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WEYL’S THEOREM FOR TENSOR PRODUCTS
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Abstract. Suppose that 4 and B are ‘isoloid’ operators acting on a complex
Banach space, that is, every isolated point of their spectra is an eigenvalue. In this note
it is shown that if Weyl’s theorem holds for both 4 and B then it holds for 4 ® B.
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Throughout this note let X’ denote an infinite dimensional complex Banach space.
Let £(X) denote the algebra of bounded linear operators on X'. If T' € L(X) write N(T)
and R(T) for the null space and range of T'; o (T) for the spectrum of T'; (T for the
set of eigenvalues of T'. Recall ([4], [5]) that T € L(X) is called upper semi-Fredholm if
it has closed range with finite-dimensional null space and lower semi-Fredholm if it has
closed range with its range of finite co-dimension. If 7 is either upper or lower semi-
Fredholm, we call it semi-Fredholm and if T is both upper and lower semi-Fredholm,
we call it Fredholm. The index of a semi-Fredholm operator 7 € L(X) is given by

ind(T) = dim N(T) — dim X/R(T).

An operator T € L(X) is called Weyl if it is Fredholm of index zero. The essential
spectrum o,(7T) and the Weyl spectrum w(7T) of T' € L(X) are defined by

0.(T)={\ € C: T — Al is not Fredholm};
o(T)={x € C: T — Al is not Weyl}:

then (cf. [5])
0o(T) S o(T) S o(T)Uacco(T) and o(T) S noo(T),

where we write acc K and n K for the accumulation points and the polynomially-convex
hull, respectively, of K € C. We also write iso K = K\acc K and

700(T) := {1 € is00(T) : 0 < dim (T — AI)~1(0) < o0}
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for the isolated eigenvalues of finite multiplicity. We say that Weyl’s theorem holds for
T € L(X) if there is equality

o (T)\(T) = 70o(T). .1

H. Weyl [10] discovered that the equality (0.1) holds for every hermitian operator.
Weyl’s theorem has been extended from hermitian operators to hyponormal operators
and to Toeplitz operators by L. Coburn [3], to several classes of operators including
seminormal operators by S. Berberian [1], [2], and to a few classes of Banach space
operators [6], [7], [8]. In this note we examine Weyl’s theorem for 4 ® B when Weyl’s
theorem holds for 4 and B.

Recall that an operator 7' € L(X) is called an isoloid operator if iso o (T) C mwo(T),
1.e., every isolated point of the spectrum is an eigenvalue (cf. [2], [8]).

Our main theorem now follows.

THEOREM 1. Suppose A, B € L(X) are isoloid. If Weyl’s theorem holds for both A
and B then it holds for A ® B.

Proof. We first show that
o(4® B)\w(4 ® B) € mo(A4 ® B). (D

To show this it suffices to show that 0(4 ® B)\w(4 ® B) Cisoo(4A ® B). Assume
to the contrary that A € 0(4 ® B)\w(A® B) and X € acco(4 ® B). Since A €
acc (o0(A) - o(B)), it follows that A € [acco(A) - 0(B)]U [o(A) - acc o (B)]: indeed, more
generally, if H and K are compact subsets of C then acc(H - K) C [(acc H) - K|U[H -
(acc K)]. But since Weyl’s theorem holds for 4 and B, we have that acco(A4) C w(A)
and acco(B) C w(B). Therefore

A€ w(d) o(B) U oc(A):w(B)=w(d® B),
giving a contradiction. This proves (1). For the reverse inclusion we first observe

[N(4) ® HIU[H ® N(B)] € N(4 ® B); (2)
NA—-pul)@ N(B—vl) S N(A® B— uv(I ®I)) foreach u,v e C: 3)

indeed the inclusion (2) is evident and the inclusion (3) comes from the observation

[AQB— I @DIx®y)=[(4—-pnl)® B+ pnl ® (B-—v)](x®y)
=(A4—pu)x® By + ux® (B—vi)y.

Suppose A € mpo(4 ® B). We then proceed as follows.

Claim 1. X # 0.

Claim 2. If . = pv with yu € o(A4) and v € 0(B), then u € isoo(4) and v € iso o (B).

Claim 3. If . = pv with u € 6(4) and v € o(B) then 4 — ul and B — v[ are both
Weyl.

