
J. Fluid Mech. (2024), vol. 999, A71, doi:10.1017/jfm.2024.923

U-shaped disks in Stokes flow: chiral
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Draga Pihler-Puzović1 and Matthias Heil2,†
1Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
2Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

(Received 4 June 2024; revised 5 September 2024; accepted 15 September 2024)

We study the sedimentation of U-shaped circular disks in the Stokes limit of vanishing
inertia. We simulate the flow past such disks using a finite-element-based solution of
the three-dimensional Stokes equations, accounting for the integrable singularities that
develop along their edges. We show that the purely vertical sedimentation of such disks in
their upright (upside-down) U orientation is unstable to perturbations about their pitching
(rolling) axes. The instability is found to depend only weakly on the size of the container
in which the disks sediment, allowing us to analyse their behaviour based on the resistance
matrix which governs the evolution of the disk’s six rigid-body degrees of freedom in an
unbounded fluid. We show that the governing equations can be reduced to two ordinary
differential equations which describe the disk’s inclination against the direction of gravity.
A phase-plane analysis, the results of which are in good agreement with experiments,
reveals that the two instabilities generally cause the disk to sediment along complex
spiral trajectories while it alternates between pitching- and rolling-dominated motions. The
chirality of the trajectories is set by the initial conditions rather than the (non-chiral) shape
of the disk. For certain initial orientations, the disk retains its inclination and sediments
along a perfectly helical path. The observed behaviour is fundamentally different from that
displayed by flat circular disks which sediment without any reorientation. We therefore
study the effect of variations in the disk’s curvature to show how in the limit of vanishing
curvature the behaviour of a flat disk is recovered.
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1. Introduction

The sedimentation of particles in a viscous fluid is a classical problem in fluid mechanics,
and plays an important role in many industrial and natural processes. For example, the
fate of microplastics found on the seabed is a prominent environmental question, which
requires predictions of particle transport, deposition and resuspension (Claessens et al.
2013; Turner 2021). In many applications the flow induced by sedimenting particles is
inertially dominated and much of the particles’ complex behaviour is due to the associated
nonlinear effects (see e.g. Ern et al. (2012) and Heisinger, Newton & Kanso (2014) for an
overview of different behaviours exhibited by planar disks sedimenting at finite Reynolds
number). However, handling and processing of microscale materials, such as ultrathin
graphene flakes and other colloidal objects in liquid environments typically involves flows
at small Reynolds number (Khan et al. 2012; Ma et al. 2021; Silmore, Strano & Swan
2021). In the same inertialess regime, single particle sedimentation has been utilised for
understanding the size-separation of DNA and other biological proteins (Weber et al.
2013), and improving clinical blood tests (Peltomäki & Gompper 2013).

In the Stokes limit of vanishing inertia, the sedimenting particle’s shape is the key
factor determining its motion, and the behaviour of many simple objects in unbounded
fluids is well understood. For instance, at zero Reynolds number spheres sediment purely
vertically (Stokes 1851), while straight rods and flat circular disks sediment with a constant
horizontal drift and without changing their orientation (Brenner 1963). Conversely, chiral
particles (such as a propeller-shaped objects) continually reorient while sedimenting,
resulting in spiral trajectories (Doi & Makino 2005; Witten & Diamant 2020). The sense
of rotation of such screw-like objects is determined by their geometry (see Gonzalez, Graf
& Maddocks (2004) for a comprehensive analysis). However, despite the existence of a
well-established theoretical framework, which uses the mobility or resistance matrix to
link the particle’s translational velocity and its rate of rotation to the forces and torques
acting on it (Happel & Brenner 1983), predicting the qualitative behaviour of an arbitrarily
shaped sedimenting particle in an infinite fluid at zero Reynolds is still an open question
(Collins et al. 2021; Huseby et al. 2024).

The behaviour of individual particles has an important effect on their collective
behaviour in dilute suspensions, i.e. in a regime when interactions between particles can be
neglected. For instance, a dilute cloud of spheres will sediment without changing its shape
while dilute clouds of straight rods or planar disks will disperse because each individual
particle will move in a different direction and with a different speed, depending on the
particles’ random initial orientations. To the best of our knowledge, all chiral objects
investigated so far sediment with non-zero horizontal velocities, but their spiral trajectories
imply that, on average, they sediment purely vertically (Witten & Diamant 2020; Huseby
et al. 2024). This implies that a dilute cloud of such objects sediment with net zero
horizontal dispersion.

If the sedimenting particles are sufficiently flexible, the deformation induced by the
fluid traction can change their behaviour. For instance, sedimenting elastic fibres tend to
deform into a U-shape and then right themselves until they reach an upright-U orientation,
following which they sediment steadily without any horizontal drift – unlike their rigid
counterparts. The sedimentation of such flexible fibres has been studied extensively (see,
e.g. Li et al. 2013; Marchetti et al. 2018), but there is far less work on the effect of
fluid–structure interaction on the sedimentation of other objects. Recent experiments of
Miara (2024) and numerical situations of Yu & Graham (2024), showed that sedimenting
flexible sheets can also deform into a U-shape, similar to the shape adopted by sedimenting
fibres.
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Figure 1. (a) Schematic of the isometric deformation of a flat circular disk onto the surface of a cylinder of
radius Rc. (b–e) Tait–Bryan angle convention following the intrinsic yaw → pitch → roll sequence, showing
(b) the reference frame F0, (c,d) the orientation in the intermediate frames F1 and F2, (e) the body frame Fb,
centred at the disk’s centre of mass.

Motivated by these observations, Miara et al. (2024) performed an experimental study
of the sedimentation of such objects, focusing on the behaviour of rigid U-shaped disks
which we created by the isometric deformation of a circular disk onto the surface of a
circular cylinder, as shown in figure 1(a). The resulting U-shaped disk has two planes
of symmetry and, crucially, is non-chiral. We studied the sedimentation of such disks in
a viscous fluid, with the viscosity and density difference chosen such that the resulting
flow had a small Reynolds number. Our experiments showed that over the experimentally
observable length scales (limited by the size of the tank in which the experiments were
performed), such disks never settled into a steady motion but continued to reorient, with
concomitant continuous changes to their velocity. A careful analysis of the observed
trajectories showed that this behaviour is due to the disks undergoing a periodic sequence
of rolling and pitching motions (see figure 1b–e for an illustration of the terminology
and the angles used to describe the disk’s orientation) which resulted in a sedimentation
along complicated spiral trajectories whose chirality is determined by the disk’s initial
orientation, rather than being set by the (non-chiral) particle shape (Miara et al. 2024).

