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Abstract

Knowledge-based AI typically depends on a knowledge engineer to construct a formal model of
domain knowledge – but what if domain experts could do this themselves? This paper describes
an extension to the Decision Model and Notation (DMN) standard, called Constraint Decision
Model and Notation (cDMN). DMN is a user-friendly, table-based notation for decision logic,
which allows domain experts to model simple decision procedures without the help of IT staff.
cDMN aims to enlarge the expressiveness of DMN in order to model more complex domain
knowledge, while retaining DMNs goal of being understandable by domain experts. We test
cDMN by solving the most complex challenges posted on the DM Community website. We
compare our own cDMN solutions to the solutions that have been submitted to the website and
find that our approach is competitive. Moreover, cDMN is able to solve more challenges than
any other approach.

KEYWORDS: decision model and notation, constraint reasoning, expressiveness, readability,
IDP system

1 Introduction

The Decision Model and Notation (DMN) (Object Management Group 2020) standard,

designed by the Object Management Group (OMG), is a way of representing data and

decision logic in a table-based way. It is intended to be used directly by business experts

without the help of computer scientists , and as such, aims to be low in complexity and

user-friendly.

While DMN is very effective in modeling deterministic decision processes, it lacks the

ability to represent more complex kinds of knowledge. In order to explore the boundaries

of DMN, the Decision Management Community website1 issues a monthly decision mod-

elling challenge. Community members can then submit a solution, using their preferred

∗ This research received funding from the Flemish Government under the Onderzoeksprogramma Arti-
ficiële Intelligentie (AI) Vlaanderen programme.
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decision modelling tools or programming languages. This allows solutions for complex

problems to be found and compared across multiple DMN-like representations. So far,

none of the available solvers have been able to solve all challenges. Moreover, the available

solutions sometimes fail to meet the readability goals of DMN, because the representation

is either too complex, too large, or requires a specific computer science background.

In this paper, we propose an extension to the DMN standard, called cDMN. It aims to

allow more complex knowledge to be represented, while remaining readable by business

users. The main features of cDMN are constraint modeling, quantification, and the use

of concepts such as types and functions. We test the expressiveness of cDMN on the

decision modeling challenges.

In Deryck et al . (2019), we presented a preliminary framework for constraint modeling

in DMN. In the current paper, we extend this by adding quantification, types, functions,

relations, data tables, optimization, and by evaluating the resulting cDMN formalism on

the DMN challenges.

This paper is an extended version of a paper we presented at the RuleML+RR 2020

conference (Aerts et al . 2020). It includes an updated list of challenges, changes to the

semantics to make it more complete, a more in-depth description of the solver and a

section on the integration of DMN into business models.

It is structured as follows. In Section 2, we briefly describe the DMN standard. Section 3

gives an overview of the challenges used in this paper. After this, we touch on the related

work in Section 4. We discuss both syntax and semantics of our new notation in Section 5.

Section 6 briefly discusses the implementation of our cDMN solver. We compare our

notation with other notations and evaluate its added value in Section 7 and conclude in

Section 8.

2 Preliminaries: DMN

The DMN standard (Object Management Group 2020) describes the structure of a DMN

model. The aim of the standard is to provide a user-friendly modeling notation for

decision logic. It is suitable for use by business experts (Silver 2018), low in complexity

(Hasic et al . 2017), and has already been successfully used in many case studies (Sooter

et al . 2019; Car 2018; Hasic and Vanthienen 2020).

A DMN model consists of two components: a Decision Requirements Diagram (DRD)

and a number of decision tables. The DRD is a graph that expresses the structure of

a DMN model by representing the connections between inputs, decisions, knowledge

sources, and more. At its core, it is a visual representation of the general structure of the

model, depicting which concepts are defined in terms of which other concepts. As such, it

improves the interpretability of models by end-users. Furthermore, it also enhances the

traceability of decisions, as it becomes easier to see which variables influence a specific

decision, and in which order different decisions depend on each other.

An example of a DRD is shown in Figure 1, which represents the decision process for

the cost of an entry ticket for a museum. The two ellipses represent input data, that is, a

person’s age and the name of the exhibit they want to visit. Each rectangle in the graph

represents a decision that needs to be made, for example, deciding whether a person is

an adult.
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Fig. 1. Decision Requirement Diagram to decide a museum ticket price in DMN.

Fig. 2. Decision table to define whether a person is an adult.

The decision tables contain the in-depth business logic of a model. An example of

such a decision table can be found in Figure 2. It consists of a number of input columns

(darker green) and at least one output column (lighter blue). Each row is read as if the

input conditions are met (e.g. if “Age of Person” satisfies the comparison “≥ 18” ), then

the output variable is assigned the value of the output entry (e.g. “Person is Adult” is

assigned value “Yes”). Only single values, such as strings and numbers, can be used as

output entries. In the case where no row matches the input, then each output is either set

to the special value null (which is typically taken to indicate an error in the specification)

or to the output’s default value, if one was provided.

The behavior of a decision table is determined by its hit policy. There are a number

of single hit policies, which cause the output variable(s) to take on a single value,

even when multiple rows are applicable. In particular, these hit policies are as follows:

“Unique” (for each possible set of input values, at most one row is applicable), “Any” (if

multiple rows are applicable for the same input values, their outputs must be the same),

and “First” (if more than one row is applicable, the first applicable row determines the

value of the outputs). There exist also multiple hit policies such as “Collect” (collect the

output of all applicable rows in a list) and “C+” (sum the output of all applicable rows).

Regardless of which hit policy is used, each decision table uniquely determines the value

of its output(s).

