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Floer Homology for Knots and
SU(2)-Representations for Knot Complements
and Cyclic Branched Covers
Olivier Collin

Abstract. In this article, using 3-orbifolds singular along a knot with underlying space a homology sphere
Y 3, the question of existence of non-trivial and non-abelian SU(2)-representations of the fundamental group
of cyclic branched covers of Y 3 along a knot is studied. We first use Floer Homology for knots to derive an
existence result of non-abelian SU(2)-representations of the fundamental group of knot complements, for
knots with a non-vanishing equivariant signature. This provides information on the existence of non-trivial
and non-abelian SU(2)-representations of the fundamental group of cyclic branched covers. We illustrate the
method with some examples of knots in S3.

1 Introduction

Representations of fundamental groups of low-dimensional manifolds have been studied
for a long time as they are useful for the understanding of manifolds and knots in man-
ifolds. In the last decade, representations of the fundamental group of 3-manifolds into
SU(2) have been given special attention, in part because of the introduction in 3-manifold
Topology of invariants such as the Casson invariant and Floer homology, where these rep-
resentations play a fundamental role. If such invariants are to be useful, a minimum one
can ask is that there be many 3-manifolds with non-trivial and/or non-abelian SU(2)-
representations. This is a good motivation for the following problems, which appear in
Kirby’s updated list Problems in Low-dimensional Topology as Problem 3.105 (A) (see [Kir]):

Problem 1 Given a compact 3-manifold M3 with non-trivial fundamental group π1(M),
are there always non-trivial SU(2)-representations of π1(M)?

Problem 2 Given a compact 3-manifold M3 with non-abelian fundamental group
π1(M), when are there non-abelian SU(2)-representations of π1(M)?

Notice that the second statement is less ambitious than the first one, since as pointed
by E. Klassen (see Prob. 3.105 in [Kir]), there are examples of compact 3-manifolds hav-
ing a non-abelian fundamental group which admits no non-abelian representations into
SU(2). Here we approach Problems 1 and 2 using 3-orbifolds and the Floer Homology for
knots developed in [CS]. We exhibit a large class of 3-manifolds which have non-trivial and
non-abelian SU(2)-representations of their fundamental group, in relation to the above
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problems. The article is organized as follows. After explaining some basic material in Sec-
tion 2, we study, in Section 3, the existence of non-abelian SU(2)-representations of knot
complements, using Floer Homology for knots. In Section 4, we apply this to the case of
3-manifolds which arise as cyclic branched covers of a homology sphere Y 3 along a knot.
Section 5 provides some examples, taken from a variety of contexts in Knot Theory.

2 Basic Material

The concept of an orbifold was introduced as a generalization of the concept of a differ-
entiable manifold, by allowing some mild singularities, which are well understood. The
3-orbifolds that will be dealt with are of the following type. They are orbifolds whose un-
derlying space is a homology sphere Y 3, and the singular locus is a knot K in Y 3. The local
groups of the 3-orbifold are trivial away from K and Zn, acting on R3 by rotations in a
plane perpendicular to K, in a tubular neighbourhood, NK , of K. Denote such 3-orbifolds
by (Y 3,K, n). The 3-orbifold (Y 3,K, n) may be constructed as follows. Take Vn(K) to be
the n-fold cyclic branched cover of Y 3 along K. Recall how Vn(K) is constructed: first con-
sider the cyclic unbranched cover of the knot complement Y 3 − NK with automorphism
group Zn, denoted X̃n; the cyclic branched cover is then

Vn(K) = X̃n

⋃
h

NK ,

where h : ∂X̃n → ∂(Y 3 − NK) is such that h(µ̃) = µ, for µ a meridian in ∂(Y 3 − NK ) and
µ̃ its pre-image in ∂X̃n. The construction of (Y 3,K, n) is very similar. Namely, one has

(Y 3,K, n) =
(

X̃n

⋃
h

NK

)/
Zn,

where Zn acts by meridional rotations on NK (therefore fixing the knot K) and as group
of covering transformations for X̃n. The 3-orbifold (Y 3,K, n) then appears as a global
quotient of Vn(K) by a cyclic action. The orbifold fundamental group is the group

πV
1 (Y 3,K, n) = π1(Y 3 − NK)/〈µn〉,

where “〈 〉” denotes the normal closure and µ is a meridian in π1(Y 3 − NK). A basic no-
tion is that of character variety of knot complements and 3-orbifolds. Recall the following
definitions:

Definition 2.1 An SU(2)-representation of a group G, ρ : G → SU(2) is said to be non-
abelian or irreducible if ρ(G) is not contained in a maximal torus S1 ⊂ SU(2). Otherwise it
is said to be abelian or reducible.