The aim of the present paper is to analyse this behaviour using a combination
of numerical and analytical approaches, in order to elucidate the underlying physical
mechanisms and the resulting dynamics. We initially formulate the problem (based on
the solution of the three-dimensional (3-D) Stokes equations, coupled to the dynamics
of the sedimenting U-shaped disk) in a finite domain, mimicking the geometry of the
finite-sized tank used in the experiments. We assume that the disk sediments quasisteadily
so that the body force due to the (negative) buoyancy exactly balances the fluid traction.
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We then use numerical simulations to assess the stability of the disk when it sediments
purely vertically in an upright-U orientation along the centre of a finite cubic tank. This
shows that, in this orientation, the disk is stable to perturbations about its roll axis (similar
to the behaviour observed for sedimenting U-shaped fibres which reorient towards their
upright-U orientation). However, the disk is found to be unstable to perturbations about its
pitching axis. We show that this behaviour is only weakly affected by the walls of the finite
computational domain. This allows us to analyse the disk’s behaviour in an unbounded
fluid, using an approximate resistance matrix obtained from a small number of numerical
solutions of the full 3-D Stokes equations in our finite computational domain. We reduce
the six coupled ordinary differential equations (ODEs) which govern the disk’s motion and
reorientation to a system of two coupled ODEs for the evolution of the disk’s roll and pitch
angles. We then employ a phase-space analysis to elucidate the disk’s behaviour and thus
explain the mechanism responsible for the spiral trajectories observed in the experiments.

2. Problem set-up

We consider a thin disk of area A, nominal uniform thickness h and homogeneous density
ρd, sedimenting in a fluid of viscosity μ and density ρf = ρd − �ρ, where �ρ > 0, with
gravity of strength g acting in the negative x3-direction. We non-dimensionalise all lengths
on the characteristic length L = (A/π)1/2, the velocity on U = �ρgL2/μ, the pressure on
the associated viscous scale μU/L and time on L/U . We restrict ourselves to the case of
small density differences so that the Reynolds number Re = ρfUL/μ is sufficiently small
that inertia can be neglected. The flow is then governed by the non-dimensional steady
Stokes equations

∇p = ∇2u − e3 and ∇ · u = 0. (2.1a,b)

The velocity field is subject to no-slip boundary conditions on the surface of
the sedimenting disk. We treat the disk as two-dimensional and parameterise the
non-dimensional position vector rd to its surface, ∂ΩS, by two surface coordinates (ξ1, ξ2)
so that rd(ξ1, ξ2, t). Denoting the position vector to the disk’s centre of mass by rM(t),
and the vector which gives the disk’s instantaneous rate of rotation by ω(t), the no-slip
condition becomes

u (rd(ξ1, ξ2), t) = drM(t)
dt

+ ω(t) × (rd(ξ1, ξ2, t) − rM(t)) . (2.2)

When studying the sedimentation in a finite-sized container, we apply no-slip conditions
on the container walls and impose zero vertical velocity and zero tangential stress at the
free surface (which we assume to remain flat) to match the experimental conditions used
in Miara et al. (2024).

For modest density ratios, such that (ρd/ρf )Re � 1 the disk’s inertia can be neglected
and the equations governing the evolution of rM(t) and ω(t) are given by the balance of
forces and torques on the disk: the fluid traction has to balance the net body force, F
(non-dimensionalised on �ρgL3), so∫

∂ΩS

τ · n̂ dS = F . (2.3)

The net torque of the fluid traction has to balance any externally applied torque, T M
(non-dimensionalised on �ρgL4), where we compute both torques about the disk’s centre
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of mass, so ∫
∂ΩS

(rd − rM) × (
τ · n̂

)
dS = T M. (2.4)

Throughout this paper we use the subscript ‘M’ to identify quantities that are evaluated
relative to the disk’s centre of mass.

We now assume a Newtonian constitutive relation, and so the components of the stress
tensor τ are given by τij = −pδij + (∂ui/∂xj + ∂uj/∂xi), the vector n̂ is the outer unit
normal to the disk, and the surface ∂ΩS encompasses both sides of the disk. For a freely
sedimenting disk, the net body force is due to buoyancy, F = −πh/L e3, and there is no
net torque, T M = 0.

If the container is sufficiently large so that the effect of its walls on the sedimentation can
be neglected, the velocities decay to zero and the pressure gradient approaches a purely
hydrostatic distribution, ∇p → −e3, at large distances from the disk. In that case, the
velocity UM of the disk’s centre of mass, and its rate of rotation about its centre of mass,
ω, are determined by (

F
T M

)
= R ·

(
UM
ω

)
, (2.5)

where R is a 6 × 6 symmetric positive-definite matrix known as the resistance matrix
(Happel & Brenner 1983).

The disk has a set of orthogonal principal directions whose orientation is defined by
its two planes of symmetry. We choose a body-fitted coordinate system, Fb, with the
origin at the disk’s centre of mass which is in general located outside the disk. Using
these principal directions as axes, we decompose the various vectors in (2.5) into the basis
(eFb

1 , eFb
2 , eFb

3 ) such that, e.g. UM = UFb
1 eFb

1 + UFb
2 eFb

2 + UFb
3 eFb

3 , see figure 1(e). We
employ the Tait–Bryan angles χyaw, χpitch and χroll which describe an intrinsic sequence
of rotations to define the orientation of the disk relative to the laboratory frame. Since
rotations do not commute, it is important to remember throughout this paper that the
rotations have to be applied consecutively in the order yaw → pitch → roll. This rotates
the disk from the laboratory frame Flab = F0 through the intermediate frames F1 and F2
to the body-fitted frame F3 = Fb, as illustrated in figure 1(b)–(e), see Appendix A for
details.

In the (eFb
1 , eFb

2 , eFb
3 )-coordinate system the resistance matrix is constant and, in general,

contains 21 independent entries, encoded by the three tensors K = KT , ΩM = ΩT
M and

CM (non-dimensionalised on μL, μL3 and μL2, respectively). We thus have[
FFb

1 , FFb
2 , FFb

3 , TFb
1 , TFb

2 , TFb
3

]T =
(

K CM
CT

M ΩM

)[
UFb

1 , UFb
2 , UFb

3 , ω
Fb
1 , ω

Fb
2 , ω

Fb
3

]T
.

(2.6)

To aid the clarity of our subsequent discussions we will generally refer to the components
TFb

{1,2,3} of the external torque acting on the disk about its body-fitted xFb
{1,2,3}-axes as

TFb
{pitch,roll,yaw}. The translation tensor K is symmetric and characterises the hydrodynamic

drag induced by translational motion along the principal axes; the rotation tensor ΩM is
symmetric and characterises the hydrodynamic torque induced by rotational motion about
the principal axes at the centre of mass; and the coupling tensor CM , non-symmetric
in general, characterises translation–rotation coupling, i.e. the torque induced by a
translational motion and the drag induced by a rotational motion. The resistance matrix
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is symmetric as a consequence of the symmetry of K and ΩM , and, in the frame Fb,
depends only on the geometry of the body. For the doubly symmetric disks considered in
this study, only a subset of the entries in R is non-zero, see Appendix B for details.