The entries in a decision table are typically written in the (Simple) Friendly Enough

Expression Language, or (S-)FEEL, which is also part of the DMN standard. S-FEEL

allows simple values, lists of values, numerical comparisons, ranges of values and arith-

metic expressions. Decision tables with S-FEEL are generally considered quite readable

by domain experts.
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Table 1. List of DM Community challenges and their properties. 1: Universal

Quantification, 2: Constraints, 3: Optimization, 4: Need for Aggregates

Challenge Property Challenge Property

Who Killed A.? 1 Change Making 3, 4
A Good Burger 2, 3, 4 Define Dupl. None
Coll. of Cars None Monkey Business None
Vacation Days 1, 2, 4 Family Riddle 2, 4
Cust. Greeting None Online Dating None
Loan Approval 4 Class. Employees 4
Soldier Payment 4 Reinder Order None
Zoo, Buses, Kids 3, 4 Balanced Assign. 3
Vac. Days Adv. 1, 2, 4 Map Coloring 1, 2
Map Color Viol. 1, 2, 3, 4 Crack The Code 4
Numerical Haiku 1, 2, 4 Nim Rules 2
Doctor Planning 1, 2, 4 Calculator 1, 3

Table 2. Percentage of occurrence of properties in challenges

Property (%)

1. Aggregates needed 54.17
2. Constraints 37.50
3. Universal quantification 33.33
4. Optimization 25.00

In addition, DMN also allows more complex FEEL statements in combination with

boxed expressions, as will be illustrated in Figure 11. However, this also greatly increases

complexity of the representation, which makes it unsuitable for use by domain experts

without the aid of knowledge engineers.

3 Challenges overview

Of all the challenges on the DM Community website, we selected those that did not have

a straightforward DMN-like solution. The list of the 24 challenges that meet this crite-

rion can be found in Table 1. We categorize these challenges according to four different

properties. Table 2 shows the list of properties, and the percentage of challenges that

have this property.

The most frequent property is the need for aggregates (54.17%), such as counting the

number of violated constraints in Map Coloring with Violations or summing the number

of calories of ingredients in Make a Good Burger. The second most frequent property is

having constraints in the problem description (37.50%). For instance, the constraint in

Map Coloring states that two bordering countries cannot share the same color. The next

property, universal quantification (33.33%), is that a statement applies to every element

of a type, for example in Who Killed Agatha? : nobody hates everyone. The final property,

optimization, occurs in 25.00% of the challenges. For example, in Zoo, Buses, and Kids

the cheapest set of buses must be found.
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The description of each challenge can be found on the DMCommunity website2,

together with their submissions. We also maintain a mirror repository3 containing the

specific challenges and submissions used in this work.

4 Related work

It has been recognized that even though DMN has many advantages, it is somewhat

limited in expressiveness (Calvanese et al . 2019; Deryck et al . 2019). This holds especially

for decision tables with S-FEEL, the fragment of FEEL that is considered most readable.

While full FEEL is more expressive, it is not suitable to be used by domain experts

without the aid of knowledge engineers. Moreover, it does not provide a solution to other

shortcomings, such as the lack of constraint reasoning and optimization.

One of the systems that does effectively support constraint solving in a readable DMN-

like representation is the OpenRules system (OpenRules, Inc. 2017). It enables modellers

to define constraints over the solution space by allowing Solver Tables to be added along-

side decision tables. In contrast to standard decisions, which assign a specific value to

an output, Solver Tables allow for setting constraints on the output space. OpenRules

offers a number of DecisionTableSolve-Templates, which can be used to specify these

constraints. It is possible to either use these predefined templates or to define such a

template manually if the predefined ones are not expressive enough. Even though this

system extends the range of applications that can be handled, there are three reasons

why it does not offer the ease of use for business users that we are after. First, because of

the wide range of available templates for solver tables, which differ from that of standard

decision tables, using the OpenRules constraint solver entails a steep learning curve. Sec-

ond, the solver’s functionality can only be accessed through the Java API, which goes

against the DMN philosophy (Object Management Group 2020, p. 13). Third, because

of the lack of quantification in OpenRules, solutions are generally not independent of

domain size, which reduces readability.

Another system that aims to increase expressiveness of DMN is Corticon (Progress

2019). It implements a basic form of constraint solving by allowing the modeler to filter

the solution space. While this approach indeed improves expressiveness, it decreases read-

ability. Moreover, some constraints can only be expressed by combining a number of rules

and a number of filters. For example, when expressing “all female monkeys are older than

10 years”, this is split up in two parts; (1) a rule that states that if Monkey.gender =

female & Monkey.Age < 10 THEN Monkey.illegal = True and (2) a filter that states

that a monkey cannot be illegal: Monkey.illegal = False. There are no clear guide-

lines about which part of the constraints should be in the filter and what should be a

rule. A more detailed comparison between OpenRules, Corticon and cDMN is given in

Section 7.

Calvanese et al . (2019) propose an extension to DMN which allows for express-

ing additional domain knowledge in Description Logic, which would not be possi-

ble to model in DMN. In this way, they share our goal of extending DMN to ex-

press more complex real-life problems. However, they introduce a completely sepa-

2 https://dmcommunity.org/challenge/
3 https://gitlab.com/EAVISE/cdmn/DMChallenges
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Fig. 3. An example cDMN glossary for the Doctor Planning problem.

rate Description Logic formalism, which may be too complex for a domain expert

to use. While this approach makes sense if, for example, a Description Logic ontol-

ogy for the domain is already available, it seems less suited for cases in which a do-

main expert would need to construct this. Unfortunately, they did not submit any solu-

tions to the DMN Challenges, which leaves us unable to compare its expressiveness in

practice.

5 cDMN: Syntax & semantics

While DMN allows modellers to elegantly represent a deterministic decision process,

it lacks the ability to specify constraints on the solution space. The cDMN framework

extends DMN, by allowing constraints to be represented in a straightforward manner. It

also allows for representations that are independent of domain size by supporting types,

functions, relations, and quantification. To select one or more solutions from the solution

space, multiple inferences tasks are supported.

We now explain both the usage and the syntax of every kind of table present in cDMN.

5.1 Glossary

In logical terms, the “variables” of standard DMN correspond to constants (i.e. 0-ary

functions). cDMN extends these by adding n-ary functions and n-ary relations. Similarly

to OpenRules and Corticon, we allow the modeller to define their vocabulary by means

of a glossary. It consists of at most five glossary tables, each enumerating a different kind

of symbol. An example glossary for the Doctor Planning challenge is given in Figure 3.

