x=Tr(M), is normalizable, the tail will scale like

P(x)∼ x−(1+q̃(τ )). (4.9)

The critical exponent of the tail is given by the largest order of the moment that does
not diverge, i.e. q̃(τ ) is such that

L(2q̃(τ ))= f1q̃(τ )
τ

. (4.10)

For many practical purposes, the Cramer function S(γ ) can be expanded in Taylor
series around its minimum up to second order,

S(γ )= (γ − λL)
2/(2σ), (4.11)

where σ is a parameter characterizing the degree of intermittency and variability of
the FTLE. The Cramer function of Navier–Stokes turbulence in three dimensions has
been measured in prior work, based on Lagrangian tracking and integration of fluid
velocity gradients from DNS at 5123 and Reλ = 185 (Bec et al. 2006). In figure 6
this measured Cramer function is shown and the measured (fitted) λL and σ are given
in the caption. Let us first note that the Cramer function cannot be exactly parabolic
for all values of γ ; this is due to the fact that the incompressibility constraint forces
γ > 0. Nevertheless, it is possible to find a good parabolic fit for the right branch of
the parabola, the only one that will be of interest for us because the condition (4.10)
gives values of q̃(τ ) that correspond to γ (q̃) > λL (see below).
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FIGURE 6. Cramer function (from Bec et al. 2006). We show also the parabolic fit that
uses λL = 0.14/τη = 2.97 and σ = 0.19/τη = 4.04 with τη = 0.047.

4.1. Comparison with DNS
In the DNS used to obtain the results shown in figure 4, the parameters f1= 0.457 and
f2 = 1 (unity viscous ratio) were used. Also, for the DNS flow, the main Lyapunov
exponent is λL∼ 2.97 (Bec et al. 2006). Therefore, we predict as a critical relaxation
timescale the value

τ c = f1/(2λL)∼ 0.077, (4.12)

which in terms of the critical capillary number means Cac = τ c〈(∂u1/∂x1)
2〉0.5 = 0.42.

This value of critical capillary number or τ c is very well confirmed by the results
shown in figure 4, where the p.d.f.s were shown to saturate to a −1 tail for τ ∼
0.077 (Cac = 0.42) for the Reλ = 185 DNS case. Because the dependency on the
Reynolds number enters only via the Lyapunov exponent λL, which is known to follow
the relation λL ∼ 0.14/τη (see Bec et al. 2006), it is also possible to predict the
critical relaxation time for the Reλ = 400 case. In particular, replacing the values for
τη given in table 2 we must have τ c ∼ 0.033 for Reλ = 400, which would correspond
to Cac∼ 0.37 again in good agreement with the observed accumulation of the p.d.f.’s
tail shown in figure 4(a). Note that the critical capillary number should at first sight
not depend on Reynolds number because the two quantities λL and 〈(∂u1/∂x1)

2〉0.5
have the same Reynolds dependency on dimensional grounds. The numerical results
shown in Bec et al. (2006) suggest the presence of a small intermittency correction
to the rule λL ∝ 1/τη. Moreover, in order to understand the Reynolds dependency of
(2.7) one would need to also consider the intermittent corrections to the statistics of
velocity gradients (Benzi et al. 1991). It is difficult to say whether the observed small
dependency of Cac on Reynolds is due to these two combined intermittent corrections
or it is just induced by small statistical fluctuations on the measured quantities. Data
from a larger variation in Reynolds are needed in order to answer this important
question.

Next, we explore whether relation (4.10) can be used to estimate the p.d.f. slopes
for τ < τ c, i.e. before criticality. Again, we use the published Cramer function (Bec
et al. 2006) (see figure 6). Using a parabolic fit (4.11), the Legendre transform can
be worked out analytically and the maximum is reached for

γ̃ (q)= λL + 2σq. (4.13)
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τ = 0.03 τ = 0.05 τ = 0.06 τ = 0.077

Ca= 0.16 Ca= 0.27 Ca= 0.33 Ca= 0.42
q̃(τ ) 1.15 0.39 0.21 0

TABLE 2. Values of the asymptotic power-law slopes for the p.d.f. of the trace of the
morphology tensor for Reλ = 185 simulation, for these parameters we have τ c ∼ 0.077
(Cac ∼ 0.42).

τ = 0.005 τ = 0.015 τ = 0.025 τ = 0.033

Ca= 0.06 Ca= 0.2 Ca= 0.32 Ca= 0.37
q̃(τ ) 4.1 0.87 0.23 0

TABLE 3. Asymptotic power-law slopes for the p.d.f. of the trace of the morphology
tensor for Reλ = 400 simulation. For these parameters we have τ c ∼ 0.033, (Cac ∼ 0.37).