3. Numerical solution

3.1. Solution of the quasisteady Stokes equations
Given the disk’s position and orientation, and their instantaneous rates of change,
characterised by drM/dt and ω, we solved the Stokes equations (2.1a,b), subject to the
kinematic boundary condition (2.2) and the no-slip/traction-free-surface conditions on
the outer boundaries of the fluid domain by a finite-element method, using tetrahedral
Taylor–Hood elements on an unstructured body-fitted mesh, generated with TetGen (Si
2015). A challenge arises from the presence of the (integrable) singularities in the pressure
and shear stress along the edge of the disk (Gupta 1957; Tannish & Stone 1996). These
contribute significantly to the hydrodynamic drag and torque acting on the disk. For
instance, for a flat disk, sedimenting in broadside orientation, 30 % of the drag is generated
in the outermost 5 % of the disk’s radius. The singularities cannot be resolved using
standard finite elements, even if adaptive mesh refinement is applied. Therefore, we
augmented the standard finite element basis functions by appropriate singular functions.
For a smoothly deformed circular disk, such as the one shown in figure 2, the flow field
in the vicinity of its curved edge, whose position we describe by the vector r∂D(ζ ),
resembles the flow past the straight edge of a semi-infinite flat plate oriented tangential to
the disk, as shown in figure 2(a). We therefore introduce a body-fitted toroidal coordinate
system (ζ, ρ, θ) that is aligned with the edge of the disk and defined relative to the three
orthogonal unit vectors b1, b2, b3. Here b2 = (dr∂D/dζ )/|dr∂D/dζ | is tangential to the
edge of the disk; b1 is tangential to the disk but normal to its edge; b3 = b1 × b2 is normal
to the disk and its edge. The coordinates are chosen so that ρ � 0 and 0 � θ � 2π describe
the position within a radial slice whose normal is b2, as shown in figure 2(b). In a finite
toroidal region surrounding the edge of the disk we then represented the velocities and
pressure as

{u, p} =
{

u[FE], p[FE]
}

+
3∑

i=1

Ci(ζ )
{

u[sing]
i (ρ, θ), p[sing]

i (ρ, θ)
}

, (3.1)

where the u[sing]
i , p[sing]

i are the velocity and pressure fields arising from a translation of
a (planar straight) edge with unit velocity in the local bi direction; they are scaled by
the a priori unknown amplitudes Ci(ζ ). Outside this region, the velocities and pressures
were represented by the finite-element basis functions alone, with continuity across
the interface between the augmented and non-augmented regions imposed by Lagrange
multipliers. We expanded the amplitudes Ci(ζ ) using one-dimensional Hermite finite
elements and determined their discrete amplitudes by formulating the entire problem as
a partial differential equation (PDE)-constrained optimisation problem which ensured that
within the augmented region, the finite element part of the solution {u[FE], p[FE]} was as
smooth as possible. This was done by minimising the L2-norm of the interelement jump
in the traction associated with the finite element part of the solution across the faces of
adjacent tetrahedral elements in the augmented region. Full details of the method, which
was implemented in oomph-lib (Heil & Hazel 2006; Heil, Hazel & Matharu 2022), are
provided in Vaquero-Stainer (2022).
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Figure 2. (a) Illustration of the tangent plane to the disk whose edge is parametrised by the coordinate ζ .
The three orthogonal unit vectors b1, b2, b3 are chosen such that b2 is tangential to the edge of the disk;
b1 is tangential to the disk but normal to its edge; b3 = b1 × b2 is normal to the disk and its edge. (b) The
toroidal region within which the finite element solution is augmented by suitable singular functions; red lines
are contours of constant θ , and black circular lines and contours of constant ρ.

Given the velocity and pressure fields, (2.3) and (2.4) then provide six implicit ODEs
for the rate of change of the vector to the disk’s centre of mass, rM(t), and the disk’s
orientation which could, in principle, be time-integrated to obtain the motion of the
sedimenting disk.

3.2. The disk’s motion in an unbounded fluid
We will show below that for a sufficiently large container (or computational domain),
boundary effects are sufficiently weak so that the hydrodynamic drag and torque acting on
the sedimenting disk are close to those experienced by a disk sedimenting in an unbounded
fluid. Equation (2.6) then allows us to determine an approximation of the resistance matrix
R by performing six computations for the flow past that disk in a finite computational
domain: we positioned the disk so that its centre of mass coincided with the origin of
the laboratory coordinate system, Flab, centred in the middle of the container, and its
principal axes coincided with the coordinate axes, Flab = Fb. For each solve we then set
one of the six components on the right-hand side of (2.6) to one, while setting the others to
zero. Solving the Stokes equations with the corresponding boundary conditions (2.2) then
determined the velocity and pressure fields in the fluid, and, via (2.3) and (2.4), the net
drag, F , and torque, T M acting on the disk. The six components of these two vectors thus
determined an approximation to one column of the 6 × 6 resistance matrix R. We refer to
Appendix C for an assessment of the errors introduced by this approximation.

Given the entries of the resistance matrix R, we describe the motion of the sedimenting
disk in an unbounded fluid in terms of the position vector to its centre of mass, rM =
[rFlab

M,1 , rFlab
M,2 , rFlab

M,3 ], and its orientation, the latter described by the Tait–Bryan angles
χyaw, χpitch and χroll introduced in figure 1. We regard χyaw = χroll = χpitch = 0 as the
reference state in which the disk is in an upright-U configuration, with its principal axes
aligned with the laboratory frame. Transforming (2.6) from its body-fitted coordinate
system, Fb, to the laboratory frame, Flab, then yields a system of six autonomous ODEs
of the form

dX
dt

= f (X ) , (3.2)
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where X = [rFlab
M,1 , rFlab

M,2 , rFlab
M,3 , χyaw, χpitch, χroll], see Appendix A for details. The solution

of these ODEs is subject to initial conditions for all six quantities, X (t = 0) =
[r[0]Flab

M,1 , r[0]Flab
M,2 , r[0]Flab

M,3 , χ
[0]
yaw, χ

[0]
pitch, χ

[0]
roll] but it is easy to see that the dynamics are only

affected by the initial values of the roll and pitch angles which quantify the inclination
of the disk. This is because in an unbounded fluid of homogeneous density the disk’s
motion is not affected by a change in the initial position of its centre of mass: the resulting
trajectory is simply subject to a constant rigid body displacement. Similarly, a change
in the initial yaw angle rotates the disk about an axis parallel to the direction of gravity
and the entire subsequent motion simply inherits this constant rigid body rotation; the
reorientation dynamics are therefore unaffected.

We show in Appendix A that the evolution of χpitch and χroll is governed by two coupled,
autonomous ODEs, given by

dχpitch

dt̃
= fpitch(χpitch, χroll) and

dχroll

dt̃
= froll(χpitch, χroll), (3.3a,b)

where

fpitch(χpitch, χroll) = −D

E
sin(χpitch) cos(χroll) (3.4)

and

froll(χpitch, χroll) = 1
E

sin(χroll)

cos(χpitch)

(
B cos2(χpitch) − D

)
. (3.5)

Once these ODEs are solved for χpitch(t) and χroll(t), the evolution of the yaw angle follows
from

dχyaw

dt̃
= fyaw(χpitch, χroll) = D

E

sin(χroll) sin(χpitch)

cos(χpitch)
, (3.6)

and the trajectory of the disk’s centre of mass can be obtained from

drM

dt̃
= f rM

(χyaw, χpitch, χroll), (3.7)

where

f rM
(χyaw, χpitch, χroll) =

1
K

⎛
⎜⎜⎜⎜⎝

− cos(χpitch)
(
F sin(χyaw) sin(χpitch) cos2(χroll)

+G cos(χyaw) sin(χroll) cos(χroll) + H sin(χyaw) sin(χpitch)
)

cos(χpitch)
(
F cos(χyaw) sin(χpitch) cos2(χroll)

−G sin(χyaw) sin(χroll) cos(χroll) + H cos(χyaw) sin(χpitch)
)

J − (F cos2(χroll) + I) cos2(χpitch)

⎞
⎟⎟⎟⎟⎠ . (3.8)

Here, the constants B, . . . , K are functions of the entries in the resistance matrix (see
Appendix B), and time was rescaled as t̃ = (πh/L) t.