Definition 2.2 The space of representations of πV
1 (Y 3,K, n) into SU(2) is called the

representation variety of the orbifold (Y 3,K, n). The group SU(2) acts on this space via
conjugation, and the quotient is called the character variety of (Y 3,K, n) and is denoted
R(Y 3,K, n). Similarly, for a knot complement one has the character variety R(Y 3 − NK).
The subset of irreducibles is distinguished by the symbol “∗”: R∗; while the complementary
subset of reducibles is distinguished by the symbol “a”: Ra.
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Remark 2.3 The topology on the representation varieties is the compact-open topology.
The group SU(2) has its usual topology and the fundamental group has the discrete topol-
ogy. Then the character varieties naturally inherit a topology. These spaces can be shown
to carry the structure of a real algebraic variety (see [AM] for example).

It will be useful to explicitly have the relation between the character varieties of knot
complements and of 3-orbifolds:

Proposition 2.4 There is an embedding Ψ : R(Y 3,K, n) → R(Y 3 − NK) and this embed-
ding preserves irreducibility.

Proof This is easily done using the presentation of the orbifold fundamental group
πV

1 (Y 3,K, n) given on the previous page.

A word should be said about reducibles. An SU(2)-representation of π1(Y 3 − NK) is
reducible if and only if it factors through the abelianized group H1(Y 3−NK). For a knot K,
H1(Y 3−NK) � Z, so Ra(Y 3−NK) is the SU(2)-character variety of the group Z. Similarly
Ra(Y 3,K, n) is the character variety of Zn. Both are independent of the chosen knot.

Let us now introduce the pillow-case variety for knots in Y 3 as this will be helpful in
visualizing what happens in a variety of contexts. Take the torus T2. Then π1(T2) = Zµ⊕
Zλ, where µ is a meridian and λ is a preferred longitude. Define the map Φ : R2 → R(T2)
by (α, β) = [ρ] where

ρ(µ) =

(
e2πiα 0

0 e−2πiα

)
and ρ(λ) =

(
e2πiβ o

0 e−2πiβ

)
.

One has Φ(α, β) = Φ(α + m, β + n) for m, n ∈ Z and, since SU(2)/Ad SU(2) � [−2, 2]
via the trace function, also Φ(α, β) = Φ(−α,−β). By diagonalization, it therefore follows
that Φ(α, β) = Φ(α

′
, β

′
) if and only if (α

′
, β

′
) = ±(α, β) + (m, n). Hence Z2

� Z2 acts
on R2 with quotient precisely R(T2). It is easy to see that R(T2) has four singular points,
where the stabilizer under the Z2

� Z2-action is not trivial. The variety R(T2) is called the
pillow-case variety. In R(T2), it will be of use to consider vertical slices (α constant in the
above description). These are

Sα = {ρ ∈ R(T2) | tr ρ(µ) = 2 cos(2πα)}.

For α = 0, 1/2 these are arcs, while for 0 < α < 1/2, Sα is a circle in the pillow-case. A
knot complement Y 3−NK being a 3-manifold whose boundary is identified with T2 in the
usual way, a representation ρ : π1(Y 3 − NK) → SU(2) restricts to ρ|T2 : π1(T2) → SU(2).
This allows one to define the restriction map

r : R(Y 3 − NK)→ R(T2)

in the obvious way. This restriction can be important both for the study of knots
and for Gauge Theory of 3-manifolds (see for example [He1] and [KK]). The variety
Ra(Y 3 − NK) is an arc (parameterized by tr ρ(µ)) and its image in the pillow-case is the
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lower arc, corresponding to ρ(λ) = I. Consequently, any representation whose restriction
in the pillow-case is not in the lower arc is non-abelian.

There is a similar construction for 3-orbifolds (Y 3,K, n): one simply uses the embed-
dingΨ introduced in Proposition 2.4 to define the map:

r ◦Ψ : R(Y 3,K, n)→ R(T2).

If one knows the restriction map r for a knot complement, it is easy to obtain the corre-
sponding restriction map in the orbifold situation: ρ : πV

1 (Y 3,K, n) → SU(2) must satisfy
ρ(µn) = I, so ρ(µ) in SU(2) corresponds to an n-th root of unity. Then the restriction map
in the orbifold situation corresponds to vertical slices of r

(
R(Y 3−NK)

)
in R(T2) by circles

S k
n
, for 0 < k < n

2 or the arcs S0 and S 1
2
.