Moreover,
L(2q)= 2qλL + 2σq2, (4.14)

which gives the prediction for the slope (from (4.10)):

q̃(τ )= f1/τ − 2λL

2σ
. (4.15)

The first thing to be noticed is that from (4.13), already for q = 0.5 we have
γ̃ (1)= λL + σ ∼ 7, i.e. already for q̃∼ 0.5 we are probing the far tails of the Cramer
function figure 6. Hence, to remain within good statistical confidence, we can apply
the prediction (4.15) only if it is satisfied for q̃� 1, i.e. for capillary numbers and
relaxation times relatively close to the critical ones. In tables 2 and 3 we report
for both Run I and Run II the values for the slopes of the p.d.f. tails using the
expressions σ = 0.19/τη and λL= 0.14/τη which we showed in figure 6 to be a good
fit for the right branch of the Cramer function.

In figure 7 we superpose the p.d.f.s of the largest eigenvalue of the morphology
tensor M at different capillary numbers for some typical values given in tables 2 and 3.
One can notice that by increasing the capillary number, the theoretical prediction
based on the large deviation theory for the FTLE becomes increasingly better. The
deviations for Ca � Cac could be due to the following reasons: first, as said, for
small Ca the saddle point estimate is dominated by very large values of the FTLE,
leading to a bigger statistical uncertainty; second, if the capillary number is small, the
stretching terms are less important, the morphology tensor is closer to its isotropic
shape, stretching does not persist for long times and probably the asymptotic estimate
of the large deviation Cramer function is not suitable for such intermediate situations.

5. Further characterization of droplet orientations and morphology
In this section, we provide results from the analysis of droplets in DNS not

only focusing on the largest eigenvalue as done in the preceding sections, but
also characterizing the droplet morphology and orientation dynamics. In order to
characterize the shape of the particle, we use the p.d.f. of the deformation parameter
also used in Guido et al. (2000b):

P(D) where D= d1 − d3

d1 + d3
. (5.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.366


Deformation statistics of small drops in turbulence 199

10–4

10–2

100

100

102

104

106

108

101 102 103 104

x –5.1

x –2.15

x –1.21

p.
d.

f.

FIGURE 7. P.d.f.s of the largest eigenvalue of the morphology tensor for Ca = 0.06
(squares), Ca= 0.16 (circles) and Ca= 0.33 (triangles) as computed from the simulation.
The corresponding theoretical power-law predictions are shown as solid lines with the
predicted slopes (exponents) noted.

This parameter does not distinguish between disk-like and cigar-like shapes, but for
a sphere one has D = 0 and for the most deformed possible states (either disk- or
spaghetti-like), one has D = 1. In addition, to distinguish also between disk-like
and cigar-like shapes, the s∗ parameter introduced by Lund & Rogers (1994) to
characterize the rate of strain eigenvalues (that add to zero) can be used if properly
modified. For this purpose, the eigenvalues must first be redefined in terms of
logarithmic variables. We define

ri = ln(di/di(0)), (5.2)

then
∑3

i=1 ri = 0. We then define the Lund & Rogers (1994) parameter

s∗ =−3
√

6
r1r2r3

(r2
1 + r2

2 + r2
3)

3/2
(5.3)

which is such that s∗ = +1 indicates disk-like shapes while s∗ = −1 indicates long
fibre-like shapes. However, s∗ = 0 is somewhat indeterminate: it can mean either a
sphere or an ellipsoid in which the intermediate axes remains undeformed with d2(t)=
d2(0) leading to r2 = 0 and s∗ = 0. Still, peaks of the p.d.f. of s∗, P(s∗), near either
s∗ =±1 can be interpreted quite clearly.

We present p.d.f.s of the parameters D and s∗ in figures 8 and 9, respectively, for
various of the Ca considered from the Reλ = 185 simulation. From the results for
D the trends are clear: for increasing capillary number, the droplets become more
and more anisotropic, with an increasing ratio between largest and smallest principal
axes. The trends shown in figure 9 for s∗ are less monotonic. There is a tendency
toward rod-like shape for capillary numbers approaching the critical value, and a small
recovery towards more disk-like shapes for very large capillary numbers.

Prior work has studied orientation dynamics and tumbling rates of non-deforming
rigid ellipsoidal particles. In particular, e.g. the works of Shin & Koch (2005),
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FIGURE 8. P.d.f.s of D= (d1 − d3)/(d1 + d3), for different Ca.
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FIGURE 9. P.d.f.s of s∗, for different Ca.