4. Results

We initially present results obtained for a circular disk bent isometrically into a cylindrical
U-shape with a constant radius of curvature Rc = 0.5, sedimenting in a cubic container
with dimensions L × L × L where L = 160.
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Figure 3. Torques acting on the U-shaped disk when translating with unit speed in the negative x3-direction.
(a) Torque TFb

roll about the body-fitted roll axis xFb
2 , as a function of the roll angle χroll for χpitch = 0. (b) Torque

TFb
pitch about the body-fitted pitch axis, xFb

1 , as a function of the pitching angle χpitch for χroll = 0. Upright
crosses and squares show the results for of χyaw = 0 and π/8, respectively, in the standard computational
domain (L = 160). Diagonal crosses and diamonds show the same data in a domain of twice the size,
(L = 320). The solid and dashed lines show the predictions obtained from the resistance matrix, computed
when the disk in its reference orientation (χroll = χpitch = χyaw = 0) in a domain of size L = 160 and 320,
respectively. Disk radius of curvature Rc = 0.5.

4.1. The stability of purely vertical sedimentation
If the disk is released at the centre of the tank while in its reference (upright U) or
inverted (upside-down U) orientation, with the two symmetry planes aligned with the
vertical container walls, we expect it to sediment purely vertically and without undergoing
any reorientation. To assess the stability of this motion, figure 3 shows the instantaneous
hydrodynamic torques acting on the disk when its centre of mass is positioned at
rM(t = 0) = 0, while it performs a pure vertical translation, with unit downward velocity,
drM/dt = −e3, ω = 0.

The ‘+’ symbols in figure 3(a) show the hydrodynamic torque, TFb
roll, acting on the

disk around its roll axis, xFb
2 , as the roll angle χroll is varied while keeping the two

other angles fixed at their reference values, χyaw = χpitch = 0. As expected, the torque is
zero in the reference and upside-down orientations, χroll = 0 and χroll = π, respectively.
For all other orientations the torque acts to return the disk to its reference orientation,
and we have dTFb

roll/dχroll|χroll=0 < 0, indicating that this orientation is stable. Conversely,
dTFb

roll/dχroll|χroll=π > 0, implying that the upside-down orientation is unstable. We note
that this behaviour matches that observed for U-shaped fibres which typically reorient
until they sediment in an upright-U configuration, see, e.g. Li et al. (2013) and Marchetti
et al. (2018).
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The ‘+’ symbols in figure 3(b) show the corresponding data when the disk’s orientation
is changed by a rotation about its pitching axis, xFb

1 . The reference and upside-down
orientations are now characterised by χpitch = 0 and χpitch = π, respectively (note that the
upside-down orientation can be reached by either rolling or pitching). Both orientations
are still equilibria, but, surprisingly, the reference orientation can be seen to be unstable
to pitching motions in the sense that the hydrodynamic torque acting on a slightly
pitched disk tends to increase χpitch further, dTFb

pitch/dχpitch|χpitch=0 > 0. Conversely, the
upside-down orientation is stable with respect to such perturbations.

The other symbols in figure 3 show the same data, computed in a container of twice
the size and for the case when the disk is rotated about the vertical axis by χyaw = π/8.
The fact that the results agree extremely well, indicates that the container walls have very
little effect on these torques, suggesting that when the disk is at the centre of our large but
finite container its response to changes in orientation is approximately the same as that of
a disk moving in an unbounded fluid. To assess this conjecture, the solid and dashed lines
in figure 3 show the predictions for the hydrodynamic torques, TFb

pitch and TFb
roll, obtained

from (2.6), using a resistance matrix whose entries were computed when the disk is in
its reference orientation. The predictions for TFb

roll(χroll) and TFb
pitch(χpitch) obtained from

the solution of the Stokes equations and from the resistance matrix therefore agree by
construction for χroll = χpitch = 0, but they can be seen to agree remarkably well over the
entire range of possible orientations.

This implies that the reorientation of the sedimenting disk in an unbounded fluid
is well described by the formalism of § 3.2, using a resistance matrix computed in a
large-but-finite computational domain. We adopt this approach in the rest of this paper.
The integration of the six ODEs (3.2) then allows us to explore the disk’s behaviour at
a fraction of the computational cost that would be required for the coupled solution of
(2.1a,b), (2.2), (2.3) and (2.4), embedded in a time stepping procedure.

4.2. The reorientation of the sedimenting disk in an unbounded fluid
The study of the disk’s sedimentation in an unbounded fluid, based on its resistance
matrix, is facilitated by the fact that, as shown in § 3.2, the disk’s dynamics are completely
determined by the evolution of its roll and pitch angles χpitch and χroll, with the remaining
quantities, rM and χyaw, being enslaved. This allows us to characterise the disk’s behaviour
in the two-dimensional phase plane shown in figure 4(a) where we restrict χpitch and χroll
to the range [0, π], with the results in the other three quadrants following from symmetry.
The blue arrows and the insets outside the coordinate axes in figure 4(a) illustrate the disk’s
reorientation by pure rolling and pitching. Starting from point A (the reference orientation,
χyaw = χpitch = χroll = 0) a positive perturbation to χpitch initiates a reorientation by pure
pitching, dχpitch/dt > 0, until the disk reaches its upside-down orientation (point C), as
expected from (3.4) and the discussion of figure 3(b). Equations (3.5) and (3.6) show that
the roll and yaw angles remain zero during this process.

Furthermore, (3.7) shows that throughout this motion, the velocity of the disk’s centre
of mass only has a component in the laboratory x2- and x3-directions. A complete
reorientation, following the path from point A to C in the phase plane leads to a net
zero horizontal displacement. This is because for χyaw = χroll = 0, we have drM,1/dt =
0 and drM,2/dt ∼ sin(2χpitch), therefore the displacement in the positive x2-direction
while the disk pitches through the range 0 < χpitch < π/2 is exactly compensated by a
corresponding negative displacement while π/2 < χpitch < π.
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(b) (c)Loop 1: Loop 2:

Figure 4. (a) Schematic of the orientational phase plane spanned by χpitch and χroll. The insets show
representative instantaneous orientations of the sedimenting disk which correspond to highlighted points
A–F in the phase plane. (b,c) Left-hand half of the orientational phase plane shown in (a), illustrating the
reorientation of a sedimenting disk that starts with an initial inclination with small positive values of χroll and
χpitch. Two loops through the (χpitch, χroll)-phase plane are required to return the disk to its initial orientation.

If we perturb the disk from its upside-down orientation at point C (χyaw = χroll =
0;χpitch = π) by a positive change to χroll, the disk reorients by pure rolling, dχroll/dt > 0,
until it approaches the upright U orientation at point D, now maintaining constant values of
the pitch and yaw angles, see (3.4) and (3.6). The disk’s centre of mass now translates only
in the laboratory frame x1- and x3-directions and again undergoes a net zero horizontal
displacement as the disk follows the path from point C to D in the phase plane.

