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Indicators, Chains, Antichains, Ramsey
Property
Miodrag Sokić

Abstract. We introduce two Ramsey classes of finite relational structures. The first class contains
finite structures of the form

(
A, (Ii)n

i=1,≤, (�i)n
i=1

)
, where ≤ is a total ordering on A and �i is

a linear ordering on the set {a ∈ A : Ii(a)}. The second class contains structures of the form(
a,≤, (ii)n

i=1,�
)

, where (A,≤) is a weak ordering and � is a linear ordering on A such that A is
partitioned by {a ∈ A : Ii(a)} into maximal chains in the partial ordering≤ and each {a ∈ A : Ii(a)}
is an interval with respect to�.

1 Introduction

We consider a signature L and a class K of finite structures in the signature L. Let A
and B be structures in K. If A and B are isomorphic, then we write A u B. If there is
an embedding from A into B, we write A ↪→ B, and if A is a substructure of B, then
we write A ≤ B. The collection of all substructures of B isomorphic to A is denoted
by
(B

A

)
= {C ≤ B : C u A}. If C ∈K and r is a natural number such that for any

coloring

c :

(
B

A

)
−→ {1, . . . , r},

there is B ′ ∈
(C

B

)
such that the restriction c�

(B ′

A

)
is constant, then we write

C−→ (B)A
r .

We say that the class K satisfies the Ramsey property (RP)or that K is a Ramsey class
if for all A, B ∈ K, and all natural numbers r there is C ∈ K such that C→ (B)A

r .
This paper is motivated by questions from the structural Ramsey theory and by

the analysis in [10]. In the sequel we consider the following two problems:

• Most examples of Ramsey classes are classes of structures with linear orderings;
see [3–6]. In all of these examples we have structures with only one linear order-
ing, for example, linearly ordered graphs or linearly ordered hypergraphs. So it is
natural to ask for Ramsey classes of structures with more than one linear ordering.
The Ramsey property for the class of finite sets with two linear orderings is given
in [9], and it is generalized to the class of finite sets with finite number of linear
orderings in [11]. In this paper we consider a Ramsey property for the class of
finite sets with a finite number of linear orderings that are not necessary total. An
example of such a class is given in Theorem 1.1.
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• Let A be a list of finite structures in a given signature L and let F be a class of finite
structures in L. Let F(A) be the class of finite structures B ∈ F with the property
that there is no A ∈ A satisfying A ↪→ B. In this case we say that F(A) is given by
forbidden configurations. The class of ordered triangle-free graphs and the class
of finite ordered metric spaces are examples of such Ramsey classes; see [3, 6]. In
this paper we extend the list of Ramsey classes with forbidden configuration; see
Theorem 1.2 and an explanation after the statement of Theorem 1.2.

In order to simplify our exposition we fix notation. For a given set A, we denote
the cardinality of the set A by |A|, and we denote the collection of all linear orderings
on A by lo(A). If ≤, �, and v denote linear orderings, then we denote by <, ≺, and
@ their strict parts respectively. For a given natural number n ≥ 1 we denote the
set {1, . . . , n} by [n]. We assume that all classes of finite structures are closed under
isomorphic images.

Let L and L ′ be two signatures such that L ⊂ L ′. Let A and A ′ be structures in
L and L ′, respectively, defined on the same set. If the interpretation of the symbols
from L is the same in both structures, then we say that A is a reduct of A ′ or that A ′

is an expansion of A, and write A = A ′|L. We denote the class of finite substructures
embeddable into a given structure A by Age(A).

For a given natural number n we consider unary relational symbols (Ii)n
i=1 and

n + 1 binary relational symbols≤, (�i)n
i=1. We consider the class OMn that contains

structures A = (A, (IA
i )n

i=1,≤A, (�A
i )n

i=1) with the property that for every i ∈ [n],

(a) A is a non empty finite set,
(b) IA

i is a unary relation on A,
(c) ≤A∈ lo(A),
(d) �A

i ∈ lo({a ∈ A : IA
i (a)}).

We prove the following result.

Theorem 1.1 For natural number n ≥ 1, the class OMn is a Ramsey class.