Finally, we recall briefly the Alexander polynomial and equivariant signatures of a knot,
as these knot invariants will play a role in here. In Y 3 − NK , choose a pair (λ, µ), and
consider a Seifert surface Σ. Choose a positive orientation of the normal bundle of Σ in
Y 3. Let {x1, . . . , xp} be a basis for H1(Σ,Z), and denote by x+

j the push-off of the curve
x j in the positive direction in the normal bundle of Σ. Let VK be the matrix whose entries
are vi j = lk(xi , x+

j ), where lk denotes the linking number of two curves in Y 3, and V T
K its

transpose.

Definition 2.5 The Alexander polynomial of K is the polynomial

∆K (t) = det(V T
K − tVK).

Definition 2.6 Let t ∈ S1. An equivariant signature matrix is a matrix of the form
BK (t) = (1 − t)VK + (1 − t̄)V T

K . The signature of BK (t) is called an equivariant signa-
ture of K and is denoted σt (K).

Remark 2.7 Notice that when t = −1, one gets the standard knot signature, σ(K). To
avoid cumbersome notations later on, when t = ei2πα, it will be useful to denote the corre-
sponding equivariant knot signature by σα(K) rather than σt (K).

Proposition 2.8 The equivariant signature σt (K) : S1 → Z is a continuous function except
possibly at the roots of the Alexander polynomial∆K (t).

Proof One has that BK(t) = (1 − t)VK + (1 − t̄)V T
K , hence BK(t) = (1 − t)(VK − t̄V T

K ).
For σt (K) to be discontinuous at t0, there has to be a change of eigenvalue sign for the
matrix VK − tV T

K , around t0. This means that at t0, VK − tV T
K has a zero eigenvalue. This

is only possible if det(VK − t̄V T
K ) = 0. As V T

K − tVK = −t(VK − t̄V T
K ) is the matrix whose

determinant is∆K (t), so t0 has to be a root of∆K (t).

3 SU(2)-Representations of Knot Complements

A first step for finding non-trivial and non-abelian representations of branched covers of
Y 3 along a knot K is to obtain some information about the representations of the knot
complement. As in [He2] and [HK], in this section we derive a criterion for the existence
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of knot complement non-abelian SU(2)-representations, expressed in terms of the equiv-
ariant knot signatures introduced in Section 2.

In [CS], a Floer Homology for knots in homology spheres was developed. The invariant
generalizes ordinary Floer Homology for homology spheres. The 3-orbifolds introduced
in the last section play a central role in the construction of this Floer Homology for knots,
as they provide the right setting necessary to adapt ideas of Floer and Kronheimer and
Mrowka to the case at hand. We recall very briefly what the construction is. The interested
reader should refer to [CS] or [Co2] for more information.

Start with α ∈ [0, 1/2] a rational number, α = k/n, such that ∆K (ei 2k
n 2π) �= 0. Gener-

ically, the Floer complex
(
C(α)
∗ (Y 3,K), ∂

)
consists of four free abelian groups C(α)

i (Y 3,K),
0 ≤ i ≤ 3, generated by irreducible flat connections over the orbifold (Y 3,K, n) whose
trace of the holonomy around a meridian is prescribed to be 2 cos(2πα). The bound-
ary operator ∂ : C(α)

i (Y 3,K) → C(α)
i+1(Y 3,K) counts the number of anti-self-dual connec-

tions flowing from one irreducible flat connection to another one over the orbifold cylinder
(Y 3 × R,K × R, n). It is shown that ∂2 = 0 and that the homology of this Floer complex
is a knot invariant, denoted HF(α)

∗ (Y 3,K). The construction may be extended to all real
numbers α ∈ [0, 1/2] such that∆K (ei2α2π) �= 0.

One of the important properties of this Floer Homology for knots proved in [CS] is that
it generalizes equivariant knot signatures:

Proposition 3.1 For any knot K in a homology sphere Y 3, one has

χ
(
HF

( 1
4 )
∗ (Y 3,K)

)
=

1

2
· σ(K) + 4 · λ(Y 3),

where “χ” stands for the Euler characteristic of the Floer complex and λ(Y 3) denotes the Casson
invariant of Y 3. More generally, if∆K (ei2π2α) �= 0, then

χ
(
HF(α)
∗ (Y 3,K)

)
=

1

2
· σ2α(K) + 4 · λ(Y 3).

We use this result to formulate our existence criterion for non-abelian SU(2)-represen-
tations of knot complements:

Theorem 3.2 Let K be a knot in a homology sphere Y 3. If σ(K) �= 0, there is a sub-
interval (α1, α2) in [0, 1/2] such that for any α ∈ (α1, α2), there is an irreducible SU(2)-
representation of the knot group, ρ, such that tr ρ(µ) = 2 cos(2πα). More generally, the result
is true if some equivariant signature of K is non-vanishing.

