Canad. Math. Bull. Vol. **57** (3), 2014 pp. 631–639 http://dx.doi.org/10.4153/CMB-2013-028-0 © Canadian Mathematical Society 2013

Indicators, Chains, Antichains, Ramsey Property

Miodrag Sokić

Abstract. We introduce two Ramsey classes of finite relational structures. The first class contains finite structures of the form $(A, (I_i)_{i=1}^n, \leq, (\preceq_i)_{i=1}^n)$, where \leq is a total ordering on A and \preceq_i is a linear ordering on the set $\{a \in A : I_i(a)\}$. The second class contains structures of the form $(a, \leq, (i_i)_{i=1}^n, \preceq)$, where (A, \leq) is a weak ordering and \preceq is a linear ordering on A such that A is partitioned by $\{a \in A : I_i(a)\}$ into maximal chains in the partial ordering \leq and each $\{a \in A : I_i(a)\}$ is an interval with respect to \preceq .

1 Introduction

We consider a signature *L* and a class \mathcal{K} of finite structures in the signature *L*. Let \mathbb{A} and \mathbb{B} be structures in \mathcal{K} . If \mathbb{A} and \mathbb{B} are isomorphic, then we write $\mathbb{A} \cong \mathbb{B}$. If there is an embedding from \mathbb{A} into \mathbb{B} , we write $\mathbb{A} \hookrightarrow \mathbb{B}$, and if \mathbb{A} is a substructure of \mathbb{B} , then we write $\mathbb{A} \leq \mathbb{B}$. The collection of all substructures of \mathbb{B} isomorphic to \mathbb{A} is denoted by $\binom{\mathbb{B}}{\mathbb{A}} = {\mathbb{C} \leq \mathbb{B} : \mathbb{C} \cong \mathbb{A}}$. If $\mathbb{C} \in \mathcal{K}$ and *r* is a natural number such that for any coloring

$$:: \begin{pmatrix} \mathbb{B} \\ \mathbb{A} \end{pmatrix} \longrightarrow \{1, \dots, r\},$$

there is $\mathbb{B}' \in \binom{\mathbb{C}}{\mathbb{B}}$ such that the restriction $c \upharpoonright \binom{\mathbb{B}'}{\mathbb{A}}$ is constant, then we write

$$\mathbb{C} \longrightarrow (\mathbb{B})_r^{\mathbb{A}}.$$

We say that the class \mathcal{K} satisfies the *Ramsey property* (*RP*)or that \mathcal{K} is a *Ramsey class* if for all \mathbb{A} , $\mathbb{B} \in \mathcal{K}$, and all natural numbers *r* there is $\mathbb{C} \in \mathcal{K}$ such that $\mathbb{C} \to (\mathbb{B})_r^{\mathbb{A}}$.

This paper is motivated by questions from the structural Ramsey theory and by the analysis in [10]. In the sequel we consider the following two problems:

Most examples of Ramsey classes are classes of structures with linear orderings; see [3–6]. In all of these examples we have structures with only one linear ordering, for example, linearly ordered graphs or linearly ordered hypergraphs. So it is natural to ask for *Ramsey classes of structures with more than one linear ordering*. The Ramsey property for the class of finite sets with two linear orderings is given in [9], and it is generalized to the class of finite sets with finite number of linear orderings in [11]. In this paper we consider a Ramsey property for the class of finite sets with a finite number of linear orderings that are not necessary total. An example of such a class is given in Theorem 1.1.

Received by the editors April 26, 2013; revised August 2, 2013.

Published electronically September 10, 2013.

AMS subject classification: 05C55, 03C15, 54H20.

Keywords: Ramsey property, linear orderings.

• Let \mathcal{A} be a list of finite structures in a given signature L and let \mathcal{F} be a class of finite structures in L. Let $\mathcal{F}(\mathcal{A})$ be the class of finite structures $\mathbb{B} \in \mathcal{F}$ with the property that there is no $\mathbb{A} \in \mathcal{A}$ satisfying $\mathbb{A} \hookrightarrow \mathbb{B}$. In this case we say that $\mathcal{F}(\mathcal{A})$ is given by forbidden configurations. The class of ordered triangle-free graphs and the class of finite ordered metric spaces are examples of such Ramsey classes; see [3,6]. In this paper we extend the list of *Ramsey classes with forbidden configuration*; see Theorem 1.2 and an explanation after the statement of Theorem 1.2.

In order to simplify our exposition we fix notation. For a given set *A*, we denote the cardinality of the set *A* by |A|, and we denote the collection of all linear orderings on *A* by lo(*A*). If \leq , \leq , and \sqsubseteq denote linear orderings, then we denote by <, \prec , and \sqsubset their strict parts respectively. For a given natural number $n \geq 1$ we denote the set $\{1, \ldots, n\}$ by [n]. We assume that all classes of finite structures are closed under isomorphic images.