In the Type table, type symbols are declared. The value of each type is a set of domain

elements, specified either in the glossary or in a data table (see Section 5.3). An example

is the type Doctor, which contains the names of doctors. By convention, type symbols

start with a capital letter.

In the Function table, a symbol can be declared as a function of one or more types to

another. There is no fixed syntax for functions; all types that appear in the description

are interpreted as arguments to the function (of this type) and the remaining text is the

name of the function. For example, nb nights of Doctor has one argument of type

Doctor, and “nb nights of ” is its name. Intuitively, this function denotes how many

nights a doctor works per week. It maps each element of type Doctor to an element of

type Number. Functions with n > 1 can be defined by using n arguments in the name,
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Fig. 4. Constraint table to express that a doctor works a maximum of one shift per day.

such as present doctor on Day at Time, which assigns a doctor to every pair of Day

and Time. The detection of arguments is case sensitive, so doctor is not considered an

argument, but Doctor is.

For each domain element, a constant with the same name is automatically introduced,

which allows the modeller to refer to this domain element in constraint or decision tables.

For instance, the modeller can use the constant Fleming to refer to the domain element

Fleming. In addition, the Constant table allows also other constants to be introduced.

Recall that such logical constants correspond to standard DMN variables. In our example

case, we use a constant Head of type Doctor, which means it can refer to any of the domain

elements Fleming, Freud, Heimlich, Eustachi or Golgi.

In the Relation table, a verb phrase can be declared as a relation on one or more given

types. For instance, the relation Doctor is on leave denotes for each Doctor whether

they are on leave. Similarly to functions, there is no strict syntax: n-ary predicates can

be defined by using n arguments in the name, for example, Doctor is available on

Day at Time is a relation with three arguments (respectively of the type Doctor, Day

and Time), that denotes whether a doctor is available on a specific day, at a specific time.

The Boolean table contains boolean symbols (i.e. propositions), which are either true

or false. An example is the boolean Complete, which denotes whether the planning is

complete.

5.2 Decision tables and constraint tables

As stated earlier in Section 2, a standard decision table uniquely defines the value of

its outputs. We extend DMN by allowing a new kind of table, called a constraint table,

which does not have this property.

Whereas decision tables only allow single values to appear in output columns, our

constraint tables allow arbitrary S-FEEL expressions in output columns. Each row of a

constraint table represents a logical implication, in the sense that, if the conditions on

the inputs are satisfied, then the conditions on the outputs must also be satisfied. This

means that if, for instance, none of the rows are applicable, the outputs can take on an

arbitrary value, as opposed to being forced to null. In constraint tables, no default values

can be assigned. Because of these changes, a set of cDMN tables does not define a single

solution, but rather a solution space containing a set of possible solutions.

We introduce a new hit policy to identify constraint tables. We call this the “Every”

hit policy, denoted as “E*”, because it expresses that every implication in the table must

be satisfied. An example of this can be found in Figure 4, which states that every doctor

can work a maximum of one shift per day.

cDMN does not only introduce constraint tables, it also extends the expressions that

are allowed in column headers, both in decision and constraint tables. There are two

types of headers in cDMN: the term-denoting headers, and the atom-denoting headers.

A term-denoting header can consist of the following five expressions.
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Fig. 5. Example of a constraint table with quantification in cDMN, defining that bordering
countries can not share colors.

1. A type Type. Such expression introduces a new variable x of type Type, which is

only defined in the scope of the table.

2. An expression of the form “Type called name”. This expression introduces a new

variable name of the type Type in the scope of the table.

3. A constant.

4. An arithmetic combination of term-denoting header expressions (such as a sum of

constants).

5. A function expression such as “Function of arg1 and . . . and argn”, where each of

the arg i is a term-denoting header expression, or a previously introduced variable.

This expression applies the function to its arguments.

An atom-denoting header consists of a relation expression such as “Relation for arg1
and . . . and argn,”, where each of the arg i is a term-denoting header expression, or a

previously introduced variable. This expression applies the relation to its arguments.

The first two kinds of term-denoting expressions are called variable header expressions.

They allow universal quantification in cDMN. Each input column whose header consists

of such a variable expression either introduces a new universally quantified variable (we

call this a variable-introducing column) or refers back to a variable introduced in a

preceding variable-introducing column. Once a variable x has been introduced by an

expression Type (item 1), subsequent uses of the expression Type refer back to this

variable x. Similarly, once a named variable name has been introduced by an expression

Type called name (item 2), subsequent uses of the expression name refer back to this

variable name.

The table in Figure 4 shows an example of quantification in cDMN. It introduces

universally quantified variables of the type Doctor and Day, places no restrictions on

these variables (i.e. “-”), and hence states that every doctor can only work a maximum

of one shift on every day. To illustrate the use of named variables, Figure 5 defines

variables c1 and c2, both of the type Country, and states that when those countries are

bordering, they cannot have the same color.

In summary, this section has discussed three ways in which cDMN extends DMN.

First, the hit policy “E*” changes the semantics of the table from a definition to a set of

implications. Second, constraint tables allow S-FEEL expressions in the output columns.

Third, cDMN allows quantification, functions, predicates to be used in both decision

tables and constraint tables.

5.3 Data tables

Typically, problems can be split up into two parts: (1) the general logic of the problem,

and (2) the specific problem instance that needs to be solved. Take for example the

map coloring problem: the general logic consists of the rule that two bordering countries

cannot share a color, whereas the instance of the problem is the specific map (e.g. Western
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Fig. 6. Data table describing countries and their neighbours.

Fig. 7. Goal table examples.

Europe) to color. cDMN extends the DMN standard to include data tables, which are used

to represent the problem instances, separating them from the general logic. The format

of a data table closely resembles that of a decision table, with a couple of exceptions.

Instead of a hit policy, a data table has “data table” in its name. Furthermore, only

basic values (integers, floats and elements of a type) are allowed in data tables. It is also

possible for columns to have more than one value in a certain cell, in which case the

row is instantiated for each of these values. Since functions in cDMN models are always

assumed to be total, a data table for a function should be complete, that is, there should

be a value defined for every possible combination of input arguments. As an example, a

snippet of the data table for the Map Coloring challenge is shown in Figure 6.