We note that at points A and D, the (symmetric) disk occupies the same physical space,
but its material lines are rotated by 180◦ about its body-fitted yaw axis; a second sequence
of pitching and rolling motions (from D to F and then back to A) completely returns it to
its reference state.

Including the three omitted quadrants of the full phase plane in which both angles vary
between −π and π shows that points A, C, D, F are saddle points, with the stable directions
at saddles A and D corresponding to the disk’s tendency to right itself via rolling, and
the unstable directions corresponding to the tendency to pitch towards an upside-down
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orientation. As with any dynamical system, the transition between two connected saddles
would take infinitely long.

We note that, unless χroll = 0, π, (3.5) and (3.6) imply that both dχroll/dt and dχyaw/dt
blow up as χpitch → π/2. This is due to a coordinate singularity arising from the
parametrisation of the disk’s orientation in terms of the Tait–Bryan angles: when χpitch =
π/2 a positive rotation about the yaw axis can be exactly compensated by an equivalent
negative rotation about the roll axis (recall that the rotations are applied consecutively, in
the order yaw → pitch → roll). However, (3.5) and (3.6) show that

lim
χpitch→π/2

(dχroll/dt)
(dχyaw/dt)

= −1, (4.1)

thus the transition along the line from B to E in the phase plane happens infinitely quickly
but without changing the orientation of the disk.

This suggests that a path that starts near point A, but with small positive initial values for
χpitch and χroll will follow an anticlockwise path through the phase plane. This is illustrated
in figures 4(b) and 4(c). Starting from an orientation shown by figure 4(b i), the disk
performs a pitching-dominated reorientation (dχpitch/dt > 0 while 0 < χroll � 1), χpitch
approaches π/2, where the path will undergo a rapid transition close to the line connecting
points B and E (figure 4b ii) with only small, continuous changes to the disk’s orientation
(dχroll/dt ≈ −dχyaw/dt � 1, while 0 < (π/2 − χroll) � 1). Once χroll approaches π, the
disk continues its pitching motion, just below the line from E to F (dχpitch/dt < 0 while
0 < (π − χroll) � 1) until it reaches an approximately upside-down orientation close to
point F (figure 4b iii). (Note that, following the change in yaw and roll angles during
the transition from B to E, a decrease in χpitch continues to rotate the disk about its
body-frame pitching axis xFb

1 ; again a consequence of the order in which the rotations
are applied.) Once the disk reaches the upside-down U orientation near F, it is unstable
to rolling, resulting in a rolling-dominated motion (dχroll/dt < 0 while 0 < χpitch � 1),
returning the disk to an approximately upright configuration (figure 4c iv). Note that this
rolling-dominated reorientation does not return the disk to the initial orientation shown in
figure 4(b i), but to an orientation equivalent to that at point D – shown as figure 4(c iv),
where all material lines are rotated by approximately 180◦ about the body-fitted yaw axis.
A second pitching–rolling sequence ((iv) → (v) → (vi) → (i)) is required to return the
disk close to its original orientation.

Figure 5 shows the actual paths through the (χpitch, χroll)-phase plane obtained from
the numerical integration of (3.3a,b) for various initial conditions. The plot confirms
the expected behaviour and shows that the paths through the phase plane form closed
anticlockwise loops, implying a periodic reorientation of the disk during its sedimentation.
This is illustrated in figure 5(b)–(i) which show the disk’s orientation in the laboratory
frame while its inclination (χpitch(t), χroll(t)) traces out the red loop in the phase plane:
starting at figure 5(b), the disk performs a rolling-dominated motion towards figure 5(c)
where the body-fitted roll axis is nearly aligned with the direction of gravity. As discussed
above, there is little change in the disk’s actual orientation as it moves rapidly from
figure 5(c–d), beyond which it continues its pitching-dominated motion towards an
upside-down orientation. At figure 5(e), the disk has become sufficiently inverted that
it becomes subject to a strong rolling torque that acts to return it to an upright position via
figure 5( f –i). In the phase plane, figure 5(i) is close to the starting figure 5(b), indicating
the completion of one complete pitch–roll cycle. The plots of the disk’s orientation in the
laboratory frame in figures 5(b) and 5(i) confirm that at figure 5(i) the disk does indeed
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Figure 5. (a) The black lines show paths through the (χpitch, χroll)-phase plane, obtained by numerical
integration of the ODEs (3.2). Panels (b–i) show snapshots of the disk’s orientation in the laboratory frame
while it follows the path highlighted in red in (a). The dashed blue lines show two paths described explicitly by
the analytical expression (4.5a,b).

have the same inclination as at figure 5(b), but also that it has rotated about the direction
of gravity. The net rotation of the disk is determined by the integration of (3.6) for the
yaw angle χyaw(t), given the solution χpitch(t) and χroll(t) from (3.3a,b). In general, the net
change in the yaw angle during one pitching–rolling cycle is not equal to a rational multiple
of π, therefore the disk generally performs a quasiperiodic motion with incommensurate
time scales for the rotation about the direction of gravity and the periodic change in its
inclination.

Figure 5 also shows that, as suggested by the conceptual plot in figure 4, paths through
the phase plane cannot cross the vertical line χpitch = π/2 if the disk is released with
a non-trivial initial roll angle, 0 < χ

[0]
roll < π. Paths to the left of the line BE, starting

from χ
[0]
pitch < π/2, therefore perform anticlockwise loops through the phase plane; in

the laboratory frame the disk rotates in a positive sense about the direction of gravity,
dχyaw/dt < 0. The paths obtained when starting from initial conditions to the right of the
line BE, i.e. for χ

[0]
pitch > π/2 are also anticlockwise loops, consistent with the conceptual

plot in figure 4. This is because the sense of rotation is imposed by the continuity of the
motion for pure pitching motions (along ABC and DEF, respectively); the counterintuitive
clash between the directions in which the paths just to the right and left of the line BE
are traversed is due to the coordinate singularity arising from our representation of the
disk’s inclination in terms of the Tait–Bryan angles. However, when released with an
initial inclination to the right of the line BE, χ

[0]
pitch > π/2, the disk rotates in the opposite

direction about the direction of gravity, i.e. dχyaw/dt > 0.
Since the paths through the phase plane form closed loops they enclose a centre (marked

with a cross) which represents a fixed point of the ODEs (3.3a,b). The coordinates
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(χ
[centre]
pitch , χ

[centre]
roll ) of that fixed point can therefore be obtained by solving the algebraic

equations fpitch(χ
[centre]
pitch , χ

[centre]
roll ) = 0 and froll(χ

[centre]
pitch , χ

[centre]
roll ) = 0 which yield

χ
[centre]
pitch = arccos

((
D

B

)1/2
)

and χ
[centre]
roll = π/2. (4.2a,b)

We note that, since the ODEs (3.2) are autonomous, the paths χroll(χpitch) in the phase
plane satisfy

dχroll

dχpitch
= (dχroll/dt)

(dχpitch/dt)
= froll(χpitch, χroll)

fpitch(χpitch, χroll)
. (4.3)

Integrating this ODE shows that the quantity

φ = D log
(

sin(χroll)

tan(χpitch)

)
+ B log(sin(χpitch)) (4.4)

is constant along each path. Since all the paths are closed loops, each path is associated
with a different value of φ. This implies that the two branches of χroll(χpitch) (representing
the upper and lower halves of the closed loops) can be written as

χ
[upper]
roll (χpitch) = π − F(χpitch;φ) and χ

[lower]
roll (χpitch) = F(χpitch;φ), (4.5a,b)

where

F(χpitch;φ) = arcsin

[
exp(φ) tan(χpitch)(

sin(χpitch)
)B/D

]
. (4.6)

The dashed blue lines in figure 5 show two closed loops computed by this method. They
agree perfectly with the results of the numerical integration (which is, of course, still
required to compute χyaw(t) and rM(t)).