Let *L* and *L'* be two signatures such that $L \subset L'$. Let A and A' be structures in *L* and *L'*, respectively, defined on the same set. If the interpretation of the symbols from *L* is the same in both structures, then we say that A is a *reduct* of A' or that A' is an *expansion* of A, and write A = A'|L. We denote the class of finite substructures embeddable into a given structure A by Age(A).

For a given natural number *n* we consider unary relational symbols $(I_i)_{i=1}^n$ and n+1 binary relational symbols $\leq_i (\preceq_i)_{i=1}^n$. We consider the class \mathfrak{OM}_n that contains structures $\mathbb{A} = (A, (I_i^A)_{i=1}^n, \leq^A, (\preceq_i^A)_{i=1}^n)$ with the property that for every $i \in [n]$,

- (a) *A* is a non empty finite set,
- (b) I_i^A is a unary relation on A,
- (c) $\leq^A \in lo(A)$,
- (d) $\leq_i^A \in \operatorname{lo}(\{a \in A : I_i^A(a)\}).$

We prove the following result.

Theorem 1.1 For natural number $n \ge 1$, the class OM_n is a Ramsey class.

We recall the definition of the poset (C_n, \leq^{C_n}) from the Schmerl list in [7]. We point out that this poset is denoted by $(C_n, <)$ in [7]. Let \mathbb{Q} be the set of rational numbers, let $n \ge 1$ be a natural number, and let $C_n = [n] \times \mathbb{Q}$. We use \le to denote the natural orderings on \mathbb{Q} and \mathbb{N} . We define partial ordering \le^{C_n} on the set C_n such that for all $(i, x), (j, y) \in C_n$ we have

$$(i, x) \leq^{C_n} (j, y) \iff (x < y \text{ or } (i = j \text{ and } x = y)).$$

Therefore, we have poset $\mathbb{C}'_n = (C_n, \leq^{C_n})$. In the structure \mathbb{C}'_n each point belongs to a maximal antichain of size *n*. For a fixed $x \in \mathbb{Q}$, the set $\{(i, x) : i \in [n]\}$ is a maximal antichain in \mathbb{C}'_n . There are automorphisms of \mathbb{C}'_n that permute each maximal antichain. In order to avoid such automorphisms we consider the structure $\mathbb{C}_n = (C_n, \leq^{C_n}, (I_i^{C_n})_{i=1}^n)$ such that for all $i \in [n]$, $I_i^{C_n}$ is a unary relation on C_n given by

$$I_i^{\mathcal{C}_n}((j, y)) \iff i = j$$

for $(j, y) \in C_n$. Note that we have a partition $C_n = \bigcup_{i=1}^n \{x : I_i^{C_n}(x)\}$ with the property that $\{x : I_i^{C_n}(x)\}$ is a maximal chain with respect to \leq^{C_n} for all $i \in [n]$.

We consider the class $C_n = Age(C_n)$, and we point out that the structures from the class $Age(C'_n)$ are called *weak orderings*.

Let $\mathbb{A} = (A, \leq^A, (I_i^A)_{i=1}^n)$ be a structure from \mathbb{C}_n . We say that $\leq = \log(A)$ is *convex* on \mathbb{A} if for all $i \in [n]$ and all x, y, z from A we have

$$I_i^A(x), I_i^A(z), x \leq y \leq z \Longrightarrow I_i^A(y).$$

The set of convex linear orderings on \mathbb{A} we denote by $co(\mathbb{A})$. Adding arbitrary linear orderings that are convex, we have the class

$$\mathbb{COC}_n = \left\{ \left(A, \leq^A, (I_i^A)_{i=1}^n, \preceq^A \right) : \left(A, \leq^A, (I_i^A)_{i=1}^n \right) \in \mathbb{C}_n, \preceq^A \in co(A, \leq^A, \left(I_i^A)_{i=1}^n \right) \right\}.$$

Note that for n = 1, the class COC_1 can be seen as the class of finite sets with two linear orderings (see [9]), so COC_1 is a Ramsey class.

Theorem 1.2 For a natural number n, the class COC_n is a Ramsey class.

Now we explain how COC_n is a class of structures with forbidden configurations; *i.e.*, it is of the form $\mathcal{F}(\mathcal{A})$. We take \mathcal{F} to be the class of finite structures $(A, \leq^A, (I_i^A)_{i=1}^n, \preceq^A)$ such that $(A, \leq^A) \in C_n, \preceq^A \in lo(A)$, and I_i^A is an unary relation on A for each $i \in [n]$. The list \mathcal{A} contains the following structures:

- (a) For every $I \subseteq [n]$ there is an $\mathbb{A}_I = (A_I, \leq^{A_I}, (I_i^{A_I})_{i=1}^n, \preceq^{A_I}) \in \mathcal{A}$, where $A_I = \{a_I\}$ and $I_i^{A_I}(a_I) \Leftrightarrow i \in I$. Note that in this case we allow $I = \emptyset$.
- (b) For all distinct $k, l \in [n]$ and all $t \in [5]$ we have

$$\mathbb{A}_{k,l,t} = (A_{k,l,t}, \leq^{A_{k,l,t}}, (I_i^{A_{k,l,t}})_{i=1}^n, \preceq^{A_{k,l,t}}) \in \mathcal{A},$$

where the following hold:

$$A_{k,l,t} = \{a_{k,1,t}, a_{k,2,t}, a_{l,0,t}\},\$$

$$I_i^{A_{k,l}}(a_{k,1,t}) \iff i = k, \quad I_i^{A_{k,l}}(a_{k,2,t}) \iff i = k, \quad I_i^{A_{k,l}}(a_{l,0,t}) \iff i = l,\$$

$$t \neq t' \implies \mathbb{A}_{k,l,t} \upharpoonright \{\le, (I_i)_{i=1}^n\} \ncong \mathbb{A}_{k,l,t} \upharpoonright \{\le, (I_i)_{i=1}^n\},\$$

$$a_{k,1,t} \preceq^{A_{k,l,t}} a_{l,0,t} \preceq^{A_{k,l,t}} a_{k,2,t}.$$

By forbidding embeddability of the structures \mathbb{A}_I we ensure that an underlying set of a structure from $\mathcal{F}(\mathcal{A})$ is partitioned by indicators. That structures in $\mathcal{F}(\mathcal{A})$ have convex linear orderings is provided by forbidding embeddability of the structures $\mathbb{A}_{k,l,t}$. Note that the list \mathcal{A} is an irreducible system according to the definition in [6, p. 184]. In contrast with [6, Theorem A], where the Ramsey class is obtained starting with the Soc(Δ), in Theorem 1.2 we start with a subset of Soc(Δ); see [6, p. 184] for the definition of Soc(Δ).

Our proofs of Ramsey statements are based on the cross-construction developed in [8]. The idea is to construct structures on a product where each coordinate gives some information about the structures. Note that some of these proofs can be conducted by using the partite construction developed in [5,6].

2 Background

Let *X* be a non empty set, and let *k*, *l*, *m*, *r* be natural numbers. Then $[X]^k = {X \choose k} = \{S \subseteq X : |S| = k\}$. If for every set *C* with |C| = m and every coloring $c: {C \choose k} \to \{1, \ldots, r\}$ there is $B \subseteq C$ with |B| = l such that $c \upharpoonright {B \choose k} = \text{const}$, then we write

$$m \longrightarrow (l)_r^k$$
.

The following is the well-known classical Ramsey theorem.

Theorem 2.1 ([2]) For all natural numbers r, k, l there is a natural number m_0 such that for all $m \ge m_0$ we have $m \to (l)_r^k$.

Let $\alpha = (\alpha_1, \ldots, \alpha_k)$ be a sequence of nonempty finite sets. A triple $\mathbb{X} = (X, f^X, \preceq^X)$) is called an α -colored set if $\preceq^X \in \log(X)$ and f^X is a function from $\bigcup_{i=1}^k [X]^i$ to $\bigcup_{i=1}^k \alpha_i$ such that for all $i \in [k]$ and $x \in [X]^i$ we have $f^X(x) \in \alpha_i$. If $\mathbb{Y} = (Y, f^Y, \preceq^Y)$ is also an α -colored set, then the map $F: X \to Y$ is an *embedding* if it is 1 - 1. For all x, $x' \in X$ we have $x \preceq^X x' \Leftrightarrow F(x) \preceq^Y F(x')$, and for all $i \in [k]$, all $z \in [X]^i$ we have $f^X(z) = f^Y(F(z))$. If there is an embedding from \mathbb{X} into \mathbb{Y} , then we write $\mathbb{X} \hookrightarrow \mathbb{Y}$, and if the embedding is realized by the identity map, then we say that \mathbb{X} is a substructure of \mathbb{Y} , or $\mathbb{X} \leq \mathbb{Y}$. An embedding that is a bijection is called an isomorphism; we write $\mathbb{X} \cong \mathbb{Y}$. The class of finite α -colored sets with the notion of embedding as defined above we denote by $\mathcal{K}(\alpha)$. Our proofs will use the following result.

Theorem 2.2 ([1,6]) For any finite sequence $\alpha = (\alpha_1, \ldots, \alpha_k)$ of finite non empty sets, the class $\mathcal{K}(\alpha)$ satisfies RP.

Let \mathcal{L}_2 be the class of finite structures of the form (A, \leq^A, \preceq^A) , where \leq^A and \preceq^A are linear orderings on the set A. Let $\mathbb{A} = (A, \leq^A, \preceq^A)$ and $\mathbb{B} = (B, \leq^B, \preceq^B)$ be structures from \mathcal{L}_2 . An embedding from \mathbb{A} into \mathbb{B} is a map $f: A \to B$ such that for all $a_1, a_2 \in A$ we have

$$a_1 \leq^A a_2 \iff f(a_1) \leq^B f(a_2)$$
 and $a_1 \preceq^A a_2 \iff f(a_1) \preceq^B f(a_2)$.