Proof For simplicity, suppose that Y 3 = S3. The general case follows easily by taking
into account the contribution of the Casson invariant. First notice that as ∆K (−1) is al-
ways an odd integer there is a neighbourhood (α1, α2) ⊂ [0, 1/2] about 1/4 ∈ [0, 1/2]
such that the ∆K (ei2π2α) �= 0, for any α ∈ (α1, α2). We may then assume that on this
interval, σ2α(K) = σ(K), using Proposition 2.8. It is well-known that representations
ρ : π1(S3 − NK) → SU(2) such that tr ρ(µ) = 2 cos(2πα) are in 1-1 correspondence with
flat connections over S3−NK whose trace of holonomy along µ is 2 cos(2πα). Therefore if
for some α ∈ (α1, α2) there is no irreducible representation ρ : π1(S3−NK )→ SU(2) such
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that tr ρ(µ) = 2 cos(2πα), it follows that HF(α)
∗ (S3,K) is trivial, as it has no generators. But

then by Proposition 3.1, one would obtain that σ2α(K) = 0, contradicting the above. This
proves the first part of the theorem. The more general case is identical.

In fact one may prove slightly more using the following property of Floer Homology
proved in [CS]:

Proposition 3.3 When α ∈ [0, 1/2] varies, the Floer Homology HF(α)
∗ (Y 3,K) is constant

on connected components of [0, 1/2] away from the roots of ∆K (t) which lie on S1, the unit
circle in C.

With this, one can be more precise about the non-abelian representations given by The-
orem 3.2:

Theorem 3.4 Let K be a knot in a homology sphere Y 3 such that σα(K) �= 0 for some
α ∈ [0, 1/2]. Then there exist an arc {ρt} ⊂ R∗(Y 3 − NK) limiting to some reducible
representation ρ0 ∈ Ra(Y 3 − NK), and near ρ0, this arc may be parameterized by the trace
along the meridian.

Proof Again, suppose Y 3 is S3 for simplicity. As σ0(K) = 0 and σα(K) �= 0, by Proposi-
tion 2.8, there is an α0 ∈ (0, α) for which ei2πα0 is the first root in S1 of∆K (t) at which the
equivariant signature changes. By Proposition 3.1 above, for α±0 slightly greater or smaller

than α0, we have HF
(α−0 /2)
∗ (S3,K) trivial while HF

(α+
0 /2)

∗ (S3,K) is non-trivial. Combining
Proposition 3.3, Theorem 3.2 and the fact that R∗(S3 −NK) is a real algebraic variety gives
an arc {ρt} parameterized by tr ρt (µ). That this arc actually limits to ρ0 ∈ Ra(S3 − NK )
such that tr ρ0(µ) = 2 cos(α0π) follows from the independence of Floer Homology with re-
spect to perturbations compactly supported away from reducibles (see [CS, Section 3.3]).

Indeed, if {ρt} did not limit to ρ0, the Floer Homology HF(α0/2)
∗ (S3,K) would be well-

defined, trivial, and locally constant about α0/2, contradicting the fact that HF
(α+

0 /2)
∗ (S3,K)

is non-trivial.

This is a slight generalization of the main result proved in [He2]; our proof being rather
different, as it uses properties of Floer homology. Yet another version of this result can be
found in [HK]. We conclude this section by extracting a corollary for 3-orbifolds (Y 3,K, n):

Corollary 3.5 Let K ↪→ Y 3 be a knot in a homology sphere which has some non-vanishing
equivariant signature. Then there exists an n0 such that for any n ≥ n0, the 3-orbifold
(Y 3,K, n) has a fundamental group with non-abelian SU(2)-representations.

Proof Using Proposition 2.4, this is just Theorem 3.2.

4 SU(2)-Representations for Cyclic Branched Covers

We now make the transition from a 3-orbifold (Y 3,K, n) to its corresponding cyclic
branched cover Vn(K). First, we relate the fundamental groups:
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Proposition 4.1 There is a short exact sequence, the orbifold exact sequence:

1 −−−−→ π1

(
Vn(K)

)
−−−−→ πV

1 (Y 3,K, n) −−−−→ Zn −−−−→ 1.(1)

Proof Consider X̃n, the n-fold cyclic unbranched cover of the knot complement. By the
construction of the n-fold cyclic branched cover of Y 3 along K, one has

π1

(
Vn(K)

)
= π1(X̃n)/〈µn〉.