We recall the definition of the poset (Cn,≤Cn ) from the Schmerl list in [7]. We
point out that this poset is denoted by (Cn, <) in [7]. Let Q be the set of rational
numbers, let n ≥ 1 be a natural number, and let Cn = [n]× Q . We use ≤ to denote
the natural orderings on Q and N. We define partial ordering≤Cn on the set Cn such
that for all (i, x), ( j, y) ∈ Cn we have

(i, x) ≤Cn ( j, y)⇐⇒ (x < y or (i = j and x = y)).

Therefore, we have poset C ′n = (Cn,≤Cn ). In the structure C ′n each point belongs
to a maximal antichain of size n. For a fixed x ∈ Q , the set {(i, x) : i ∈ [n]}
is a maximal antichain in C ′n. There are automorphisms of C ′n that permute each
maximal antichain. In order to avoid such automorphisms we consider the structure
Cn = (Cn,≤Cn , (ICn

i )n
i=1) such that for all i ∈ [n], ICn

i is a unary relation on Cn given
by

ICn
i (( j, y))⇐⇒ i = j

for ( j, y) ∈ Cn. Note that we have a partition Cn =
⋃n

i=1{x : ICn
i (x)} with the

property that {x : ICn
i (x)} is a maximal chain with respect to≤Cn for all i ∈ [n].
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We consider the class Cn = Age(Cn), and we point out that the structures from
the class Age(C ′n) are called weak orderings.

Let A = (A,≤A, (IA
i )n

i=1) be a structure from Cn. We say that �∈ lo(A) is convex
on A if for all i ∈ [n] and all x, y, z from A we have

IA
i (x), IA

i (z), x � y � z =⇒ IA
i (y).

The set of convex linear orderings on A we denote by co(A). Adding arbitrary linear
orderings that are convex, we have the class

COCn =
{(

A,≤A, (IA
i )n

i=1,�A) :
(

A,≤A, (IA
i )n

i=1

)
∈ Cn,�A∈ co(A,≤A,

(
IA

i )n
i=1)

)}
.

Note that for n = 1, the class COC1 can be seen as the class of finite sets with two
linear orderings (see [9]), so COC1 is a Ramsey class.

Theorem 1.2 For a natural number n, the class COCn is a Ramsey class.

Now we explain how COCn is a class of structures with forbidden configura-
tions; i.e., it is of the form F(A). We take F to be the class of finite structures
(A,≤A, (IA

i )n
i=1,�A) such that (A,≤A) ∈ Cn, �A∈ lo(A), and IA

i is an unary rela-
tion on A for each i ∈ [n]. The list A contains the following structures:

(a) For every I ⊆ [n] there is an AI = (AI ,≤AI , (IAI
i )n

i=1,�AI ) ∈ A, where AI = {aI}
and IAI

i (aI)⇔ i ∈ I. Note that in this case we allow I = ∅.
(b) For all distinct k, l ∈ [n] and all t ∈ [5] we have

Ak,l,t = (Ak,l,t ,≤Ak,l,t , (I
Ak,l,t

i )n
i=1,�Ak,l,t ) ∈ A,

where the following hold:

Ak,l,t = {ak,1,t , ak,2,t , al,0,t},

I
Ak,l

i (ak,1,t )⇐⇒ i = k, I
Ak,l

i (ak,2,t )⇐⇒ i = k, I
Ak,l

i (al,0,t )⇐⇒ i = l,

t 6= t ′ =⇒ Ak,l,t�{≤, (Ii)
n
i=1} 6∼= Ak,l,t�{≤, (Ii)

n
i=1},

ak,1,t �Ak,l,t al,0,t �Ak,l,t ak,2,t .

By forbidding embeddability of the structures AI we ensure that an underlying set
of a structure from F(A) is partitioned by indicators. That structures in F(A) have
convex linear orderings is provided by forbidding embeddability of the structures
Ak,l,t . Note that the list A is an irreducible system according to the definition in [6,
p. 184]. In contrast with [6, Theorem A], where the Ramsey class is obtained starting
with the Soc(∆), in Theorem 1.2 we start with a subset of Soc(∆); see [6, p. 184] for
the definition of Soc(∆).