Theorem 2.3 ([9]) \mathcal{L}_2 is a Ramsey class

We need the following result about a product of Ramsey classes.

Theorem 2.4 ([10]) Let $(\mathcal{A}_i)_{i=1}^l$ be a sequence of Ramsey classes of finite structures and let r be a natural number. Let $(\mathbb{A}_i)_{i=1}^l$ and $(\mathbb{B}_i)_{i=1}^l$ be sequences of finite structures such that $\mathbb{A}_i \in \mathcal{A}_i, \mathbb{B}_i \in \mathcal{A}_i$, and $\binom{\mathbb{B}_i}{\mathbb{A}_i} \neq \emptyset$ for $i \in [l]$. Then there is a sequence $(\mathbb{C}_i)_{i=1}^l$ such that $\mathbb{C}_i \in \mathcal{A}_i$ for all $i \in [l]$ and such that for every coloring

$$p: \begin{pmatrix} \mathbb{C}_1 \\ \mathbb{A}_1 \end{pmatrix} \times \cdots \times \begin{pmatrix} \mathbb{C}_l \\ \mathbb{A}_l \end{pmatrix} \longrightarrow \{1, \ldots, r\},$$

there is a sequence of structures $(\mathbb{E}_i)_{i=1}^l$, where $\mathbb{E}_i \in \binom{\mathbb{C}_i}{\mathbb{B}_i}$ for $i \in [l]$ and such that

$$p \upharpoonright \begin{pmatrix} \mathbb{E}_1 \\ \mathbb{A}_1 \end{pmatrix} \times \cdots \times \begin{pmatrix} \mathbb{E}_l \\ \mathbb{A}_l \end{pmatrix} = \text{const}.$$

For structures that satisfy the statement of the previous theorem we use arrow notation

$$(\mathbb{C}_1,\ldots,\mathbb{C}_l)\longrightarrow (\mathbb{B}_1,\ldots,\mathbb{B}_l)_r^{(\mathbb{A}_1,\ldots,\mathbb{A}_l)}, \text{ or } \overrightarrow{\mathbb{C}} \to (\overrightarrow{\mathbb{B}})_r^{\overrightarrow{\mathbb{A}}},$$

where $\overrightarrow{\mathbb{C}} = (\mathbb{C}_1, \dots, \mathbb{C}_l)$, $\overrightarrow{\mathbb{B}} = (\mathbb{B}_1, \dots, \mathbb{B}_l)$, and $\overrightarrow{\mathbb{A}} = (\mathbb{A}_1, \dots, \mathbb{A}_l)$. Suppose that, in the previous theorem, for some nonempty $I \subseteq [n]$ we have $\mathbb{A}_i =$

 $\emptyset \Leftrightarrow i \in I$. Then we also write $\overrightarrow{\mathbb{C}} \to (\overrightarrow{\mathbb{B}})_r^{\overrightarrow{\mathbb{A}}}$, where $\mathbb{C}_i = \mathbb{B}_i$ for $i \in I$, and if $[n] \setminus I \neq \emptyset$, then $\mathbb{C}_i = \mathbb{D}_i$ for $i \in [n] \setminus I = \{i_1 < i_2 < \cdots < i_l\}$, where

$$(\mathbb{D}_{i_1},\ldots,\mathbb{C}_{i_l}) \leftrightarrow (\mathbb{B}_{i_1},\ldots,\mathbb{B}_{i_l})_r^{(\mathbb{A}_{i_1},\ldots,\mathbb{A}_{i_l})}$$

In particular, if in the previous theorem we take $A_i = \cdots = A_i$ to be the class of finite sets, then we get the product Ramsey theorem as stated in [2].

3 Main Proof

Proof of Theorem 1.1 Let *r* be a natural number. Let $\mathbb{A} = (A, (I_i^A)_{i=1}^n, \leq^A, (\preceq^A_i)_{i=1}^n)$ and $\mathbb{B} = (B, (I_i^B)_{i=1}^n, \leq^B, (\preceq^B_i)_{i=1}^n)$ be structures from \mathcal{OM}_n such that $\binom{\mathbb{B}}{\mathbb{A}} \neq \emptyset$. First, we consider the class $\mathcal{K}(\alpha)$ of α -colored sets, where

$$\alpha = (\alpha_1), \alpha_1 = \{0, 1\}.$$

To each $\mathbb{F} = (F, (I_i^F)_{i=1}^n, \leq^F, (\preceq^F_i)_{i=1}^n)$ from \mathcal{OM}_n we assign sequences $(\Delta_i(\mathbb{F}))_{i=1}^n$, $(\sigma_i(\mathbb{F}))_{i=1}^n$, $(\Phi_i(\mathbb{F}))_{i=1}^n$ with the property that for $i \in [n]$ we have the following: • $\Delta_i(\mathbb{F}) = (F, f_i^F, \leq^F) \in \mathcal{K}(\alpha)$ where f_i^F is defined by using the unary relation I_i^F , i.e.,

$$f_i^F(x) = 1 \iff I_i^F(x), \text{ for } x \in F.$$

- $\sigma_i(\mathbb{F}) = \{x \in F : I_i^F(x)\} \subseteq F.$ $\Phi_i(\mathbb{F}) = (\sigma_i(\mathbb{F}), \leq^F | \sigma_i(\mathbb{F}), \preceq^F_i) \in \mathcal{L}_2.$