Data tables offer several advantages.

1. There is a methodological advantage: by separating data tables from decision tables,

it becomes easier to reuse the specification.

2. If the modeller chooses to enumerate the domain of a type in the glossary, then

the system checks that each value in a data table indeed belongs to the domain of

the appropriate type. This helps to prevent errors or typos in the input data or

glossary. If the modeller chooses not to enumerate a type in the glossary, then the

type’s domain defaults to the set of all values in the data table.

3. The cDMN solver is able to compute solutions faster, due to a different internal

representation between data tables and decision tables.

5.4 Goal table

A standard DMN model defines a deterministic decision procedure. It is typically always

used in the same way: the external inputs are supplied by the user, after which the values

of the output variables are computed by forward propagation.

When using the cDMN solver, this is no longer the case. We can fill in as many or as few

variables as we want, and use the cDMN specification to derive useful information about

the not-yet-known variables. By employing a goal table, modellers can state what the

specification is to be used for: model expansion or optimization. Model expansion is the

task of finding an interpretation for each of the symbols (a “model”, in the terminology

of classical logic) that satisfies all of the tables, and optimization is the task of finding

the model with either the lowest or highest value for a given term. Examples of such

tables are given in Figure 7.
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In summary, a cDMN model consists of

• A glossary;

• A set of data tables;

• A set of constraint tables;

• A set of decision tables;

• At most one goal table.

Apart from the glossary, all other kinds of tables are optional.

5.5 Semantics of cDMN

The meaning of a cDMN specification is given by a possible world semantics. As in

classical logic, a possible world is represented by a structure S for a vocabulary V . Such

a structure consists of a domain D and an assignment of each symbol σ ∈ V to an

appropriate relation/function σS on D. We will define the semantics of cDMN by means

of a translation to FO(·), which is a typed variant of classical FO that also extends it with

a number of additional constructs such as aggregates (Bruynooghe et al . 2015; De Cat

et al . 2018; Wittocx et al . 2008). In this typed logic, a number of unary predicates are

designated as types and each structure S must be such that the interpretations tSi of the

types ti form a partition of the domain of S. In addition, each relation/function σ has a

typing, which must be respected by the interpretation σS , that is, if a predicate P has

typing (T1, . . . , Tn) then PS ⊆ T1 × . . .× Tn.

We will define the set of possible worlds for a cDMN model as follows. The DMN

glossary defines a typed FO(·) vocabulary V in a straightforward way. The data tables,

together with the glossary, define a structure S for a part V ′ ⊆ V of this vocabulary:

that is, the domain of S is defined, as well as the interpretation σS of the symbols

σ ∈ V ′; however, for the remaining symbols σ ∈ V ′ \V , the data tables do not yet define

an interpretation. We will translate the decision and constraint tables into a theory T

of FO(·) sentences, such that the possible worlds of a cDMN model are precisely the

structures S′ that extend S with an interpretation for the remaining symbols V ′ \ V in

such a way that S′ |= T , that is, that all the decision/constraint tables are satisfied.

What remains is to transform each of the decision and constraint tables into an FO(·)
sentence. Decision tables retain their usual semantics as described by Calvanese et al .

(2018). We briefly recall this semantics. Each cell (i, j) of a decision table corresponds

to a formula Fij(x) in one free variable x. For instance, a cell “≤ 50” corresponds to the

formula “x ≤ 50”. A decision table with the Unique or Any hit policy with rows R, input

columns I and output columns O is a conjunction of material implications:

∧
i∈R

( ∧
j∈I

Fij(Hj) ⇒
∧
k∈O

Fik(Hk)

)
, (1)

where Hj is the header of column j. When a decision table is incomplete, it is possible

no rows match. In this case, the output given a special null value, that is,( ∧
i∈R

¬
∧
j∈I

Fij(Hj)

)
⇒

∧
k∈O

Hk = null . (2)
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In short, a decision table is satisfied when, for each row of which all the input conditions

are met, all output conditions are also met. When no rows are applicable, the output is

forced to null (or the table’s default value, if it has one).

For example, in standard DMN (which does not contain function or relation expres-

sions), the table in Figure 2 corresponds to the logical formula (AgeOfPerson ≥ 18 ⇒
PersonIsAdult = Yes) ∧ (AgeOfPerson < 18 ⇒ PersonIsAdult = No).

Data tables are simply a specific case of decision tables.

The semantics of simple constraint tables (without quantification and functions) is also

a conjunction of implications, as we described in Deryck et al. (2019). The semantics of

constraint tables and decision tables differ in the interpretation of incomplete tables:

when no rows are applicable in constraint tables, its outputs can take any arbitrary

value instead of being forced to null (or some default value).

We now extend this semantics to take variables and quantification into account. Our

first step is to define a function that maps cDMN expressions to terms. For the most

part, this definition corresponds to that of Calvanese et al . (2018).

Similarly to Calvanese et al., we translate most of the entries c in a cell (i, j) of a table

into a formula Fij(x) in one free variable x. For an expression e, we denote by t(e) the

logical term that corresponds to e. In standard DMN, the only expressions we need to

consider are constants and arithmetic expressions built from constants. In this case, we

can simply consider t(e) = e. We will show below how to extend t to the other kinds of

expressions in cDMN. We now define:

• If c is of the form “θe” with θ one of the relational operators {≤,≥,=, 	=}, then
Fij(x) is the formula x θ t(e);

• If c is of the form Not e, then Fij(x) is x 	= t(e);

• If c is a list e1, . . . , en, then Fij(x) is x = t(e1) ∨ . . . ∨ x = t(en). As a special case,

if c consists of a single expression e, then Fij(x) is x = t(e).

• If c is a range, for example [e1, e2), then Fij(x) is x ≥ t(e1) ∧ x < t(e2).