Parsa et al. (2012) and Chevillard & Meneveau (2013) show that particles with
one elongated direction and two small ones (fibre- or rod-like, s∗ → −1) tend to
align with the vorticity, which implies rotation around the major axis thus effectively
reducing the tumbling rate of that major axis. As the anisotropy of the particle is
increased, its tumbling rate is reduced. Conversely, Parsa et al. (2012) have found
that the tumbling rates of disk-like particles (two large and one very small major
axis, s∗ → 1) is significantly increased. This trend is due to the fact that disk-like
particles tend to align with the most contracting eigendirection of the strain-rate
tensor which, in turbulence, happens to be preferentially orthogonal to the vorticity
vector (Chevillard & Meneveau 2013). The vorticity then spins the disk strongly,
not unlike setting a coin spinning on a tabletop. However, if the particle is allowed
to deform, these trends can be expected to be modified significantly. Hence, the
alignment properties of droplets with the strain rate and vorticity are of considerable
interest.

In order to characterize the orientation statistics of droplets relative to the
flow field, we are interested in the p.d.f.s of cosine of angles between, e(1)m , the
eigenvector corresponding to the largest semi-axis of the morphology tensor and a
few characteristic directions of the underlying flows (we will consider only absolute
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FIGURE 10. P.d.f.s of cosine of angle between the particle’s largest eigenvector, e(1)m ,
with vorticity and the three eigenvectors of S, for two Ca (a and b).

values of the cosines to avoid problems with direction ambiguities):

P(|e(1)m · ω̂|), P(|e(1)m · e
(1)
s |), P(|e(1)m · e

(2)
s |), P(|e(1)m · e

(3)
s |), (5.4a–d)

where ω̂ is the unit vector in the vorticity direction, and e(k)s (k = 1, 2, 3) are the
three orthogonal strain-rate eigendirection unit vectors. In terms of the alignment
of the ellipsoids relative to features of the turbulent flow, in figure 10, we show
p.d.f.s of the cosine of the angle with each of the four directions characterizing the
local turbulent flow: the three strain-rate eigendirections and the vorticity for two
different capillary numbers. From these results it is apparent that the droplet largest
eigendirection tends to align with the most extensive strain-rate eigendirection, as
well as with the vorticity. It also often aligns with the second intermediate strain-rate
eigendirection (which itself is well aligned with the vorticity). Conversely, it tends to
be orthogonal to the most contracting eigendirection. At increasing capillary number,
the alignment is less pronounced, since the droplet has less time to synchronize with
the underlying flow topology before it deforms and reaches the threshold deformation
levels leading to eventual breakup.

6. Effects of the viscosity ratio
When changing the viscosity ratio µ = µi/µo, we change the relative importance

of stretching with respect to rotation in (2.2). In figure 11 we show their functional
dependency as a function of µ, as given by the phenomenological dependency of f2
and f1 proposed by Maffettone & Minale (1998). We can see that while the ratio f1/f2
is always close to 0.45, for large viscosity ratios the values of f2 and f1 can change
up to a factor 4–5.

Next, it is of interest to attempt to apply our earlier Cramer-function predictions
to the case of different viscosity ratios. For instance, for the case at µ= 10, loosely
applying an ‘order-of-magnitude’ estimate one would have predicted that the transition
to a ‘non-stationary’ regime (unbounded growth of the major axis or axes) would
happen when

f2(10)λL ∼ f1(10)/τc. (6.1)

This is because now the stretching part is proportional to f2 and we are supposing that
the symmetric stress tensor, Sij= (Aij+Aji)/2, leads to the same Lyapunov exponent λL
as that of the original one, Aij. If this were true, we should expect for the transition
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FIGURE 11. Behaviour of f1(µ), f2(µ) and of their ratio at changing µ. Note that for
µ� 1 the prefactor in front of the symmetric stress tensor term (the only one which
stretches) becomes very small. As a result the deformation of the droplet is much smaller
if the capillary number is kept unchanged.
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FIGURE 12. (a) P.d.f. of the largest eigenvalue of the morphology tensor for various
capillary numbers, for viscosity ratio µ= 10. Note that the straight line has a slope −1.5
and that the saturation of the tails happens at a higher Ca value compared with the critical
capillary estimated by (6.1). (b) The same for µ= 0.01. Now the transition is very similar
to the case µ= 1, and the tail has the −1 power-law slope.

to occur at Cac ∼ 0.81 (because from (6.1) we have τ c = f1(10)/f2(10)λ−1
L = 0.148,

and with Gt = 5.48 we obtain Cac = τ cGt = 0.81). This, however, is not what is
observed in the numerical results shown in figure 12. As one can see in figure 12(a),
the saturation seems to be present, but now at around Cac ∼ 2.5, i.e. it is delayed.
This might be understood heuristically by noting that the rotation is decorrelating the
droplet orientation from the stretching rate thus making strong deformations less likely.
Moreover the slope of the p.d.f. is not close to −1, meaning that the physics of the
deformations and relaxations, and its relationships to the flow, differ significantly from
the µ= 1 case.