In particular, for every $i \in [n]$ we have:

- $\Delta_i(\mathbb{A}) = (A, f_i^A, \leq^A), \Delta_i(\mathbb{B}) = (B, f_i^B, \leq^B) \in \mathcal{K}(\alpha).$
- $\sigma_i(\mathbb{A}) \subseteq A, \sigma_i(\mathbb{B}) \subseteq B.$
- $\Phi_i(\mathbb{A}) = (\sigma_i(\mathbb{A}), \leq^A [\sigma_i(\mathbb{A}), \preceq^A), \Phi_i(\mathbb{B}) = (\sigma_i(\mathbb{B}), \leq^B [\sigma_i(\mathbb{B}), \preceq^B) \in \mathcal{L}_2.$

At this point we have sequences

$$\overrightarrow{\mathbb{B}} = \left(\Delta_1(\mathbb{B}), \dots, \Delta_n(\mathbb{B}), \Phi_1(\mathbb{B}), \dots, \Phi_n(\mathbb{B}) \right),$$

$$\overrightarrow{\mathbb{A}} = \left(\Delta_1(\mathbb{A}), \dots, \Delta_n(\mathbb{A}), \Phi_1(\mathbb{A}), \dots, \Phi_n(\mathbb{A}) \right).$$

By Theorem 2.2, $\mathcal{K}(\alpha)$ is a Ramsey class, and by Theorem 2.3, \mathcal{L}_2 is a Ramsey class. Then by Theorem 2.4, there is a sequence of structures $\overrightarrow{\mathbb{C}} = (\mathbb{C}_i)_{i=1}^{2n}$ such that $\mathbb{C}_i = (C_i, f^{C_i}, \leq^{C_i}) \in \mathcal{K}(\alpha)$ for $i \in [n], \mathbb{C}_i = (C_i, \leq^{C_i}, \leq^{C_i}_i) \in \mathcal{L}_2$ for $n < i \leq 2n$, and

$$\overrightarrow{\mathbb{C}} \longrightarrow (\overrightarrow{\mathbb{B}})_r^{\overrightarrow{\mathbb{A}}}.$$

We point out that this is well defined even in the case where there are *i* such that $\sigma_i(\mathbb{A}) = \emptyset$; see the second paragraph after Theorem 2.4.

We use sequence $(\mathbb{C}_i)_{i=1}^{2n}$ to define a structure $\mathbb{C} = (C, (I_i^C)_{i=1}^n, \leq^C, (\preceq_i^C)_{i=1}^n)$ in \mathcal{OM}_n . Let \star be such that $\star \notin \bigcup_{i=1}^{2n} C_i$. The underlying set of the structure \mathbb{C} is given as a subset

$$C \subseteq \Omega = \left(\prod_{i=1}^{n} C_{i}\right) \times \left(\prod_{i=1}^{n} \left(C_{n+i} \cup \{\star\}\right)\right)$$

such that for $c = (c_i)_{i=1}^{2n} \in \Omega$ we have

$$c \in C \iff (\forall i \in [n])(f^{C_i}(c_i) = 1 \iff (c_{n+i} \neq \star)).$$

In order to define linear orderings and unary relations in \mathbb{C} we consider points c = $(c_i)_{i=1}^{2n}$ and $c' = (c'_i)_{i=1}^{2n}$ in *C*. For $i \in [n]$ we first define the following.

- (a) $I_i^C(c) \Leftrightarrow (f^{C_i}(c_i) = 1)$.
- (b) $c \leq c' c' \Leftrightarrow ((c = c') \text{ or } (c \neq c' \text{ and } c_{i_0} \leq c_{i_0} c'_{i_0}))$, where $i_0 = \min\{i : c_i \neq c'_i\}$ for $c \neq c'$.
- (c) The linear ordering \leq_i^C is defined only on the set $\{e \in C : I_i^C(e)\}$ as follows: $c \preceq_i^C c'$ if and only if c = c', or if $c \neq c'$ and either
 - $c_{n+i} = c'_{n+i}$ and $c_{i'_0} \leq^{C_{i'_0}} c'_{i'_0}$, where $i'_0 = \min\{j \neq i : c_j \neq c'_j\}$, or $c_{n+i} \neq c'_{n+i}$ and $c_{n+i} \leq^{C_{n+i}}_{n+i} c'_{n+i}$.