• A special case is when c contains “Yes” or “No”. In this case, the header of the

column must be an atom A and we translate it into Fij = A or Fij = ¬A, respec-
tively.

We now extend this transformation to take into account the fact that certain expres-

sions – which we call variable expressions – must be translated to FO variables. There are

two kinds of variable expressions, as we described in Section 5.2. We define a mapping

ν that maps each of these two kinds of cDMN variable expressions to a typed FO(·)
variable x of type T , which we denote as x[T ]. We first define a mapping νH for variable

expressions that appear in a header H of a variable introducing column:

• The name T of a type is a variable expression. We define νH(T ) = xT [T ], with xT

a new variable of type T .

• An expression e of the form “Type called v” is a variable expression. We define

νH(e) = v[Type].

We now define a general mapping ν as follows:

• If a variable expression e appears in a header H of a variable introducing column,

then ν(e) = νH(e).
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• If a variable expression appears elsewhere, then its value is νH(e), where H is the

unique variable introducing header that introduced the variable expression e (see

Section 5.2).

Such a variable expression introduces a new variable in the scope of the table at hand.

Given this function ν, we now define the following mapping tν(·) of cDMN expressions

to terms.

• The interpretation of a constant, integer, or floating point number expression is

the constant or number itself. That is, for a constant c, tν(c) = c; similarly, for an

integer or floating point number n, tν(n) = n;

• For an arithmetic or other expression e of the form e1θe2 with θ ∈ {+,−, ∗, /, <,

>,≤,≥,=, 	=,∨,∧}, we define tν(e) = tν(e1) θ tν(e2); in other words, the inter-

pretation of such an expression is the operator applied to the interpretation of its

subexpressions.

• The interpretation of a variable expression is the corresponding variable, that is,

for a variable expression v, we define tν(v) = ν(v).

• If c is of the form #Type, then tν(c) = #{x [Type] : true}, an FO(·) aggregate that

denotes the number of elements in the type itself.

• The interpretation of a function expression is that function applied to the interpre-

tation of each of its arguments. For a function expression F of the form “Function

of arg1 and . . . and argn”, we define tν(F ) = Function(tν(arg1), . . . , tν(argn)).

• The interpretation of a relation expression is that relation applied to the interpre-

tation of each of its arguments. For a relation expression R of the form “Relation

for arg1 and . . . and argn”, we define tν(X) = Relation(tν(arg1), . . . , tν(argn)).

We are now ready to define the semantics of a constraint table. If I is the set of

input columns of the table, O the set of output columns and V ⊆ I the set of variable

introducing columns, we define the semantics of the table T as the following formula φT :

∀
l∈V

ν(Hl) :
∧
i∈R

( ∧
j∈I

tν
(
Fij(tν(Hj))

) ⇒ ∧
k∈O

Fik

(
tν(Hk)

))
, (3)

where we quantify over each variable x of type U for which x[U ] is the variable ν(Hl) that

corresponds to the variable introducing column l ∈ V . In other words, for each tuple of

elements of the variables’ types, all table rows should be satisfied. Such a row is satisfied

when, if all input conditions are met, all its output conditions are also met.

For example, in Figure 4, ν(H1) = x[Doctor ] and tν(H1) = x, ν(H2) = y[Day ] and

tν(H2) = y, tν(H3) = nb shifts of (tν(H1), tν(H2)) = nb shifts of (x, y), which leads to

the formula:

∀x[Doctor ], y[Day ] : nb shifts of (x, y) ≤ 1.

which states that every person x works a maximum of 1 shift for every day y.

This semantics generalizes that of regular DMN tables. Indeed, in regular DMN, there

are no variables, thus V = ∅, and only constant symbols are allowed, so Fij(tν(Hj)) =

Fij(Hj). As a result, equation (3) simplifies to that in equation (1).

Decision tables with multiple hit policies have a different semantics. We first describe

the semantics of “C+”, “C<,” and “C>” tables, which are almost identical. We define
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Fig. 8. Decision table that determines the charge of a person, based on the contents of their
shopping basket.

the semantics of a C+ table with one output header Hk:

∀
w∈W

ν(Hw) : tν(Hk) =
∑
i∈R

sum
{
x̄ :

∧
j∈I

Fik

(
tν(Hj)

)
: Fik((x̄))

}
. (4)

Here, W ⊆ V is the subset of variable introducing columns V of which the variable

appears in the output header tν(Hk), x̄ are the variables introduced by the remaining

variable introducing columns U = V \W (so x̄ = (tv(H))H∈U ), and sum{x̄ : ϕ(x̄) : F (x̄)}
denotes the sum of all F (x) for which ϕ(x) holds.

This formula can be explained as follows. First, when no variables are introduced (i.e.

U = V = W = ∅), this formula sums the output values Fik for each of the rows i that

meet the input criteria
∧

j∈I Fij . This is precisely the definition of a standard DMN C+

table.

Second, when variables are introduced in a table, but the output header contains no

variables (W = ∅), it is again assigned a sum of terms. For each row i and tuple x̄ that

satisfy
∧

j∈I Fij(x̄) is satisfied, the value Fik(x̄) is included in the sum.

Third, when the output header does contain variables, the table defines the value not

of a single constant Hk, but of a function Hk(ν(w̄)). For each appropriate tuple ā, the

value of Hk(ā) is defined by the same sum as before.

We illustrate this semantics with an example. In the decision table shown in

Figure 8: W = {Person}, ν(Hw) = p[Person], tν(Hk) = Charge(p), x̄ = y[Item],

tν(F1k(x̄)) = Price(y) and
∧

j ∈ I Fij(tν(Hj)) = InBasket(y, p). This results in the

logical sentence:

∀ p[Person] : Charge(p) = sum{(Item) : InBasket(Item, p) : Price(Item)}.
The semantics of C< and C> tables are defined analogously, where, instead of summing

all values, the minimum and maximum value is selected, respectively.

Decision tables with a C# hit policy have a slightly different semantics, that is,

∀
w∈W

ν(Hw) : tν(Hk) =
∣∣{x | ∃

u∈U
ν(Hu) :

∨
i∈R

(
tν(Fik(x)) ∧

∧
j∈I

tν(Fij(Hj))
)}∣∣. (5)

Here, U and W are defined analogously as in equation (4).