On the other hand, πV
1 (Y 3,K, n) = π1(Y 3 − NK)/〈µn〉. So using basic covering space

theory, there is a homotopy exact sequence for the covering X̃n → Y 3 − NK which gives a
commutative diagram

1 −−−−→ π1(X̃n) −−−−→ π1(Y 3 − NK) −−−−→ Zn −−−−→ 1
 
 
 
 

1 −−−−→ π1

(
Vn(K)

)
−−−−→ πV

1 (Y 3,K, n) −−−−→ Zn −−−−→ 1

yielding the exact sequence.

The orbifold exact sequence is the tool needed to apply to cyclic branched covers the
results derived for 3-orbifolds using Floer Homology in the last section. We first consider
the existence of non-trivial representations in R

(
Vn(K)

)
, in relation to Problem 1:

Theorem 4.2 Let K be a knot in Y 3, with σ(K) �= 0, or more generally with some non-
vanishing equivariant signature σα(K) for α ∈ [0, 1/2]. Then there exists an n0 such that for
n ≥ n0, the fundamental group of Vn(K) has non-trivial SU(2)-representations.

Proof Let n0 be chosen as in Corollary 3.5. Then for any n ≥ n0, there is at least one
element ρ ∈ R∗(Y 3,K, n). Consider the restriction of ρ to π1

(
Vn(K)

)
, subgroup of

πV
1 (Y 3,K, n). If this restriction were trivial, by the orbifold exact sequence (1), it would fol-

low that ρ
(
πV

1 (Y 3,K, n)
)

is an abelian subgroup of SU(2), contradicting the irreducibility
of ρ. Therefore for any n ≥ n0, R

(
Vn(K)

)
contains at least one non-trivial representation.

The result may be extended to finite coverings of Vn(K) as well:

Corollary 4.3 For n ≥ n1, where n1 is possibly greater than n0 appearing in the statement
of Theorem 4.2, any finite covering of Vn(K) also has non-trivial SU(2)-representations of its
fundamental group.

Proof It will follow from the proof of Theorem 4.5 below, that there is an n1 such that for
n ≥ n1, some element ρ ∈ R∗(Y 3,K, n) has infinite image ρ

(
πV

1 (Y 3,K, n)
)

in SU(2). Any
finite cover of Vn(K) has a fundamental group of finite index in πV

1 (Y 3,K, n) and hence
with non-trivial SU(2)-representations.
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Needless to say that Theorem 4.2 and Corollary 4.3 provide a wealth of 3-manifolds
with non-trivial SU(2)-representations of their fundamental group, as knots with non-
zero signature are extremely common. It is interesting that a simple algebraic condition on
the knot K should yield information about SU(2)-character varieties of an infinite family
of 3-manifolds obtained from that knot. Our result may be seen as evidence for Problem 1.

In relation to Problem 2, a natural thing to try is to refine Theorem 4.2 to show that the
non-trivial SU(2)-representations exhibited are in fact non-abelian and hence obtain that
R∗
(
Vn(K)

)
�= ∅. However, Corollary 3.5 and the orbifold exact sequence are not enough

for that, as it is possible that an irreducible element in R(Y 3,K, n), when restricted to the
subgroup π1

(
Vn(K)

)
, becomes a reducible element in R

(
Vn(K)

)
. Some extra conditions,

either on Vn(K) or on K, have to be imposed, as seen below.

Theorem 4.4 Under the same assumptions on K as in Theorem 4.2, there exists an n0 such
that for any n ≥ n0, if Vn(K) is a homology sphere, then R∗

(
Vn(K)

)
�= ∅.

Proof This is a consequence of Theorem 4.2 and the following fact: reducible SU(2)-
representations of π1

(
Vn(K)

)
factor through the abelianization H1

(
Vn(K)

)
. As this last

group is trivial by hypothesis, the only reducible in R
(
Vn(K)

)
is the trivial representation,

which cannot be the restriction of an element in R∗(Y 3,K, n), by the orbifold exact se-
quence (1).

More generally, we have:

Theorem 4.5 Under the same assumptions on K as in Theorem 4.2, there exists an n1 such
that for any n ≥ n1, if∆K (ei k

n 2 pi) �= 0, for 0 ≤ k ≤ n− 1, then R∗
(
Vn(K)

)
�= ∅.