4.3. Comparison with experiments
To assess how well our predictions agree with the experimental observations of Miara
(2024) and Miara et al. (2024), figure 6 shows a direct comparison of the paths in
the (χpitch, χroll)-phase plane. The symbols connected by coloured lines represent data
from experiments performed with a U-shaped polyamide nylon disk of density ρs =
1130 kg m−3, thickness b = 236.7 μm, area A = πR2 = 452 mm2 and a non-dimensional
radius of curvature of Rc = 0.525. The disk was placed in a cuboidal tank of internal
dimensions 900 × 400 × 400 mm3 filled to a height of 750 mm with silicone oil of density
ρf = 972.7 kg m−3 and dynamic viscosity μ = 1.02 Pa s. For each experiment the disk
was released with a different initial orientation, and the subsequent evolution of the
Tait–Bryan angles was then monitored while the disk sedimented over a vertical distance
of approximately 30R. For the data shown in figure 6 the disk’s centre of mass was at
least 10R from the free surface and the container walls. Angles outside the range [0, π]
were mapped into that range, exploiting the disk’s symmetry. We refer to Miara (2024)
and Miara et al. (2024) for full details of the experiments.

Given the finite size of the tank, each experiment only provides a relatively short path
in the phase plane. However, collectively the paths show good qualitative agreement with
the corresponding theoretical predictions, shown by the grey lines: the direction of the
paths (whose start and end points are indicated by hollow and filled square symbols,
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Figure 6. Comparison between the paths in the (χpitch, χroll)-phase plane obtained numerically (grey lines)
and in the experiments of Miara et al. (2024) (symbols connected by coloured lines).

respectively) is consistent with anticlockwise orbits in the phase plane. For disks released
with modest initial values of χpitch and close to an upside-down U orientation (χroll close
to π), the disks reorient rapidly by rolling (χroll → 0) towards an upright U orientation.
This is then followed by a much slower pitching motion, χpitch → π/2, while χroll remains
small. Particles released at larger initial values of χpitch loop around a centre that is located
close to the one predicted by the theory. Small deviations from the theoretical predictions
are visible: e.g. some paths have dχpitch/dt < 0[> 0] when χroll < π/2[> π/2]; some
paths cross; the centre of the closed orbits is slightly below χroll = π/2. However, given
the unavoidable presence of experimental uncertainties and imperfections in the disk
shape, the overall agreement is good.

We note that the tank used in the experiments was smaller than the domain in which
we computed the resistance matrix that forms the basis of our theoretical predictions. We
have checked that a reduction in the size of the computational domain to match the size
of the tank does not lead to a better agreement: the computed paths are indistinguishable
from those shown, and an improved agreement would, in any case, be entirely fortuitous.
The theoretical approach developed in § 3.2 requires that boundary effects are negligible
in the sense that the drag and torque acting on a disk that performs an imposed rigid body
motion do not depend on the position and orientation of the disk in the computational
domain. The validity of this assumption was confirmed in figure 3 and in Appendix C.

4.4. Trajectories in the laboratory frame of reference
As discussed above, the dynamics of the disk is completely encoded by the evolution of its
roll and pitch angles, with the remaining four degrees of freedom (the yaw angle and the
position of the disk’s centre of mass) being enslaved to these quantities.

We illustrate the overall motion of the disk in the laboratory frame in figure 7 where
we plot selected paths in the (χpitch, χroll)-phase space (figure 7a–d), the corresponding
trajectories of the disk’s centre of mass, rM(t), (figure 7e–h), and the time-traces of the
disk’s three Tait–Bryan angles (figure 7i–l). In each case, the disk is released at the origin,
r[0]

M = 0, with zero yaw angle, χ
[0]
yaw = 0 (or, equivalently, χ

[0]
yaw = 2π) and χ

[0]
roll = π/2.

The plots show the trajectories resulting from four different initial values for the pitch
angle. In figure 7(a) we start with a small value, χ

[0]
pitch = 10−4π, which results in a
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Figure 7. The paths in the phase plane (a–d) for a disk released at the origin, r[0]
M = 0, with χ

[0]
yaw = 0,

χ
[0]
roll = π/2 and (a) χ

[0]
pitch = 10−4π; (b) χ

[0]
pitch = χ

[centre]
pitch − 0.1π; (c) χ

[0]
pitch = χ

[centre]
pitch − 0.01π; (d) χ

[0]
pitch =

χ
[centre]
pitch . The corresponding trajectories of the centre of mass in the laboratory frame of reference (e–h) and

the time-evolution of the Tait–Bryan angles χpitch (black), χroll (blue) and χyaw (red) (i–l), respectively. See the
supplementary material for animations of these figures available at https://doi.org/10.1017/jfm.2024.923.

path close to the outermost boundary of the accessible phase plane, and a motion that
alternates distinctly between pitching and rolling, with very little change to the yaw angle.
(Note that dχyaw/dt|t=0 < 0, therefore the yaw angle (which we normalised to be in the
range [0, 2π]) starts at χ

[0]
yaw = 2π; similarly χyaw jumps by 2π whenever χyaw is about to

become negative.) Key points on the disk’s trajectory are identified by the same labels as
in figures 4 and 5: from A to B, the disk reorients predominantly by pitching; as discussed
above, the rapid, approximately equal and opposite change to the roll and yaw angles
when χpitch is close to π/2 (from B to E) does not lead to a significant reorientation of the
disk, and the pitching motion then continues from E to F. The disk then rights itself by
rolling, via the path from F to A′ in the phase plane. The disk now has retained its original
inclination but is rotated by approximately 180◦ about the direction of gravity; a second
loop around the phase plane, from A′ to A′′, then returns the disk close to its original
orientation.

During the pitching dominated phases, the horizontal drift of the disk’s centre of mass
is predominantly in the body-frame x2-direction, while it drifts predominantly in the
x1-direction when reorienting by rolling. Given that at the end of the first loop around the
phase plane (from A to A′), the disk has rotated by approximately 180◦ about the vertical
axis, the direction of the horizontal drift during the second loop (from A′ to A′′) occurs
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Chiral sedimentation of non-chiral particles in Stokes flow

in the opposite direction. As a result, the projection of the trajectory onto the laboratory’s
(x1, x2)-plane (shown with grey lines in figure 7e–h) is approximately cross-shaped.

