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WEYL’S THEOREM FOR TENSOR PRODUCTS
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Abstract. Suppose that A and B are ‘isoloid’ operators acting on a complex
Banach space, that is, every isolated point of their spectra is an eigenvalue. In this note
it is shown that if Weyl’s theorem holds for both A and B then it holds for A ⊗ B.
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Throughout this note let X denote an infinite dimensional complex Banach space.
Let L(X ) denote the algebra of bounded linear operators on X . If T ∈L(X ) write N(T)
and R(T) for the null space and range of T ; σ (T) for the spectrum of T ; π0(T) for the
set of eigenvalues of T . Recall ([4], [5]) that T ∈L(X ) is called upper semi-Fredholm if
it has closed range with finite-dimensional null space and lower semi-Fredholm if it has
closed range with its range of finite co-dimension. If T is either upper or lower semi-
Fredholm, we call it semi-Fredholm and if T is both upper and lower semi-Fredholm,
we call it Fredholm. The index of a semi-Fredholm operator T ∈L(X ) is given by

ind(T) = dim N(T) − dim X/R(T).

An operator T ∈L(X ) is called Weyl if it is Fredholm of index zero. The essential
spectrum σe(T) and the Weyl spectrum ω(T) of T ∈L(X ) are defined by

σe(T) = {λ ∈ � : T − λI is not Fredholm};
ω(T) = {λ ∈ � : T − λI is not Weyl}:

then (cf. [5])

σe(T) ⊆ ω(T) ⊆ σe(T) ∪ acc σ (T) and ω(T) ⊆ η σe(T),

where we write acc K and η K for the accumulation points and the polynomially-convex
hull, respectively, of K ⊆ �. We also write iso K = K\acc K and

π00(T) := {λ ∈ iso σ (T) : 0 < dim (T − λI)−1(0) < ∞}
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for the isolated eigenvalues of finite multiplicity. We say that Weyl’s theorem holds for
T ∈ L(X ) if there is equality

σ (T)\ω(T) = π00(T). (0.1)

H. Weyl [10] discovered that the equality (0.1) holds for every hermitian operator.
Weyl’s theorem has been extended from hermitian operators to hyponormal operators
and to Toeplitz operators by L. Coburn [3], to several classes of operators including
seminormal operators by S. Berberian [1], [2], and to a few classes of Banach space
operators [6], [7], [8]. In this note we examine Weyl’s theorem for A ⊗ B when Weyl’s
theorem holds for A and B.

Recall that an operator T ∈ L(X ) is called an isoloid operator if iso σ (T) ⊆ π0(T),
i.e., every isolated point of the spectrum is an eigenvalue (cf. [2], [8]).

Our main theorem now follows.

THEOREM 1. Suppose A, B ∈ L(X ) are isoloid. If Weyl’s theorem holds for both A
and B then it holds for A ⊗ B.

Proof. We first show that

σ (A ⊗ B)\ω(A ⊗ B) ⊆ π00(A ⊗ B). (1)

To show this it suffices to show that σ (A ⊗ B)\ω(A ⊗ B) ⊆ iso σ (A ⊗ B). Assume
to the contrary that λ ∈ σ (A ⊗ B)\ω(A ⊗ B) and λ ∈ acc σ (A ⊗ B). Since λ ∈
acc (σ (A) · σ (B)), it follows that λ ∈ [acc σ (A) · σ (B)] ∪ [σ (A) · acc σ (B)]: indeed, more
generally, if H and K are compact subsets of � then acc (H · K) ⊆ [(acc H) · K ] ∪ [H ·
(acc K)]. But since Weyl’s theorem holds for A and B, we have that acc σ (A) ⊆ ω(A)
and acc σ (B) ⊆ ω(B). Therefore

λ ∈ ω(A) · σ (B) ∪ σ (A) · ω(B) = ω(A ⊗ B),

giving a contradiction. This proves (1). For the reverse inclusion we first observe

[N(A) ⊗ H] ∪ [H ⊗ N(B)] ⊆ N(A ⊗ B); (2)

N(A − µI) ⊗ N(B − νI) ⊆ N(A ⊗ B − µν(I ⊗ I)) for each µ, ν ∈ �: (3)

indeed the inclusion (2) is evident and the inclusion (3) comes from the observation

[A ⊗ B − µν(I ⊗ I)](x ⊗ y) = [(A − µI) ⊗ B + µI ⊗ (B − νI)](x ⊗ y)

= (A − µI)x ⊗ By + µx ⊗ (B − νI)y.

Suppose λ ∈ π00(A ⊗ B). We then proceed as follows.

Claim 1. λ �= 0.
Claim 2. If λ = µν with µ∈ σ (A) and ν ∈ σ (B), then µ ∈ iso σ (A) and ν ∈ iso σ (B).
Claim 3. If λ = µν with µ ∈ σ (A) and ν ∈ σ (B) then A − µI and B − νI are both

Weyl.