This formula can be explained as follows: first, when the output header contains no

variables (W = ∅ and U = V ), the aggregate expression counts for how many x’s there

exists an assignment of values to the variables P that causes at least one row i of the

table to be applicable, in the sense than both its input and output columns are satisfied.

The output header is assigned the size of the set x given that there exists an expansion

of variables for which one of the rules that has x as output fires.

As before, when the output header does contain variables, for each tuple ν(w̄), the

value of Hk(ν(w̄)) is defined in this way.
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Fig. 9. Decision table that counts the number of invited guests.

For instance, in the decision table in Figure 9: W = ∅, tν(Hk) = NbInvitations,

U = {Person}, ν(Hu) = p[Person]. For the first row,
(
F1k(tν(x)) ∧

∧
j∈I F1j(tν(Hj))

is equivalent to x = p ∧ isFriend(p). The second row is defined analogously to the

first row. In the third row, F3k(tν(x)) ∧
∧

j∈I F3j(tν(Hj)) translates to x = Spouse(p) ∧
isFamily(p). Consequently, the table in Figure 9 is logically equivalent to:

NbInvitations =
∣∣{x | ∃p[Person] :

x = p ∧ isFriend(p)∨
x = p ∧ isFamily(p)∨
x = Spouse(p) ∧ isFamily(p)}∣∣.

(6)

In the table of Figure 9, the output header is a constant (NbInvitations), therefore

no quantification is required. The value of this constant is calculated as the number

of persons that are either friends, family or the spouse of family, while ensuring that

duplicate persons (such as friends that are also family) are not counted multiple times.

With this, we have defined the semantics of cDMN. The goal table that can also be

included in a cDMN specification does not contribute to the semantics, but simply tells

the cDMN solver what to compute; this can either be a set of possible worlds (one, all,

or a specific number of them) or the possible world that minimizes/maximizes a given

term.

6 Implementation

Because cDMN is more expressive than DMN, it cannot be handled by existing solvers.

We have therefore implemented a new solver4, which we describe in this section. It

consists of two parts: an off-the-shelf constraint solver (the IDP system (De Cat et al .

2018)), and a converter from cDMN to IDP input. In principle, any constraint solver

could be used, but we use the IDP system because it directly supports FO(·). The input

of the system is a cDMN model created in a spreadsheet in the .xlsx format. Such a

spreadsheet allows for straightforward creation of cDMN tables, and can show a good

overview over the entire model. The cDMN to IDP converter is written in Python, and

works in a two-step process.

First, the converter interprets all tables in a spreadsheet, and converts them into

Python objects. For example, the converter parses all the glossary tables and converts

them into a single Glossary object, which then creates Type and Predicate/Function

4 https://gitlab.com/EAVISE/cdmn/cdmn-solver
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Fig. 10. An overview of the inner workings of the cDMN solver.

objects. The constraint and decision tables are then evaluated individually. A lex/yacc

parser inspects each cell and parses it as a cDMN expression, such as “Function

of arg1 and arg2”. Such cDMN expressions are then interpreted using the con-

structed Glossary object, and transformed into an FO(·) expression, for example,

“Function(arg1, arg2)”. For example, the expression “nb shift of Golgi on d2” is trans-

formed into “nb shift of Doctor on Day(Golgi, d2 )”. Each cDMN table is then converted

to an FO(·) formula, as described in Section 5.5.

The created Python objects are then converted into IDP blocks. The knowledge in

the IDP system is structured in three such blocks: the vocabulary, the structure and the

theory. On top of these, there are also the main and term blocks. The main block is used

to specify the logical inference method that should be applied. cDMN makes use of two

of these inference methods: model expansion (find an expansion S′ ⊇ S of a structure S

for part of the vocabulary of a theory T such that S′ |= T ) and optimization (find the

model expansion of S w.r.t. T that minimizes/maximizes a given a numerical term). The

term block is used to specify the optimization term when optimizing.

An overview summarizing all the relations between cDMN tables, Python objects and

IDP blocks can be found in Figure 10. More detailed information about this conversion

can be found in the cDMN documentation5, along with an explanation of the usage of

the solver and concrete examples of cDMN implementations.

Besides cDMN tables, the solver also supports most standard DMN tables and con-

structs. More specifically, it supports tables with the “U”, “A”, “F”, “C+”, “C>,” and

“C<” hit policy, and the full S-FEEL language. While there is currently no support for

the “C”-tables, which collect the outputs of all matching rows in a list, it is possible to

use a cDMN relation to emulate such a table’s behavior.

Standard DMN specifications can be supplied in the form of a spreadsheet (as for

cDMN), but also in the XML format specified in the DMN standard. As such, the solver

can also be used as a drop-in replacement for standard DMN tools, allowing for a more

flexible usage of the knowledge in a DMN model (Vandevelde and Vennekens 2020).

Another feature of the solver is the ability to link to the IDP-based interface Interactive

Consultant (Carbonnelle et al . 2019), which is a user-friendly interface for interactively

solving configuration problems. It shows users the consequences of their choices and pro-

vides explanations for these consequences. Thus, by combining cDMN and the Interactive

5 www.cdmn.be
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Fig. 11. An extract of the map coloring solution in standard DMN with FEEL.

Consultant interface, a KB can be both constructed and interacted with in a user-friendly

manner.

7 Results and discussion

In this section, we first look at three of the DM community challenges, each showcasing a

feature of cDMN. For each challenge, we qualitatively compare the DMN implementations

from the DM Community website with our own implementation in cDMN. Afterward,

we compare all challenges on size and quality. We end our discussion with a section on

the integration of cDMN in business processes.

7.1 Constraint tables

Constraint tables allow cDMN to model constraint satisfaction problems in a straight-

forward way. For example, in Map Coloring, a map of six European countries must be

colored in such a way that no neighboring countries share the same color. For this chal-

lenge, a pure DMN implementation was submitted, of which Figure 11 shows an extract.