Our proofs of Ramsey statements are based on the cross-construction developed
in [8]. The idea is to construct structures on a product where each coordinate gives
some information about the structures. Note that some of these proofs can be con-
ducted by using the partite construction developed in [5, 6].
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2 Background

Let X be a non empty set, and let k, l,m, r be natural numbers. Then [X]k =
(X

k

)
=

{S ⊆ X : |S| = k}. If for every set C with |C| = m and every coloring c :
(C

k

)
→

{1, . . . , r} there is B ⊆ C with |B| = l such that c�
(B

k

)
= const, then we write

m −→ (l)k
r .

The following is the well-known classical Ramsey theorem.

Theorem 2.1 ([2]) For all natural numbers r, k, l there is a natural number m0 such
that for all m ≥ m0 we have m→ (l)k

r .

Letα = (α1, . . . , αk) be a sequence of nonempty finite sets. A triple X = (X, f X,�X

) is called an α-colored set if�X∈ lo(X) and f X is a function from ∪k
i=1[X]i to ∪k

i=1αi

such that for all i ∈ [k] and x ∈ [X]i we have f X(x) ∈ αi . If Y = (Y, f Y ,�Y ) is also
an α-colored set, then the map F : X → Y is an embedding if it is 1 − 1. For all x,
x ′ ∈ X we have x �X x ′ ⇔ F(x) �Y F(x ′), and for all i ∈ [k], all z ∈ [X]i we have
f X(z) = f Y (F(z)). If there is an embedding from X into Y, then we write X ↪→ Y, and
if the embedding is realized by the identity map, then we say that X is a substructure
of Y, or X ≤ Y. An embedding that is a bijection is called an isomorphism; we write
X ∼= Y. The class of finite α-colored sets with the notion of embedding as defined
above we denote by K(α). Our proofs will use the following result.

Theorem 2.2 ([1, 6]) For any finite sequence α = (α1, . . . , αk) of finite non empty
sets, the class K(α) satisfies RP.

Let L2 be the class of finite structures of the form (A,≤A,�A), where ≤A and �A

are linear orderings on the set A. Let A = (A,≤A,�A) and B = (B,≤B,�B) be
structures from L2. An embedding from A into B is a map f : A → B such that for
all a1, a2 ∈ A we have

a1 ≤A a2 ⇐⇒ f (a1) ≤B f (a2) and a1 �A a2 ⇐⇒ f (a1) �B f (a2).

Theorem 2.3 ([9]) L2 is a Ramsey class

We need the following result about a product of Ramsey classes.

Theorem 2.4 ([10]) Let (Ai)l
i=1 be a sequence of Ramsey classes of finite structures

and let r be a natural number. Let (Ai)l
i=1 and (Bi)l

i=1 be sequences of finite structures
such that Ai ∈ Ai ,Bi ∈ Ai , and

(Bi

Ai

)
6= ∅ for i ∈ [l]. Then there is a sequence (Ci)l

i=1
such that Ci ∈ Ai for all i ∈ [l] and such that for every coloring

p :

(
C1

A1

)
× · · · ×

(
Cl

Al

)
−→ {1, . . . , r},

there is a sequence of structures (Ei)l
i=1, where Ei ∈

(Ci

Bi

)
for i ∈ [l] and such that

p�

(
E1

A1

)
× · · · ×

(
El

Al

)
= const .
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For structures that satisfy the statement of the previous theorem we use arrow
notation

(C1, . . . ,Cl) −→ (B1, . . . ,Bl)
(A1,...,Al)
r , or

−→
C → (

−→
B )
−→
A

r ,

where
−→
C = (C1, . . . ,Cl),

−→
B = (B1, . . . ,Bl), and

−→
A = (A1, . . . ,Al).

Suppose that, in the previous theorem, for some nonempty I ⊆ [n] we have Ai =

∅ ⇔ i ∈ I. Then we also write
−→
C → (

−→
B )
−→
A

r , where Ci = Bi for i ∈ I, and if
[n]\I 6= ∅, then Ci = Di for i ∈ [n]\I = {i1 < i2 < · · · < il}, where

(Di1 , . . . ,Cil )↔ (Bi1 , . . . ,Bil )
(Ai1 ,...,Ail

)
r .