Proof We shall treat the case of knots in S3 and leave the general case to the reader. We
first show that for n1 large enough, the element ρ ∈ R∗(S3,K, n) given by Corollary 3.5
has infinite image in SU(2). For this first recall that the finite subgroups of SU(2) are the
following:

(1) Zn (n ≥ 1): cyclic
(2) D4n (n ≥ 1): binary dihedral
(3) T∗: binary tetrahedral (order 24)
(4) O∗: binary octahedral (order 48)
(5) I∗: binary icosahedral (order 120)

We have to exclude each of the possibilities. The item (1) is automatically excluded by
the irreducibility of ρ. For (3)–(5), if n1 is large enough we may suppose without loss
of generality that tr ρ(µ) = 2 cos(2kπ/n) with k and n relatively prime if n ≥ n1 and
hence ρ

(
πV

1 (Y 3,K, n)
)

contains an element of order n, so these cases may also be excluded.
Finally, any D4n lies in the group D∞ = S1

A ∪ S1
B, where, in quaternionic notation,

S1
A = {a + bi | a2 + b2 = 1} and S1

B = {ck + dk | c2 + d2 = 1}.

By Theorem 10 in [Kla], the number of representations of π1(S3−NK) into D∞ is equal to(
∆K (−1)−1

)
/2, a finite number. It follows from Proposition 2.4 that for n1 large enough,
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if n ≥ n1, then ρ
(
πV

1 (S3,K, n)
)

is not included in a binary dihedral group. If ρ|π1(Vn(K))

were reducible, then it would factor through H1

(
Vn(K)

)
. But the order of H1

(
Vn(K)

)
is

given as

|H1

(
Vn(K)

)
| =
∣∣∣

n−1∏
k=1

∆K (ei k
n 2π)
∣∣∣,

so it is finite by our condition on ∆K (t). The orbifold exact sequence (1) implies that
ρ
(
πV

1 (S3,K, n)
)

is finite, a contradiction. Hence R∗
(
Vn(K)

)
�= ∅.

It is worth mentioning that in cases not covered by Theorem 4.5, knowledge of the
pillow-case picture found in the literature can provide the same conclusion. To best un-
derstand what is going on, let us go back to Theorem 3.4, which yields an arc {ρt} of
irreducible elements in R(Y 3 − NK), parameterized by the trace along the meridian and
limiting to a reducible representation. In principle, it is possible that under the restriction
map r : R(Y 3 − NK) → R(T2), r({ρt}) be mapped entirely in the lower arc of the pillow-
case, in which case for any ρt , one has ρt (λ) = I. More generally, it could also be that
R∗(Y 3 − NK) does not limit to the abelian arc, while r

(
R∗(Y 3 − NK)

)
is contained in the

lower arc of R(T2). Notice however that among all the computations of the character va-
riety of knot groups found in the literature (torus knots, twist knots, 2-bridge knots, . . . )
there are no examples of such behavior.

By contrast, the following result is useful in relation to Problem 2 if one has some infor-
mation on the image r

(
R∗(Y 3 − NK)

)
in R(T2), as we shall show with an example in the

next section.

Theorem 4.6 Let K be a knot such that some arc {ρt} in R∗(Y 3 − NK) is not mapped
entirely to the lower arc of the pillow-case and which is locally parameterized by the trace along
the meridian, around some ρ0 ∈ {ρt}. Then there exists an n0 such that for any n ≥ n0,
Vn(K) has non-abelian SU(2)-representations of its fundamental group.

Proof By the local parameterization hypothesis, using Proposition 2.4, there is an n0 such
that for n ≥ n0, R∗(Y 3,K, n) �= ∅. Moreover, by the first hypothesis, there is at least
one element ρ ∈ R∗(Y 3,K, n) satisfying ρ(λ) �= I. By construction of (Y 3,K, n) and
Vn(K), notice that λ ∈ πV

1 (Y 3,K, n) is in the subgroup π1

(
Vn(K)

)
and also λ is trivial

when seen as an element of H1

(
Vn(K)

)
. Now consider the restriction of ρ to π1

(
Vn(K)

)
. If

this restriction were reducible, it would factor through H1

(
Vn(K)

)
and as a consequence,

ρ(λ) = I, contradicting the construction.

5 Examples

We conclude this article by giving some examples which illustrate concretely the methods
developed previously. There is no doubt that the class of knots for which the results apply
is much larger than what we present here, but we shall be concise here, as the purpose is
mostly illustrative.

https://doi.org/10.4153/CJM-2000-013-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-013-6


302 Olivier Collin

Torus Knots Let K be a torus knot of type (p, q). It is well-known that the Alexander
polynomial of such a knot is given as

∆K (t) =
(1− t)(t pq − 1)

(t p − 1)(tq − 1)
.

The equivariant signatures for torus knots have been computed by Litherland in [Li1].
They are given as σα(K) = σ+ − σ−, where σ+ and σ− are given as follows. Let (i, j) be
integer pairs such that 0 < i < p and 0 < j < q. Then,

σ+ = number of (i, j) such that α− 1 < i/p + j/q < α (mod 2),

σ− = number of (i, j) such that α < i/p + j/q < α + 1 (mod 2).