Note that \leq^{C} and \leq^{C}_{i} are well-defined linear orderings, because if $i_{0} > n$ or $i'_{0} > n$, then we have

$$(c_i)_{i=1}^n = (c'_i)_{i=1}^n \Longrightarrow (\forall i \in [n])(c_{n+i} = \star \Longleftrightarrow c'_{c+i} = \star).$$

We claim that $\mathbb{C} \to (\mathbb{B})_r^{\mathbb{A}}$. So, let

$$p: \binom{\mathbb{C}}{\mathbb{A}} \longrightarrow \{1, \dots, r\}$$

be a given coloring. Our goal is to pay attention only to specific substructures inside \mathbb{C} . Therefore we consider a sequence of structures $\mathbb{K} = (\mathbb{K}_i)_{i=1}^{2n}$ given by the following:

- (a) $\mathbb{K}_i = (K_i, f^{K_i}, \leq^{K_i}) \leq \mathbb{C}_i$ for $i \in [n]$. (b) $\mathbb{K}_i = (K_i, \leq^{K_i}, \preceq^{K_i}) \leq \mathbb{C}_i$ for $n < i \leq 2n$.
- (c) $|K_i| = |K_j| = a$ for all $i, j \in [n]$, for some natural number a.
- (d) $|K_{n+i}| = a_i$, where $a_i = |\{x \in K_i : f^{K_i}(x) = 1\}|$ for $i \in [n]$.

Note that we can have $a_i = 0$, and in that case we will obtain a structure without linear ordering \leq_i^C . For each $i \in [n]$, we take $K_i = \{k_{i,j}\}_{i=1}^a$ and assume that $k_{i,j} <^{K_i}$ $k_{i,j'}$ for all $j < j' \in [a]$, where $<^{K_i}$ is the strict part of the linear ordering \le^{K_i} . Also, for each $i \in [n]$ we take $K_{n+i} = \{k_{n+i,j}\}_{j=1}^{a_i}$ and assume that $k_{n+i,j} <^{K_{n+i}} k_{n+i,j'}$ for all $j < j' \in [a_i]$, where $\leq^{K_{n+1}}$ is the strict part of the linear ordering $\leq^{K_{n+1}}$. Now we assign to the sequence $\overline{\mathbb{K}}$ a unique substructure $\varphi(\overline{\mathbb{K}})$ of \mathbb{C} with the underlying set $\{u^i\}_{i=1}^a$, where for $j \in [a]$ we take $u^j = (u^j_i)_{i=1}^{2n}$ such that for all $i \in [n]$ we have:

- (a) $(u_i^j)_{i=1}^n = (k_{i,j})_{i=1}^n$,
- (b) $f^{K_i}(k_{i,j}) = 0 \Rightarrow u^j_{n+i} = \star$, (c) if $f^{K_i}(k_{i,j}) = 1$ and $k_{i,j}$ is the *s*-th element of the set $\{x \in K_i : f^{K_i}(x) = 1\}$ with respect to \leq^{K_i} , then u^j_{n+1} is the *s*-th element in the sequence

$$\{k_{n+i,1} <^{K_{n+i}} k_{n+i,2} <^{K_{n+i}} \cdots <^{K_{n+i}} k_{n+i,a_i}\}$$

Suppose that $I = \{i \in [n] : K_{n+i} = \emptyset\}$. Note that the definition of $\varphi(\vec{\mathbb{K}})$ is well defined even for $I \neq \emptyset$, and in that case does not depend on \mathbb{K}_{n+i} for $i \in I$. So for $I \neq \emptyset$, we consider φ as a map from $\prod_{i=1}^{n} {\mathbb{C}_i \choose \Delta_i(\mathbb{A})} \times \prod_{i>n:i-n\notin I} {\mathbb{C}_{i+n} \choose \Phi_i(\mathbb{A})}$ into ${\mathbb{C} \choose \mathbb{A}}$. If $K_{n+i} \neq \emptyset$ for all $i \in [n]$, then we have an induced coloring:

$$\bar{p}: \prod_{i=1}^{n} \binom{\mathbb{C}_{i}}{\Delta_{i}(\mathbb{A})} \times \prod_{i=1}^{n} \binom{\mathbb{C}_{i+n}}{\Phi_{i}(\mathbb{A})} \to \{1, \dots, r\}$$
$$\bar{p}(\overrightarrow{\mathbb{K}}) = p(\varphi(\overrightarrow{\mathbb{K}})).$$

From the definition of the map φ and definition of the structure $\mathbb C$ we conclude that \bar{p} is well defined. Moreover there is a sequence

$$\overrightarrow{\mathbb{E}} = (\mathbb{E}_i)_{i=1}^{2n} \in \prod_{i=1}^n \binom{\mathbb{C}_i}{\Delta_i(\mathbb{B})} \times \prod_{i=1}^n \binom{\mathbb{C}_{i+n}}{\Phi_i(\mathbb{B})}$$

such that

$$\bar{p} \upharpoonright \prod_{i=1}^{n} {\mathbb{E}_i \choose \Delta_i(\mathbb{A})} \times \prod_{i=1}^{n} {\mathbb{E}_{i+n} \choose \Phi_i(\mathbb{A})} = \text{const}.$$