For Claim 1, we assume to the contrary that A = 0. Thus 0 € isoo(4 ® B), and
hence 0 € isoo(A4) or 0 € isoo(B). But since 4 and B are isoloid it follows that
0 € mp(A) or 0 € my(B). Therefore by (2) N(4 ® B) is infinite dimensional, which
contradicts our assumption 0 € mpo(4 ® B).
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To prove Claim 2 we write A = uv with u € 6(A4), v € o(B) and A # 0. Assume to
the contrary that u € acco(A4). Then we can find a sequence {u,} of distinct numbers
in o(A4) such that lim u,, = u, so that lim w,,v = A, which shows that A € acco(4 ® B),
a contradiction; therefore i € iso 0(A4) and similarly v € iso o(B).

Towards Claim 3, note that u € my(4) and v € 7y(B) by Claim 2 because 4 and
B are isoloid. We assume to the contrary that 4 — ul is not Weyl. Thus u ¢ m(A4)
because A4 obeys Weyl’s theorem. So we have that N(4 — wu[) is infinite dimensional.
Also since N(B — vI) # {0}, it follows from (3) that N(4 ® B — uv(I ® I)) is infinite
dimensional, which contradicts our assumption A € mp(A4 ® B). This compltes the
proof of Claim 3.

From Claims 1,2, and 3 we can conclude that if A € myo(4 ® B) then A ¢ w(A) -
0(B) U 0(A) - w(B), and hence A € 0(4 ® B)\w(4 ® B). Therefore

m00(A ® B) € 0(4 ® B)\w(4 @ B). “

By (1) and (4) we can conclude that Weyl’s theorem holds for 4 ® B. O

ExaMPLE 2. (a) The “isoloid” condition is essential in Theorem 1. To see this let
T be an injective quasinilpotent operator on £, and define

AN
Il
c o~
SIS

0
0 :CoColt, — CoCois.
+

T+2

Then
o(4)={1,2,4}, o(4)=1{2}, and m(4) = {1, 4};
so Weyl’s theorem holds for A4, while

(A ® A) = () - 5(4) = {1,2,4,8, 16};
(AR A)=0(A) - w(d)=1{2,4,8};
JTOO(A ®A) = {19 47 16}9

so Weyl’s theorem fails for 4 ® 4. Note that 4 is not isoloid.
(b) On the other hand, the condition “Weyl’s theorem holds for both 4 and B”

is essential in Theorem 1. If Weyl’s theorem does not hold for either 4 or B, then
Theorem 1 may fail. To see this, consider the operators on £, @ ¢, defined by

A=UoU* and B=(—- UU*)® O,

where U is the unilateral shift on £,. Let D and T denote the closed unit disk and the unit
circle, respectively. Then we have that (i) 4 and B are both isoloid; (ii) o(4) = D and
w(A) =T, and hence Weyl’s theorem fails for 4; (iii)) o(B) = {0, 1}, w(B) = {0} and
moo(B) = {1}, and hence Weyl’s theorem holds for B; (iv) 0(4 ® B) = D and w(4 ®
B) =T U {0}, and hence Weyl’s theorem fails for 4 ® B.

(c) The converse of Theorem 1 may not be true in general. Indeed if 4 = U & U*
as in (b) then 6(4A® 1) =D, (4 ® 1) =D and mp(4 ® 1) = @, which implies that
Weyl’s theorem holds for 4 ® 1 although 4 does not satisfy Weyl’s theorem.
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If H is a complex Hilbert space and 7' € L(H), write W(T') for the numerical range
of T. It is also familiar that W(T) is convex and convo(7T) C cl W(T). An operator
T is called convexoid if convo (T) = cl W(T). Also T is called restriction-convexoid if
the restriction of 7" to every invariant subspace is convexoid and is called reduction-
convexoid if every direct summand of 7 is convexoid. It is known [2] that hyponormal
= restriction-convexoid = isoloid.

COROLLARY 3. If 'H is a complex Hilbert space and A, B € L(H) are restriction-
convexoid then Weyl's theorem holds for A ® B.

Proof. By an argument of Prasanna [9, Theorem 2.1], Weyl’s theorem holds for
restriction-convexoid operators. Thus the result immediately follows from Theorem 1.
O

Weyl’s theorem may fail for reduction-convexoid operators. For example if 4 =
U @& U*, where U is the unilateral shift on £,, then A4 is reduction-convexoid because
U and U* are both convexoid and have no nontrivial reducing subspaces, while Weyl’s
theorem fails for 4. Note that A4 is not restriction-convexoid.
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