The reorientation by pitching can be seen to occur much more slowly than by rolling,
consistent with the relative magnitudes of the rolling- and pitching-induced torques
shown in figure 3, so the disk spends the majority of its time performing a slow
pitching-dominated motion. During this phase, most paths in the phase plane (apart
from those in the vicinity of the centre), converge towards a narrow region near χroll ≈
0, π, see figure 5. This implies that during this phase, the disk is highly sensitive to
perturbations in the roll angle. Small perturbations introduced by the numerical integration
of the governing equations can therefore result in large deviations in the paths on later
parts of the orbit. Such numerical perturbations were controlled by performing the time
integration with sufficiently small time steps; the fact that the paths close confirms the
accuracy of the computations. However, in laboratory experiments physical perturbations
are unavoidable, and as a result it is unlikely that such exactly closed orbits will be
observable experimentally. This is consistent with the experimental observations by Miara
et al. (2024).

In figure 7(b) we start with a larger initial pitching angle, χ
[0]
pitch = χ

[centre]
pitch − 0.1π for

which the trajectory is closer to the interior of the phase plane. Pitching and rolling
therefore occur continuously and the changes in χpitch and χroll induce a concomitant
change in the yaw angle. Again χroll and χyaw undergo rapid opposing changes without
any significant reorientation of the disk whenever χpitch approaches π/2.

In figure 7(c) we start with a pitching angle close to the centre, χ [0]
pitch = χ

[centre]
pitch − 0.01π

where χ
[centre]
pitch = 0.44π. In the phase plane, the trajectory therefore remains close to

the centre, with the reorientation dominated by small, periodic oscillations in roll angle,
accompanied by a near constant rate of change in χyaw; see the time-trace of the Tait–Bryan
angles at the bottom of the figure. The changes in roll and pitch angles in figures 7(b)
and 7(c) lead to a continual change in the direction of the horizontal drift, resulting
in a spirograph-like patterns in the projection of the trajectories onto the laboratory
(x1, x2)-plane.

Finally, in figure 7(d) the disk is released with (χ
[0]
pitch, χ

[0]
roll) = (χ

[centre]
pitch , χ

[centre]
roll ). Pitch

and roll angles therefore remain constant while the yaw angle decreases at a constant
rate, according to dχyaw/dt = fyaw(χ

[centre]
pitch , χ

[centre]
roll ). The ODE (3.7) for drM/dt then

implies that the velocity of the disk’s centre of mass varies periodically with the period of
the yawing motion, resulting in a spiral trajectory in the laboratory frame and a circular
projection onto the laboratory (x1, x2)-plane.

The supplementary material for this paper provides animations that illustrate the
sedimentation of the disks along the trajectories shown in figure 7.

4.5. Dependence on the disk’s radius of curvature
So far, we have focused on the motion of a U-shaped disk with a given radius of curvature.
We found the behaviour of that disk to be fundamentally different from its flat equivalent:
as mentioned in § 1, flat circular disks that sediment in an unbounded fluid at zero
Reynolds number neither rotate nor change their inclination, and continue to drift in a fixed
horizontal direction while sedimenting. The question therefore arises how these different
behaviours can be reconciled in the limit as Rc → ∞, i.e. when the U-shaped disk turns
into a flat one.
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Figure 8. (a) Plot of the paths in the (χroll, χpitch)-phase plane for disks of different radii of curvature
(black, Rc = 0.35; red, Rc = 0.5; blue, Rc = 2). (b–d) Plots illustrating (b) the time Tperiod for the periodic
reorientation of the sedimenting disk, (c) the approach of χ

[centre]
pitch to π/2, and (d) the Frobenius norm of the

coupling tensor, all as a function of the disk’s radius of curvature, Rc.

Figure 8(a) shows that, qualitatively, the phase plane describing the disk’s inclination
remains the same when we change the disk’s radius of curvature: the inclination still
undergoes periodic changes, with the paths in the (χpitch, χroll)-phase plane following
closed orbits around their respective centres. However, the rate at which the disk reorients
decreases with an increase in Rc. This is illustrated in figure 8(b) where we plot

Tperiod = 2π

⎛
⎝ dχyaw

dt

∣∣∣∣(
χ

[centre]
pitch ,χ

[centre]
roll

)
⎞
⎠

−1

, (4.7)

which is the time it takes for the disk to rotate by 360◦ about the direction of gravity when
sedimenting along its spiral path at a fixed inclination. The solid line is a power-law curve
fit to the computational data and suggests that Tperiod ∼ R1.63

c as Rc → ∞. Thus, nearly
flat disks (with a very large radius of curvature) still move around their periodic orbits
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in the phase plane, but they do so increasingly slowly, so that their inclination remains
approximately (and, in the actual limit Rc → ∞, exactly) constant.

This behaviour is reflected in the fact that the entries in the off-diagonal coupling block,
CM , in the resistance matrix go to zero as the radius of curvature increases. This is
illustrated in figure 8(d) by the plot of the Frobenius norm ||CM||F = (

∑
i
∑

j C2
M,ij)

1/2

as a function of Rc which can also be seen to follow an approximate power-law behaviour,
with ||CM||F ∼ R−1

c , so that when Rc → ∞ translational motions no longer induce
rotations (and vice versa).

One possible interpretation of these results is that in the limit Rc → ∞, any initial
inclination (χ

[0]
pitch, χ

[0]
roll) becomes a fixed point in the sense that the motion along the paths

in the (χpitch, χroll)-phase plane becomes infinitely slow. However, it is also of interest to
see what happens to the centres (which are always fixed points) as the disk’s radius of
curvature is increased. Equation (4.2a,b) showed that χ

[centre]
roll = π/2, irrespective of the

disk’s radius of curvature, while χ
[centre]
pitch depends on the ratio of the coefficients B and D,

both of which are given in terms of the coefficients of the resistance matrix in Appendix B.
As Rc → ∞, the coefficients of the sub-blocks K and ΩM approach the finite values for a
flat disk (see figure 10 below) while the non-zero coefficients in the coupling matrix CM
go to zero, as shown in figure 8(d). However, C12 goes to zero much more quickly than
C21 (the data suggests that C12 ∼ R−3

c while C21 ∼ R−1
c as Rc → ∞ which implies that

χ
[centre]
pitch → π/2 as Rc → ∞, consistent with the behaviour observed in figure 8(a), where

the centres move towards the right as Rc is increased (see also the plot of χ
[centre]
pitch as a

function of Rc in figure 8c).
To interpret this result we note that for χroll = χ

[centre]
roll = π/2 the body-fitted normal

nFb (pointing in the direction of xFb
3 ) is oriented parallel to the laboratory frame

(x1, x2)-plane, i.e. nFb · e3 = 0. When the disk is in this orientation, the continuous change
to χyaw introduces a rigid body rotation about x3, while a change to χ

[centre]
pitch rotates the disk

about nFb (recall again that the Tait–Bryan angles describe rotations that have to be applied
consecutively, in the order yaw → pitch → roll).