Now we have that $\varphi(\overrightarrow{\mathbb{E}}) \cong \mathbb{B}$ and that every $\mathbb{M} \in \binom{\mathbb{B}}{\mathbb{A}}$ is of the form $\varphi(\overrightarrow{\mathbb{U}})$ for some

$$\overrightarrow{\mathbb{U}} \in \prod_{i=1}^{n} {\mathbb{E}_i \choose \Delta_i(\mathbb{A})} \times \prod_{i=1}^{n} {\mathbb{E}_{i+n} \choose \Phi_i(\mathbb{A})}$$

Consequently, we have

$$p \upharpoonright \begin{pmatrix} \mathbb{B} \\ \mathbb{A} \end{pmatrix} = \text{const},$$

so RP is verified for \mathcal{OM}_n .

Chains and Antichains 4

Since we can take COC_1 as L_2 , Theorem 2.3 implies the Ramsey property for the class COC_1 . Therefore in the proof of Theorem 1.2 we discuss only the case $n \ge 1$ 2. We emphasize that Theorem 1.2 is not a restatement of Theorem 1.1, because structures from COC_n are equipped with partial orderings that must be preserved under embeddings.

Proof of Theorem 1.2 Let $\mathbb{A} = (A, \leq^A, (I_i^A)_{i=1}^n, \preceq^A)$ be a structure from COC_n . In this case \leq^A denotes a partial ordering on A, while \preceq^A denotes a linear ordering on A. Then the set A is decomposed into maximal antichains with respect to the partial ordering \leq^A such that $A = A_1 \cup \cdots \cup A_a$, and without loss of generality we may assume that \leq^A induces a linear ordering on the sets $\{A_1, \ldots, A_a\}$ by $A_1 \leq^A \cdots \leq^A$ A_a . To the structure \mathbb{A} we assign a structure $\Delta(\mathbb{A}) = ([a], (I_i^{[a]})_{i=1}^n, \leq^{[a]}, (\preceq^{[a]}_i)_{i=1}^n)$ in \mathfrak{OM}_n . For $i \in [n]$ and $x, x' \in [a]$ we take:

- (a) $\leq^{[a]}$ to be given by $1 <^{[a]} 2 <^{[a]} \cdots <^{[a]} a$. (b) $I_i^{[a]}$ to be given by

$$I_i^{[a]}(x) \iff (\exists y \in A)[I_i^A(y) \text{ and } y \in A_x]$$

(c) $\leq_i^{[a]}$ to be a linear ordering defined on the set $\{y \in [a] : I_i^{[a]}(y)\}$ such that if $I_i^{[a]}(x)$ and $I_i^{[a]}(x')$, then

$$x \prec^{[a]} x' \iff (\exists y, y' \in A) [y \in A_x \text{ and } y' \in A_{x'} \text{ and } y \prec^A y'].$$

Note that $\leq_i^{[a]}$ is a well-defined linear ordering, because for all $x \in [a]$ and all $i \in [n]$ we have $|\{p \in A_x : I_i^A(p)\}| \leq 1$.

Let $\mathbb{A} = (A, (I_i^A)_{i=1}^n, \leq^A, (\preceq_i^A)_{i=1}^n)$ be a structure in \mathcal{OM}_n . We consider a structure $\mathbb{B} = (B, \leq^B, (I_i^B)_{i=1}^n, \preceq^B)$ on the set $B = \bigcup_{i=1}^n \{i\} \times A$, where \leq^B is a partial ordering on a subset of $B, (I_i^B)_{i=1}^n$ is a sequence of unary relations on B and \preceq^B is a linear ordering on a subset of *B*. Let $i \in [n]$ and let a' = (k, a) and b' = (l, b) be distinct points in B.

(a) Define I_i^B by

$$I_i^B(a') \iff i = k.$$

Let $B_0 = \{a' \in B : (\exists i) [I_i^B(a')]\}.$

(b) Define \leq^{B} on the set B_{0} such that for $a', b' \in B_{0}$ we have

$$a' <^B b' \iff a <^A b_a$$

(c) Define \prec^B on the set B_0 such that for $a', b' \in B_0$ we have

$$a' \prec^B b' \iff ((k < l) \text{ or } (k = l \text{ and } a \prec^A_k b)).$$

We denote by $\Phi(\mathbb{A})$ the substructure of \mathbb{B} with the underlying set B_0 . Moreover, we have $\Phi(\mathbb{A}) \in COC_n$.