For Claim 1, we assume to the contrary that λ = 0. Thus 0 ∈ iso σ (A ⊗ B), and
hence 0 ∈ iso σ (A) or 0 ∈ iso σ (B). But since A and B are isoloid it follows that
0 ∈ π0(A) or 0 ∈ π0(B). Therefore by (2) N(A ⊗ B) is infinite dimensional, which
contradicts our assumption 0 ∈ π00(A ⊗ B).
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To prove Claim 2 we write λ = µν with µ ∈ σ (A), ν ∈ σ (B) and λ �= 0. Assume to
the contrary that µ ∈ acc σ (A). Then we can find a sequence {µn} of distinct numbers
in σ (A) such that lim µn = µ, so that lim µnν = λ, which shows that λ ∈ acc σ (A ⊗ B),
a contradiction; therefore µ ∈ iso σ (A) and similarly ν ∈ iso σ (B).

Towards Claim 3, note that µ ∈ π0(A) and ν ∈ π0(B) by Claim 2 because A and
B are isoloid. We assume to the contrary that A − µI is not Weyl. Thus µ /∈ π00(A)
because A obeys Weyl’s theorem. So we have that N(A − µI) is infinite dimensional.
Also since N(B − νI) �= {0}, it follows from (3) that N(A ⊗ B − µν(I ⊗ I)) is infinite
dimensional, which contradicts our assumption λ ∈ π00(A ⊗ B). This compltes the
proof of Claim 3.

From Claims 1,2, and 3 we can conclude that if λ ∈ π00(A ⊗ B) then λ /∈ ω(A) ·
σ (B) ∪ σ (A) · ω(B), and hence λ ∈ σ (A ⊗ B)\ω(A ⊗ B). Therefore

π00(A ⊗ B) ⊆ σ (A ⊗ B)\ω(A ⊗ B). (4)

By (1) and (4) we can conclude that Weyl’s theorem holds for A ⊗ B. �

EXAMPLE 2. (a) The “isoloid” condition is essential in Theorem 1. To see this let
T be an injective quasinilpotent operator on �2 and define

A =




1 0 0
0 4 0
0 0 T + 2


 : � ⊕ � ⊕ �2 −→ � ⊕ � ⊕ �2.

Then

σ (A) = {1, 2, 4}, ω(A) = {2}, and π00(A) = {1, 4};

so Weyl’s theorem holds for A, while

σ (A ⊗ A) = σ (A) · σ (A) = {1, 2, 4, 8, 16};
ω(A ⊗ A) = σ (A) · ω(A) = {2, 4, 8};

π00(A ⊗ A) = {1, 4, 16};

so Weyl’s theorem fails for A ⊗ A. Note that A is not isoloid.

(b) On the other hand, the condition “Weyl’s theorem holds for both A and B”
is essential in Theorem 1. If Weyl’s theorem does not hold for either A or B, then
Theorem 1 may fail. To see this, consider the operators on �2 ⊕ �2 defined by

A = U ⊕ U∗ and B = (I − UU∗) ⊕ 0∞,

where U is the unilateral shift on �2. Let � and � denote the closed unit disk and the unit
circle, respectively. Then we have that (i) A and B are both isoloid; (ii) σ (A) = � and
ω(A) = �, and hence Weyl’s theorem fails for A; (iii) σ (B) = {0, 1}, ω(B) = {0} and
π00(B) = {1}, and hence Weyl’s theorem holds for B; (iv) σ (A ⊗ B) = � and ω(A ⊗
B) = � ∪ {0}, and hence Weyl’s theorem fails for A ⊗ B.

(c) The converse of Theorem 1 may not be true in general. Indeed if A = U ⊕ U∗

as in (b) then σ (A ⊗ 1) = �, ω(A ⊗ 1) = � and π00(A ⊗ 1) = ∅, which implies that
Weyl’s theorem holds for A ⊗ 1 although A does not satisfy Weyl’s theorem.
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If H is a complex Hilbert space and T ∈ L(H), write W (T) for the numerical range
of T . It is also familiar that W (T) is convex and conv σ (T) ⊆ cl W (T). An operator
T is called convexoid if conv σ (T) = cl W (T). Also T is called restriction-convexoid if
the restriction of T to every invariant subspace is convexoid and is called reduction-
convexoid if every direct summand of T is convexoid. It is known [2] that hyponormal
⇒ restriction-convexoid ⇒ isoloid.

COROLLARY 3. If H is a complex Hilbert space and A, B ∈ L(H) are restriction-
convexoid then Weyl’s theorem holds for A ⊗ B.

Proof. By an argument of Prasanna [9, Theorem 2.1], Weyl’s theorem holds for
restriction-convexoid operators. Thus the result immediately follows from Theorem 1.

�

Weyl’s theorem may fail for reduction-convexoid operators. For example if A =
U ⊕ U∗, where U is the unilateral shift on �2, then A is reduction-convexoid because
U and U∗ are both convexoid and have no nontrivial reducing subspaces, while Weyl’s
theorem fails for A. Note that A is not restriction-convexoid.
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