The implementation uses complicated FEEL statements to solve the challenge. While

these statements are DMN-compliant, they are nearly impossible for a business user to

write without help. In cDMN, we can use a single straightforward constraint table to

solve this problem, as shown earlier in Figure 5. Together with the glossary and a data

table (Figure 6), this forms a complete yet simple cDMN implementation.
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(a)

(b)

Fig. 12. An extract of Monkey Business implementation in (a) OpenRules and (b) cDMN,
specifying “The monkey who sits on the rock is eating the apple”.

7.2 Quantification

Quantification proves useful in the Monkey Business challenge. In this challenge, we want

to know for four monkeys what their favourite fruit and their favourite resting place is,

based on some information. There are two DMN-like submissions for this challenge: one

using Corticon, and one using OpenRules.

One of the pieces of information is: “The monkey who sat on the rock ate the apple.”

The OpenRules implementation has a table with a row for each monkey, which states

that if this monkey’s resting place was a rock, their fruit was an apple (Figure 12a). In

other words, for n monkeys, the OpenRules implementation of this rule requires n lines.

Because of quantification, cDMN requires only one row, regardless of how many monkeys

there are (Figure 12b). The Corticon implementation also uses a similar quantification

for this rule.

Another rule states that no two monkeys can have the same resting place or fruit. In

both the Corticon and OpenRules implementations, this is handled by two tables with

a row for each pair of monkeys. The Corticon tables are shown in Figure 13a. Each row

either states that two monkeys have different fruit, or that they have different place.

Therefore, n monkeys require n×(n−1)
2 rows. By contrast, the cDMN implementation in

Figure 13b requires only a single row to express the same.

We conclude that of all the solutions that were submitted to the DM Community, only

the cDMN solution has quantification powerful enough to represent the constraints of

this puzzle in a way that is independent of the size of the problem instance.

7.3 Optimization

In the Balanced Assignment challenge, 210 employees need to be divided into 12 groups,

so that every group is as diverse as possible. The department, location, gender, and title

of each employee is known. This is quite a complex problem to handle in DMN. As such,

of the four submitted solutions, only one was DMN-like: an OpenRules implementation,
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(a)

(b)

Fig. 13. An extract of the Monkey Business implementation in (a) Corticon and (b) cDMN,
defining that no monkeys share fruit and no monkeys share the same place.

Fig. 14. The decision tables and constraint table for Balanced Assignment.

using external CP/LP solvers. The logic for these external solvers is written in Java.

Although the code is fairly compact, it cannot be written without prior programming

knowledge. The optimization support in cDMN allows us to represent the problem

with two decision tables and one constraint table. The table Diversity score, shown in

Figure 14, adds 1 to the total diversity score if two similar people are in a different group.

Maximizing this score then results in the most diverse groups.

While it is possible to model this problem using the cDMN notation, the internal

engine in the cDMN solver cannot find a solution in reasonable time due to the large

problem size. However, our solver is only a reference implementation; it might be possible

to create other solvers for cDMN that would be capable of solving this problem.

7.4 Overview of all challenges

Of the 24 challenges we considered, cDMN is capable of successfully modeling 22. In

comparison, there were 12 OpenRules implementations and 12 Corticon implementations

submitted. Note that we cannot rule out that OpenRules and Corticon might be capable

of modeling more challenges than those for which a solution was submitted.

To compare cDMN to other approaches, we focus on two aspects. First, we quantita-

tively measure the size of the solution. This was measured by counting the number of

cells used in all the decision and constraint tables. We exclude meta information (such

as the cDMN glossary) and the specification of a concrete problem instance (such as the
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Table 3. Comparison of the number of cells used per implementation. Lowest number of

cells per challenge in grey. Other implementations: 1. FEEL, 2. Blueriq, 3. Trisotech, 4.

DMN

cDMN Corticon OpenRules Others

Who Killed A.? 53 54 176 /
Change Making 26 14 / /
A Good Burger 35 20 95 761

Define Dupl. 20 19 21 /
Coll. of Cars 26 45 / 481

Monkey Business 47 64 150 /
Vacation Days 38 32 31 142

Family Riddle 76 22 / /
Cust. Greeting 88 / 205 /
Online Dating 45 78 / /
Class. Employees 36 21 70 343

Reinder Order 14 64 111 3704

Zoo, Buses, Kids 24 / 43 /
Balanced Assign. 55 / 30 /
Vac. Days Adv. 124 / 97 /
Map Coloring 21 / / 344

Map Color Viol. 21 / / /
Crack The Code 48 / / /
Numerical Haiku 41 / /
Nim Rules 22 / 61 /
Doctor Planning 102 / / /
Calculator 33 / / /

cDMN data tables), because the ways in which different solvers handle this are too di-

verse to allow meaningful comparison. Table 3 shows that cDMN and Corticon alternate

between having the fewest cells, and that OpenRules usually has the most. In general,

OpenRules implementations require many cells because each cell is very simple. For in-

stance, even an “=” operator is its own cell. The Corticon implementations, on the other

hand, contain more complex cells, rendering them more compact.

Second, we also qualitatively assess the readability and scalability of the solutions.

The motivation for this is that model size, as we have defined it above, does not tell the

whole story. Indeed, using very complex expressions might lead to small tables, that are

nevertheless hard to figure out.

In general, we find that OpenRules implementations are usually easier to read than

their Corticon counterparts. An example comparison between cDMN and Corticon can

be seen in Figure 15a and 15c. Each figure shows a snippet of their Make a Good Burger

implementation, in which the food properties of a burger are calculated. While the Cor-

ticon implementation is more compact, it is less interpretable, less maintainable and

dependent on domain size. If the user wants to add an ingredient to the burger, com-

plex cells need to be changed. In cDMN, we introduce a type Ingredient, a number

of functions such as Amount of Ingredient and Fat in Ingredient, and calculate the

constant Total Fat as the product of the fat in a specific ingredient and the amount

of that ingredient used. This enables the user to simply add new ingredients or change

the amount of nutrition values in the data table, without having to change the model.
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(a)

(b)

(c)

Fig. 15. Calculating the food properties of a burger in Corticon, OpenRules, and cDMN.