In particular, if in the previous theorem we take Ai = · · · = Ai to be the class of
finite sets, then we get the product Ramsey theorem as stated in [2].

3 Main Proof

Proof of Theorem 1.1 Let r be a natural number. Let A = (A, (IA
i )n

i=1,≤A, (�A
i )n

i=1)
and B = (B, (IB

i )n
i=1,≤B, (�B

i )n
i=1) be structures from OMn such that

(B
A

)
6= ∅.

First, we consider the class K(α) of α-colored sets, where

α = (α1), α1 = {0, 1}.

To each F = (F, (IF
i )n

i=1,≤F, (�F
i )n

i=1) from OMn we assign sequences (∆i(F))n
i=1,

(σi(F))n
i=1, (Φi(F))n

i=1 with the property that for i ∈ [n] we have the following:

• ∆i(F) = (F, f F
i ,≤F) ∈ K(α) where f F

i is defined by using the unary relation IF
i ,

i.e.,
f F
i (x) = 1⇐⇒ IF

i (x), for x ∈ F.

• σi(F) = {x ∈ F : IF
i (x)} ⊆ F.

• Φi(F) = (σi(F),≤F �σi(F),�F
i ) ∈ L2.

In particular, for every i ∈ [n] we have:

• ∆i(A) = (A, f A
i ,≤A),∆i(B) = (B, f B

i ,≤B) ∈ K(α).
• σi(A) ⊆ A, σi(B) ⊆ B.
• Φi(A) = (σi(A),≤A �σi(A),�A

i ), Φi(B) = (σi(B),≤B �σi(B),�B
i ) ∈ L2.

At this point we have sequences

−→
B =

(
∆1(B), . . . ,∆n(B),Φ1(B), . . . ,Φn(B)

)
,

−→
A =

(
∆1(A), . . . ,∆n(A),Φ1(A), . . . ,Φn(A)

)
.

By Theorem 2.2, K(α) is a Ramsey class, and by Theorem 2.3, L2 is a Ramsey class.
Then by Theorem 2.4, there is a sequence of structures

−→
C = (Ci)2n

i=1 such that Ci =

(Ci , f Ci ,≤Ci ) ∈ K(α) for i ∈ [n], Ci = (Ci ,≤Ci ,�Ci
i ) ∈ L2 for n < i ≤ 2n, and

−→
C −→ (

−→
B )
−→
A

r .
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We point out that this is well defined even in the case where there are i such that
σi(A) = ∅; see the second paragraph after Theorem 2.4.

We use sequence (Ci)2n
i=1 to define a structure C = (C, (IC

i )n
i=1,≤C , (�C

i )n
i=1) in

OMn. Let ? be such that ? /∈
⋃2n

i=1 Ci . The underlying set of the structure C is given
as a subset

C ⊆ Ω =
( n∏

i=1
Ci

)
×
( n∏

i=1

(
Cn+i ∪ {?}

))
such that for c = (ci)2n

i=1 ∈ Ω we have

c ∈ C ⇐⇒ (∀i ∈ [n])( f Ci (ci) = 1⇐⇒ (cn+i 6= ?)).

In order to define linear orderings and unary relations in C we consider points c =
(ci)2n

i=1 and c ′ = (c ′i )2n
i=1 in C . For i ∈ [n] we first define the following.

(a) IC
i (c)⇔ ( f Ci (ci) = 1).

(b) c ≤C c ′ ⇔ ((c = c ′) or (c 6= c ′ and ci0 ≤Ci0 c ′i0
)), where i0 = min{i : ci 6= c ′i }

for c 6= c ′.
(c) The linear ordering�C

i is defined only on the set {e ∈ C : IC
i (e)} as follows:

c �C
i c ′ if and only if c = c ′, or if c 6= c ′ and either

• cn+i = c ′n+i and ci ′0
≤Ci ′0 c ′i ′0 , where i ′0 = min{ j 6= i : c j 6= c ′j},

• or cn+i 6= c ′n+i and cn+i �Cn+i
n+i c ′n+i .

Note that≤C and�C
i are well-defined linear orderings, because if i0 > n or i ′0 > n,

then we have

(ci)
n
i=1 = (c ′i )n

i=1 =⇒ (∀i ∈ [n])(cn+i = ?⇐⇒ c ′c+i = ?).