By Proposition 2.8 and the formula for∆K (t), σα(K) will only change at primitive pq-th
roots of unity along the unit circle and there are exactly (p−1)(q−1) of these. A computa-
tion using Litherland’s formula shows that for α ∈

(
1/2pq, (pq− 1)/2pq

)
, σα(K) is non-

zero. In fact, at each primitive pq-th root of unity, the jump of the function σt (K) : S1 → Z
is of ±2. It follows that in the case of torus knots, Theorem 3.4 can be strengthened: each
abelian representation corresponding to a primitive pq-th root of unity is the limit of ex-
actly one irreducible arc in R∗(S3−NK). As an arc has two ends, there are 1/2·(p−1)(q−1)
arcs in R∗(S3 − NK). A different proof of this and the fact that these arcs are the totality
of R∗(S3 − NK) may be found in [Kla, Theorem 1]. It will be useful for our purposes to
have the image of R∗(S3 − NK) in the pillow-case. Under the covering Φ : R2 → R(T2),
this is given by the images under Φ of lines of slope −1/pq and initial points (1/2pq, 0),
(2/2pq, 0), . . . for first coordinate values between 0 and 1/4. Given this, we can give a sharp
version of Theorems 4.2 and 4.5:

Proposition 5.1 Let K be a non-trivial torus knot of type (p, q). Then for any n ≥ 3 there
are non-trivial SU(2)-representations of π1

(
Vn(K)

)
. In fact, except possibly for values of n

such that 3 ≤ n ≤ pq for which (n, pq) �= 1, there are non-abelian SU(2)-representations of
π1

(
Vn(K)

)
.

Proof As K is non-trivial, the pair (p, q) satisfies

1/2pq ≤ 1/12 ≤ 5/12 ≤ (pq− 1)/2pq.

For any n ≥ 3 there a k such that 0 ≤ k ≤ n/2 and 1/2pq ≤ k/n ≤ (pq − 1)/2pq. By
the discussion above, σ2k/n(K) �= 0, so that R∗(S3,K, n) �= ∅ and hence R

(
Vn(K)

)
has

non-trivial elements.
For the irreducibility, it is simpler to use the argument given in the proof of Theorem 4.6.

In the case where (n, pq) = 1, the representations ρ ∈ R∗(S3, k, n) will satisfy ρ(λ) �= I, by
the description above of the pillow-case image. Hence, the restriction to π1

(
Vn(K)

)
will be

an element in R∗
(
Vn(K)

)
, as requested.

Notice that in this case the cyclic branched coverings are simply Brieskorn spheres
Σ(p, q, n), whose SU(2)-character variety had already been computed in [FS], for example.
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Algebraic Knots Let us turn our attention to knots which arise as links of singularities,
usually referred to as algebraic knots. Recall that a knot K ↪→ S3 is said to be algebraic if
there is an irreducible complex polynomial f : C2 → C having a singularity at 0 and such
that K = f−1(0) ∩ S3

ε , where S3
ε is a small 3-sphere about the origin in C2. The simplest

example is the case of a torus knot of type (p, q) which may been seen as the link of singu-
larity of f (x, y) = xp + yq. The class of algebraic knots has been studied quite extensively,
and a lot is known about them (see for example [Le]). It is well-known that algebraic
knots may be realized as a particular kind of iterated torus knots. We recall that an iterated
torus knot is simply a satellite of a torus knot obtained by using another torus knot in the
process. Given an algebraic knot K which is the link of f : C2 → C, by taking a Puiseux
expansion, one has that K is an iterated torus knot, say of type

(
(p1, q1), . . . , (pr, qr)

)
, sat-

isfying the conditions pi > 0 and qi+1 > pi pi+1qi . And conversely, an iterated torus knot of
type
(

(p1, q1), . . . , (pr, qr)
)

is algebraic if pi > 0 and qi+1 > pi pi+1qi (we refer the reader
to [EN] for details on this correspondence). Notice that, in particular, if K is algebraic then
pi > 0 and qi > 0 for all i’s.

Now, Litherland gave in [Li2] a general formula for the computation of equivariant knot
signatures of satellite knots in terms of the the equivariant signatures of the constituent
knots. We briefly describe the procedure in the case of iterated torus knots. Let K1 =
(p1, q1) be a torus knot. Using another torus knot K2 = (p2, q2), consider the iterated
torus knot of type

(
(p1, q1), (p2, q2)

)
: K12. Then by Theorem 1 in [Li2],

σα(K12) = σαp1 (K2) + σα(K1).