Similarly, in figure 12(b) the results for µ = 0.01 are shown. At small µ values,
one expects the effects of rotation to be negligible compared with the stretching and
relaxation. As can be seen, the transition happens almost at a similar value of the case
µ= 1 and the p.d.f. has a characteristic −1 slope in this case.
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FIGURE 13. P.d.f. of the largest eigenvalue of the morphology tensor for Ca = 0.32 of
the three viscous ratios, µ= 0.01, 1, 10.
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FIGURE 14. P.d.f.s of cosine of angles. Comparison between alignment with vorticity and
strain-rate eigendirections for three different viscosity ratios, at Ca= 0.33.

In order to better highlight the dependency upon µ, in figure 13 the results are
superposed for a fixed Ca value for three viscosity ratios µ = 0.01, 1, 10. As one
can see, the case at µ = 0.01 stretches slightly better than µ = 1 (f2 is larger for
µ = 0.01). On the other hand, as we knew already, the µ = 10 is very contracted,
rotation dominates here. In figure 14 the alignment between the maximum elongation
and the vorticity and the strongest stretching rate is shown for different viscous ratios
at Ca= 0.33. Note that only for µ= 1 we have a very similar weight of rotation and
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FIGURE 15. Scatter plot of the ratio between ellipsoidal semi-axes sizes.

stretching. For µ = 10 stretching is fully uncorrelated with the highest deformation,
as expected. On the other hand for µ= 0.01 the elongation is more oriented with the
strain rate. In figure 15 we show scatter plots of d1/d2 versus d2/d3 at changing τ

and the viscous ratio µ. Note how the region corresponding to disks d1/d2∼O(1) and
d1/d3� 1 is strongly depleted for the case when µ= 10, i.e. when the stretching rate
is not efficient. Evidently, in this case the droplets tend to be aligned with vorticity
and become rod-like.

7. Conclusions

The statistical distribution of semi-axes scales and orientations of small ellipsoidal
droplets (with a size smaller than the Kolmogorov scale) in fully developed
homogeneous and isotropic turbulent flows has been studied. Droplets are supposed
to be fully passive and diluted (no droplet–droplet interactions). In the limit of
very small size, droplets can be considered inertialess with their centre of mass
following the trajectories of a fluid tracer. Deformation induced by turbulent strain
rate and rotation is studied by means of a simplified model proposed by Maffettone
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& Minale (1998) that considers droplets to remain of ellipsoidal shape and including
a restoration force due to surface tension effects that conserves droplet volume.
A critical capillary number is identified at which one obtains unbounded droplet
growth along one or two directions (which eventually should lead to droplet breakup).
At unity droplet-to-fluid viscous ratio, one can exploit analogies with polymers to
obtain analytical predictions of the critical capillary number as a function of the
largest Lyapunov exponent of the trajectories of fluid particles and the relaxation
timescale. Large deviation theory for the largest FTLE allows us to predict also
the power-law tail of the p.d.f. of the largest droplet dimension. Another interesting
question is connected with the temporal properties of the droplets dynamics. In order
to determine a break-up frequency one needs to study numerically the probability
of survival of different droplets and compare it with some estimate connected to
the exit time along the droplet trajectory (Babler, Biferale & Lanotte 2012), i.e. the
average time it takes for a droplet to experience a total stress strong enough to break
it. This is connected to the Lagrangian time-decorrelation, persistency and efficiency
of stress along the trajectory. A study in this direction is left for future work. For
cases when the viscosities of droplet and outer fluid differ, such that vorticity is able
to decorrelate the droplet from the straining directions, the large deviation theory
prediction fails. The results highlight the complex dynamics of droplet deformation
and orientation and opens the way to estimate/model the feedback on the flow due
to the presence of deformable droplets.

The case of droplets/bubbles with a large density mismatch with respect to the
density of the underlying fluid can be treated with the same approach of M&M to
study the deformation along point-like particles but following inertial trajectories (Bec
et al. 2010) instead of fluid tracers as done here. For situations in which there is a
slip velocity between the droplets and fluid, it is necessary to add the stress induced
by the Stokes drag in order to evaluate the deformation of the droplet.
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