We claim that C→ (B)A
r . So, let

p :

(
C

A

)
−→ {1, . . . , r}

be a given coloring. Our goal is to pay attention only to specific substructures in-
side C. Therefore we consider a sequence of structures

−→
K = (Ki)2n

i=1 given by the
following:

(a) Ki = (Ki , f Ki ,≤Ki ) ≤ Ci for i ∈ [n].
(b) Ki = (Ki ,≤Ki ,�Ki ) ≤ Ci for n < i ≤ 2n.
(c) |Ki | = |K j | = a for all i, j ∈ [n], for some natural number a.
(d) |Kn+i | = ai , where ai = |{x ∈ Ki : f Ki (x) = 1}| for i ∈ [n].

Note that we can have ai = 0, and in that case we will obtain a structure without
linear ordering�C

i . For each i ∈ [n], we take Ki = {ki, j}a
j=1 and assume that ki, j <

Ki

ki, j ′ for all j < j ′ ∈ [a], where <Ki is the strict part of the linear ordering ≤Ki . Also,
for each i ∈ [n] we take Kn+i = {kn+i, j}ai

j=1 and assume that kn+i, j <
Kn+i kn+i, j ′ for

all j < j ′ ∈ [ai], where <Kn+1 is the strict part of the linear ordering ≤Kn+1 . Now we
assign to the sequence

−→
K a unique substructure ϕ(

−→
K ) of C with the underlying set

{ui}a
i=1, where for j ∈ [a] we take u j = (u j

i )2n
i=1 such that for all i ∈ [n] we have:
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(a) (u j
i )n

i=1 = (ki, j)n
i=1,

(b) f Ki (ki, j) = 0⇒ u j
n+i = ?,

(c) if f Ki (ki, j) = 1 and ki, j is the s-th element of the set {x ∈ Ki : f Ki (x) = 1} with

respect to≤Ki , then u j
n+1 is the s-th element in the sequence{

kn+i,1 <
Kn+i kn+i,2 <

Kn+i · · · <Kn+i kn+i,ai

}
.

Suppose that I = {i ∈ [n] : Kn+i = ∅}. Note that the definition of ϕ(
−→
K ) is well

defined even for I 6= ∅, and in that case does not depend on Kn+i for i ∈ I. So for
I 6= ∅, we consider ϕ as a map from

∏n
i=1

( Ci

∆i (A)

)
×
∏

i>n:i−n /∈I

( Ci+n

Φi (A)

)
into

(C
A

)
.

If Kn+i 6= ∅ for all i ∈ [n], then we have an induced coloring:

p̄ :
n∏

i=1

(
Ci

∆i(A)

)
×

n∏
i=1

(
Ci+n

Φi(A)

)
→ {1, . . . , r},

p̄(
−→
K ) = p(ϕ(

−→
K )).

From the definition of the map ϕ and definition of the structure C we conclude that
p̄ is well defined. Moreover there is a sequence

−→
E = (Ei)

2n
i=1 ∈

n∏
i=1

(
Ci

∆i(B)

)
×

n∏
i=1

(
Ci+n

Φi(B)

)
such that

p̄�
n∏

i=1

(
Ei

∆i(A)

)
×

n∏
i=1

(
Ei+n

Φi(A)

)
= const .

Now we have that ϕ(
−→
E ) ∼= B and that every M ∈

(B
A

)
is of the form ϕ(

−→
U ) for

some
−→
U∈

n∏
i=1

(
Ei

∆i(A)

)
×

n∏
i=1

(
Ei+n

Φi(A)

)
.

Consequently, we have

p�

(
B

A

)
= const,

so RP is verified for OMn.