Note that for structures A_1 and A_2 in OM_n we have

$$\mathbb{A}_1 \leq \mathbb{A}_2 \Longrightarrow \Phi(\mathbb{A}_1) \leq \Phi(\mathbb{A}_2).$$

We point out that for $\mathbb{A} = (A, \leq^A, (I_i^A)_{i=1}^n, \preceq^A) \in COC_n$ we do not always have $\Phi(\Delta(\mathbb{A}))) \cong \mathbb{A}$, but under the assumption that $I_i^A(a), I_i^A(a') \Rightarrow a \prec^A a'$ for all i < j, we have $\Phi(\Delta(\mathbb{A}))) \cong \mathbb{A}$.

Indicators, Chains, Antichains, Ramsey Property

Let $\mathbb{A} = (A, \leq^A, (I_i^A)_{i=1}^n, \leq^A)$ and $\mathbb{B} = (B, \leq^B, (I_i^B)_{i=1}^n, \leq^B)$ be structures from \mathcal{COC}_n such that $\binom{\mathbb{B}}{\mathbb{A}} \neq \emptyset$.

Without loss of generality we may assume that we have $I_i^B(b)$, $I_j^B(b') \Rightarrow b \prec^B b'$ for all i < j. Let *r* be a natural number. By Theorem 2.2 there is a structure $\mathbb{C} \in COC_n$ such that

$$\mathbb{C} \longrightarrow \left(\Delta(\mathbb{B})\right)_{r}^{\Delta(\mathbb{A})}$$

and we claim that $\Phi(\mathbb{C}) \to (\mathbb{B})_r^{\mathbb{A}}$. Suppose that we have a coloring $p: \begin{pmatrix} \Phi(\mathbb{C}) \\ \mathbb{A} \end{pmatrix} \to \{1, \ldots, r\}$. Then there is an induced coloring

$$\bar{p} \colon \begin{pmatrix} \mathbb{C} \\ \Delta(\mathbb{A}) \end{pmatrix} \longrightarrow \{1, \dots, r\},$$
$$\bar{p}(\mathbb{P}) = p(\Phi(\mathbb{P})).$$

By the choice of the structure \mathbb{C} there is $\mathbb{R} \in \binom{\mathbb{C}}{\Delta(B)}$ such that $\bar{p} \upharpoonright \binom{\mathbb{R}}{\Delta(A)} = \text{const.}$ Since $\Phi(\mathbb{R}) \cong \mathbb{B}$ and for every $\mathbb{G} \in \binom{\Phi(\mathbb{C})}{A}$ there is a $\mathbb{K} \in \binom{\mathbb{C}}{\Delta(A)}$ such that $\Phi(\mathbb{K}) = \mathbb{G}$, we obtain that $p \upharpoonright \binom{\Phi(R)}{A} = \text{const.}$ This completes the verification of RP for the class \mathcal{COC}_n .

Acknowledgements The author is grateful to the referee for valuable comments and suggestions.

References

- F. G. Abramson, L. A. Harrington, Models without indiscernibles. J. Symbolic Logic 43(1978), no. 3, 572–600. http://dx.doi.org/10.2307/2273534
- [2] R. L. Graham, B. L. Rotschild, and J. H. Spencer, *Ramsey theory*. Second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 1990.
- [3] J. Nešetřil, Metric spaces are Ramsey. European J. Combin. 28(2007), no. 1, 457–468. http://dx.doi.org/10.1016/j.ejc.2004.11.003
- [4] _____, Ramsey classes of topological spaces and metric spaces. Ann. Pure Appl. Logic 143(2006), no. 1–3, 147–154. http://dx.doi.org/10.1016/j.apal.2005.07.004
- [5] J. Nešetřil and V. Rödl, Partitions of finite relational and set systems. J. Combinatorial Theory Ser. A 22(1977), no. 3, 289–312.
- [6] _____, Ramsey classes of set systems. J. Comb. Theory Ser. A 34(1983), no. 2, 183–201. http://dx.doi.org/10.1016/0097-3165(83)90055-9
- J. Schmerl, Countable homogeneous partially ordered sets. Algebra Universalis 9(1979), no. 3, 317–321. http://dx.doi.org/10.1007/BF02488043
- [8] M. Sokić, Ramsey property of posets and related structures. Ph.D. dissertation, University of Toronto, ProQuest LLC, Ann Arbor, MI, 2010.
- [9] _____, Ramsey properties of finite posets. Order 29(2012), no. 1, 1–30. http://dx.doi.org/10.1007/s11083-011-9195-3
- [10] _____, Ramsey properties of finite posets II. Order 29(2012), no. 1, 31–47. http://dx.doi.org/10.1007/s11083-011-9196-2
- [11] _____, Ramsey property, ultrametric spaces, finite posets, and universal minimal flows. Israel J. Math. 194(2013), no. 2, 609–640. http://dx.doi.org/10.1007/s11856-012-0101-5

Mathematics Department, California Institute of Technology, Pasadena, California 91125, USA e-mail: msokic@caltech.edu