For a general iterated torus knot K1...r of type
(
(p1, q1), . . . , (pr, qr)

)
, its equivariant signa-

ture σα(K1...r) will then be computed inductively as

σα(K1...r) = σαp1 p2...pr−1 (Kr) + σαp1 p2...pr−2 (Kr−1) + · · · + σα(K1).

The crucial thing to observe in this formula is that an iterated torus knot, K, which is
algebraic, satisfies pi, qi > 0 for 1 ≤ i ≤ r. Consequently, all the equivariant signatures
appearing in the equation above are non-negative. In particular, in light of what was done
in the case of torus knots, one has σ2α(K) �= 0 for α ∈ [1/12, 5/12]. Therefore we may
generalize the result obtained for torus knots:

Proposition 5.2 Let K be a non-trivial algebraic knot of type
(
(p1, q1), . . . , (pr, qr)

)
. Then

for any n ≥ 3 there are non-trivial SU(2)-representations of π1

(
Vn(K)

)
. In fact, except

possibly for values of n such that 3 ≤ n ≤ piqi for which (n, piqi) �= 1 for 1 ≤ i ≤ r, there
are non-abelian SU(2)-representations of π1

(
Vn(K)

)
.

Proof The proof of the first statement in the case of torus knots generalizes readily here.
As for the second statement, it simply depends on the observation that one may con-
struct irreducible SU(2)-representations for an iterated torus knot from irreducible SU(2)-
representations of the constituent torus knots. We explain briefly the case with two knots.
Let K be an iteration of K1 by K2, both torus knots. K1 lies on the boundary of a solid
torus V1, so we may slightly push it inside. The knot K2 is the core of the solid torus V2.
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Let h : V1 → V2 be the iteration homeomorphism. By construction, we can decompose
S3 − NK as

S3 − NK = (S3 − NK2 ) ∪∂V2 (V2 − NK)(2)

where, of course, V2−NK
∼= V1−NK1 . Notice that that π1(V1−NK1 ) has an extra generator

than π1(S3 − NK1 ), given by the core of the solid torus V1. We then have R∗(S3 − NK1 ) ⊂
R∗(V1 − NK1 ) as those representations which send that extra generator to I in SU(2).

We wish to obtain elements in R∗(S3 − NK) using Equation (2) by gluing elements of
R∗(V1 − NK1 ) to abelian representations of π1(S3 − NK2 ). Now an abelian representation
ρ : π1(S3−NK2 )→ SU(2) sends the longitude λK2 to I, so it follows that the representations
in R∗(V1−NK1 ) which can be glued to such abelian ones are precisely those in R∗(S3−NK1 ).
The result now follows from Proposition 5.1.

Notice that one could also have glued non-abelian elements in R(S3−NK2 ) to abelian el-
ements in R(V2−NK2 ), as done in [CL, Theorem 1] in the case of SL(2,C)-representations.
In fact both gluing points-of-view are hinted at by combining Proposition 3.1 and Lither-
land’s formula for iterated torus knots mentioned previously. A similar result may be
proved for iterated torus knots which are not algebraic, and more generally for other satel-
lite knots.

Figure eight knot Let K be the figure eight knot. This knot has Alexander polynomial
∆K (t) = 3 − t−1 + t , a polynomial with no roots along the unit circle S1 ⊂ C. It follows
that on [0, 1], one has σα(K) ≡ 0. This means that the eventual existence of non-trivial
and non-abelian SU(2)-representations of π1

(
Vn(K)

)
cannot be obtained by our main re-

sults Theorems 4.2, 4.4 and 4.5, for which it is essential to have non-vanishing equivariant
signatures. But explicit knowledge of the pillow-case restriction enables one to apply Theo-
rem 4.6 instead. A similar argument can be applied to other twist knots and 2-bridge knots,
using work in [Kla] and [Bur].

The space R∗(S3 − NK) was computed in [Kla], and simply consists of a circle. The
image in the pillow-case of this circle is given explicitly in [KK, Proposition 5.4]. The
important point for our purpose is that for any α ∈ [1/6, 1/3], there are representations
ρα : π1(S3 − NK)→ SU(2) such that tr ρ(µ) = 2 cos(2πα). This readily gives a sharpened
version of Theorem 4.6:

Proposition 5.3 For K the figure eight knot, given any n ≥ 3, there are non-trivial SU(2)-
representations of π1

(
Vn(K)

)
. In fact, π1

(
Vn(K)

)
has non-abelian SU(2)-representations for

any n ≥ 3, except possibly for n = 4.
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