The OpenRules implementation (Figure 15b) is fairly readable and modular too, but, it

requires a custom scalar product decision table.

Another comparison between cDMN and OpenRules can be found in Figure 16a and

16b. Here we show a snippet of the Who Killed Agatha? challenge. Both show a trans-

lation of the following rule: “A killer always hates, and is not richer than, his victim.”

By using constraints and a constant (Killer), cDMN allows us to form a more scalable

table. Indeed, if the police ever find a fourth suspect, they can easily add the person to

the data table without needing to change anything else.

In Section 3, we identified four relevant problem properties. We now suggest that each

property is tackled more easily by one or more of the additions cDMN proposes.

Aggregates needed Figure 15c shows how aggregates are both more readable and

scalable when using quantification. Moreover, cDMN allows the use of aggregates for

more complex operations such as optimization or defining constraints.

Constraints Constraints can be conveniently modeled by constraint tables, such as

the constraints in Figure 16b, which state that the killer hates Agatha, but is no richer

than her. The addition of constraint tables allows for an obvious translation from the

rule in natural language to the table.

Universal quantification Problems which contain universal quantification can be

compactly represented, as can be seen in Figure 4. This table states that no doctor

works more than one shift per day.

Optimization Because cDMN directly supports optimization, problems containing

this property are easily modeled. Furthermore, by the addition of more complex data

types, optimization terms can be defined in a more flexible manner. An example can be
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(a)

(b)

Fig. 16. Implementation of “A killer always hates and is no richer than their victim” in
OpenRules and cDMN.

found in Balanced Assignment in Figure 14. A summary of each problem property and

its cDMN answer can be found in Table 4.

7.5 Process integration

DMN models are often integrated into a larger business process model (Hasi et al . 2018;

Bazhenova et al . 2019). Such a business process model consists of a sequence of steps

that describe how to execute a specific process, such as for example the steps required

for verifying a customer’s eligibility for a bank loan. The Business Process Model and

Notation is a standard published by the OMG group for this purpose.

The integration of DMN into BPMN is motivated by the separation of concerns

paradigm (Biard et al . 2015), in which the decision logic is separated from the pro-

cess, to increase readability and maintainability of the overall process model. If a DMN

model is present in a BPMN model, it can be used to dictate the flow of the process

using a so-called gateway, depicted by a diamond. For example, the BPMN model in

Figure 17 describes the flow for buying a ticket to a museum. After a visitor has selected

the exhibits they want to visit, the price of the ticket is determined by the decision model

shown in Figure 1. The output of the decision model then dictates whether a payment

is required, or if the ticket can be printed directly (in the event that only free exhibits

were selected).

In principle, cDMN models could also be used in a BPMN model to direct the flow of

a process. When a DMN model is used in BPMN, the process is always directed based

on the value of the top level variable (such as Price > 0 or Eligible = Yes) of the DMN

model. By contrast, the integration of cDMN also allows for other criteria. For example,

the model in Figure 18 describes the process of coloring a map of countries, based on a

list of countries and a list of possible colors. Here, we have added a gateway that verifies

if a suitable solution was found. If none was found (because too few colors were supplied),

more colors are added until a solution becomes possible. In other words, the direction of

the process is based on whether or not a satisfying solution for the cDMN constraints
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Table 4. Comparison between the problem properties and their cDMN answers

Property cDMN answer

Aggregates needed Quantification, expressive data
Constraints Constraint tables, quantification, expressive data
Universal quantification Quantification
Optimization Optimization, expressive data

Fig. 17. Example of a BPMN model with DMN.

Fig. 18. Example of a BPMN model with cDMN.

could be found. Other examples of possible gateway criteria are verifying if at least n

solutions exist, if a solution with a value for variable x greater than 5 exists, what the

maximum value of variable y is, and more.

8 Conclusions

This paper presents an extension to DMN, which aims at solving complex problems

while maintaining DMN’s level of readability. This extension, which we call cDMN, adds

constraint modeling, more expressive data representations (such as types and functions),

and quantification.

Constraint modeling allows a user to define a solution space instead of a single solu-

tion. The cDMN solver can generate a desired number of models, or generate the model

which optimizes the value of a specific term. Unlike DMN, which only knows constants,

cDMN also supports the use of functions and predicates, which allow for more flexible

representations. Together with quantification, this allows tables to be constructed in a

compact and straightforward manner, while being independent of the size of the problem.

This improves maintainability and scalability of tables.
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By comparing our cDMN implementations to the implementations of other state-of-

the-art DMN-like solvers, we can conclude that cDMN succeeds in increasing the expres-

siveness of DMN. Moreover, our qualitative analysis of these examples suggest that the

cDMN representations are indeed typically quite readable and maintainable. In future

work, we plan to investigate this in a more detailed and quantifiable way and to compare

the user-friendliness and complexity of cDMN to that of DMN itself.

Other future work consists of possibly extending the cDMN notation to be able to rep-

resent disjunctions in the output of a constraint table, existential quantification, quantifi-

cation in output columns, and increase compactness of the created models. Additionally,

we are planning on testing this notation in a number of real-life use-cases to verify its

applicability in a multitude of domains. The insights gained during the implementation

of these use cases will allow us to define a graph-based representation of cDMN models,

akin to the DRD for DMN.
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Wittocx, J., Mariën, M. and Denecker, M. 2008. The IDP system: A model expansion
system for an extension of classical logic. Proceedings of the 2nd Workshop on Logic and
Search, 153–165.

https://doi.org/10.1017/S1471068421000491 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000491

	Introduction
	Preliminaries: DMN
	Challenges overview
	Related work
	cDMN: Syntax & semantics
	Glossary
	Decision tables and constraint tables
	Data tables
	Goal table
	Semantics of cDMN

	Implementation
	Results and discussion
	Constraint tables
	Quantification
	Optimization
	Overview of all challenges
	Process integration

	Conclusions
	References