4 Chains and Antichains

Since we can take COC1 as L2, Theorem 2.3 implies the Ramsey property for the
class COC1. Therefore in the proof of Theorem 1.2 we discuss only the case n ≥
2. We emphasize that Theorem 1.2 is not a restatement of Theorem 1.1, because
structures from COCn are equipped with partial orderings that must be preserved
under embeddings.
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Proof of Theorem 1.2 Let A = (A,≤A, (IA
i )n

i=1,�A) be a structure from COCn. In
this case ≤A denotes a partial ordering on A, while �A denotes a linear ordering on
A. Then the set A is decomposed into maximal antichains with respect to the partial
ordering ≤A such that A = A1 ∪ · · · ∪ Aa, and without loss of generality we may
assume that ≤A induces a linear ordering on the sets {A1, . . . ,Aa} by A1 ≤A · · · ≤A

Aa. To the structure A we assign a structure ∆(A) = ([a], (I[a]
i )n

i=1,≤[a], (�[a]
i )n

i=1) in
OMn. For i ∈ [n] and x, x ′ ∈ [a] we take:

(a) ≤[a] to be given by 1 <[a] 2 <[a] · · · <[a] a.
(b) I[a]

i to be given by

I[a]
i (x)⇐⇒ (∃y ∈ A)[IA

i (y) and y ∈ Ax].

(c) �[a]
i to be a linear ordering defined on the set {y ∈ [a] : I[a]

i (y)} such that if

I[a]
i (x) and I[a]

i (x ′), then

x ≺[a] x ′ ⇐⇒ (∃y, y ′ ∈ A)[ y ∈ Ax and y ′ ∈ Ax ′ and y ≺A y ′].

Note that �[a]
i is a well-defined linear ordering, because for all x ∈ [a] and all

i ∈ [n] we have |{p ∈ Ax : IA
i (p)}| ≤ 1.

Let A = (A, (IA
i )n

i=1,≤A, (�A
i )n

i=1) be a structure in OMn. We consider a structure
B = (B,≤B, (IB

i )n
i=1,�B) on the set B =

⋃n
i=1{i} × A, where≤B is a partial ordering

on a subset of B, (IB
i )n

i=1 is a sequence of unary relations on B and �B is a linear
ordering on a subset of B. Let i ∈ [n] and let a ′ = (k, a) and b ′ = (l, b) be distinct
points in B.

(a) Define IB
i by

IB
i (a ′)⇐⇒ i = k.

Let B0 = {a ′ ∈ B : (∃i)[IB
i (a ′)]}.

(b) Define≤B on the set B0 such that for a ′, b ′ ∈ B0 we have

a ′ <B b ′ ⇐⇒ a <A b.

(c) Define�B on the set B0 such that for a ′, b ′ ∈ B0 we have

a ′ ≺B b ′ ⇐⇒ ((k < l) or (k = l and a ≺A
k b)).

We denote by Φ(A) the substructure of B with the underlying set B0. Moreover,
we have Φ(A) ∈ COCn.

Note that for structures A1 and A2 in OMn we have

A1 ≤ A2 =⇒ Φ(A1) ≤ Φ(A2).

We point out that for A = (A,≤A, (IA
i )n

i=1,�A) ∈ COCn we do not always have
Φ(∆(A))) ∼= A, but under the assumption that IA

i (a), IA
j (a ′)⇒ a ≺A a ′ for all i < j,

we have Φ(∆(A))) ∼= A.
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Let A = (A,≤A, (IA
i )n

i=1,�A) and B = (B,≤B, (IB
i )n

i=1,�B) be structures from
COCn such that

(B
A

)
6= ∅.

Without loss of generality we may assume that we have IB
i (b), IB

j (b ′) ⇒ b ≺B b ′

for all i < j. Let r be a natural number. By Theorem 2.2 there is a structure C ∈ COCn

such that
C −→

(
∆(B)

)∆(A)

r
,

and we claim that Φ(C) → (B)A
r . Suppose that we have a coloring p :

(
Φ(C)

A

)
→

{1, . . . , r}. Then there is an induced coloring

p̄ :

(
C

∆(A)

)
−→ {1, . . . , r},

p̄(P) = p(Φ(P)).

By the choice of the structure C there is R ∈
( C

∆(B)

)
such that p̄�

( R
∆(A)

)
= const. Since

Φ(R) ∼= B and for every G ∈
(

Φ(C)
A

)
there is a K ∈

( C
∆(A)

)
such that Φ(K) = G, we

obtain that p�
(

Φ(R)
A

)
= const. This completes the verification of RP for the class

COCn.
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