The effect of changes to the disk’s radius of curvature on its orientation as it sediments
along the spiral trajectory associated with (χ

[centre]
pitch (Rc), χ

[centre]
roll = π/2) is illustrated in

figure 9: for a tightly curved disk, the body-fitted roll axis, xFb
2 , is strongly inclined away

from the direction of gravity and the disk sediments along a wide spiral trajectory; see the
black disk and the associated black dotted line which shows the trajectory of that disk’s
centre of mass in the laboratory frame. As the radius of curvature increases and χ

[centre]
pitch →

π/2, the disk rights itself and its roll axis approaches the x3-axis in the laboratory frame
(red and blue disks). As it approaches this configuration, the horizontal velocities go to
zero while the vertical velocity approaches the finite sedimentation speed of a flat disk in
its edge-on configuration. This leads to an increase in the pitch of the spiral trajectories
whose radius (in the (x1, x2)-plane) shrinks to zero. Thus, in the limit as Rc → ∞, a disk
that sediments along the (nominally) spiral trajectory associated with the centre in the
(χpitch, χroll)-phase plane sediments purely vertically, and in an edge-on orientation.

5. Discussion and conclusions

We have studied the sedimentation of U-shaped rigid disks at zero Reynolds number and
shown that, despite their non-chiral shape, they tend to sediment along complex spiral
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Figure 9. The helical trajectories of three disks with different curvatures, all released from r[0]
M = 0 (green

sphere), with an initial inclination (χ
[0]
pitch, χ

[0]
roll) = (χ

[centre]
pitch (Rc), χ

[centre]
roll = π/2). The disk’s inclination

remains constant and it sediments along helical trajectories. The inset shows the inclination of the disks relative
to the direction of gravity; (black, Rc = 0.35; red, Rc = 0.5; blue, Rc = 2.) As Rc → ∞ the helical trajectories
associated with this particular inclination degenerate to a straight vertical line and the disk sediments in an
edge-on orientation.

paths whose chirality depends on the disks’ initial orientation. We showed this to be due to
the fact that the purely vertical sedimentation of such disks in their upright U orientation
is stable (unstable) to perturbations about their roll (pitch) axes, with the reverse being
true when they sediment in an upside-down U orientation. The instabilities cause the
disks to continuously reorient by undergoing alternating rolling- and pitching-dominated
rotations which are accompanied by a periodically varying horizontal drift. During each
roll/pitch cycle, the disk performs a net rotation about the direction of gravity, which is
generally an irrational multiple of π. The combination of these effects results in complex
spiral trajectories, similar to those we observed in our experimental study (Miara et al.
2024).

The analysis was greatly facilitated by the fact that the numerical solution of the 3-D
Stokes equations showed that wall effects (arising from a finite computational domain or,
in an experiment, the finite size of the tank) only have a small effect on the pitching and
rolling instabilities that are responsible for the disk’s behaviour. This allowed us to analyse
the disk’s sedimentation in an unbounded fluid, using resistance matrices computed in
finite domains. While this already led to a significant reduction in the computational effort
(compared with time stepping the motion of the disk in the 3-D fluid domain), a further
key simplification arose from the fact that for sedimentation in an unbounded fluid, only
two of the disk’s six rigid-body degrees of freedom (comprising the position of the disk’s
centre of mass and its orientation, the latter described in terms of three Euler angles)
are genuine degrees of freedom. This allowed us to study the dynamics of the disk’s
sedimentation in a two-dimensional phase space comprising the Tait–Bryan pitch and roll
angles. In this phase space, the periodic rolling–pitching reorientations appear as closed
orbits. They enclose a centre which corresponds to the special case in which the disk
sediments along a perfectly helical path while rotating at a fixed rate about the direction
of gravity.

The behaviour of rigid U-shaped disks is therefore fundamentally different from that
of their flat counterparts which maintain their inclination, and generally sediment with a
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Chiral sedimentation of non-chiral particles in Stokes flow

constant horizontal drift. The latter effect causes dilute clouds of sedimenting flat disks
to disperse horizontally; our findings imply that clouds of U-shaped disks will not spread
horizontally.

The difference in the behaviour of the two types of disks must, of course, disappear
when the curvature of the U-shaped disk is reduced to zero. We showed that the rate at
which U-shaped disks reorient decreases with a reduction in their curvature, so that in
the limit of zero curvature the disk’s initial inclination changes infinitely slowly and thus
remains constant.

We focused on the sedimentation of U-shaped disks because their shape resembles that
observed for elastic disks in preliminary experiments by Miara (2024) and also in recent
computations by Yu & Graham (2024) who found that, qualitatively, initially planar elastic
sheets tended to deform into such shapes as they sediment.

The actual shape of a sedimenting elastic sheets is, of course, determined by the fluid
traction acting on them, and therefore has to be obtained via the solution of a fully coupled,
and in general time-dependent, fluid–structure interaction problem. However, thin elastic
sheets have an extensional (membrane/in-plane) stiffness that is much larger than their
bending stiffness. Therefore, they tend to deform approximately isometrically, with little
in-plane stretching. This restricts the types of shapes that sedimenting elastic sheets can
adopt. Our results suggest that once the sheet has deformed and reoriented itself into an
upright U-shape, it will become subject to the (relatively slow) rotational instability about
the pitching axis. This implies that, counter to the conjecture by Yu & Graham (2024), the
upright U-shape is not actually a stable configuration for elastic sheets.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2024.923. This
supplementary movie provides an animation of the static graphics shown in figure 7; it shows the trajectories
of the disk’s orientation through the pitch–roll phase-space, synchronised in time with the physical rigid-body
dynamics in the lab frame. The initial conditions and therefore the subsequent trajectories correspond exactly
to those shown in figure 7. In the lower animations, the disk’s body-fitted axes are shown, centred on the centre
of mass, with the dark blue arrows corresponding to the pitch axes, xFb

1 , the cyan arrows corresponding to the
roll axes, xFb

2 , and the magenta arrows corresponding to their cross product. The 3-D path of the centre of mass
is shown by a yellow–red trace, coloured by vertical depth, and its projection onto the x1–x2 plane is shown by
the red trace. With the exception of the left-most animation, the disks are unscaled in the x1–x2 directions, but
are scaled appropriately in the x3 direction so as to provide an orthographic projection of the disk on screen;
the disks’ visible extent in the x3 direction is therefore not representative and is merely for illustrative purposes.
Owing to the correct x1–x2 scaling, the rightmost three disks appear different in size as a result of the different
axis-limits chosen for the x1–x2 extent of the trajectories. The leftmost animation is, however, scaled by a
factor of 10 for visual clarity, since the very large distances traversed in the x2 direction would render the disk
difficult to interpret if left unscaled. The effective frame-rate of this leftmost animation is also multiplied by
a factor of three relative to the other animations, since there is a much greater orbital time period associated
with trajectories very close to outermost limit, as evidenced in the animated phase-space traces above. It can be
readily observed that the leftmost disk spends large periods of time translating near vertically in orientations
which correspond to regions of the phase-space close to the saddle points (labelled as A and F in figure 7) as a
result of the very small initial perturbation from the upright U orientation.
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Appendix A. Derivation of the evolution equations in an unbounded fluid

Figure 1 shows how the disk’s orientation is described in terms of an intrinsic sequence
of rotations by the Tait–Bryan angles χyaw, χpitch and χroll. Starting from a reference
orientation in which the disk’s principal axes are aligned with the Cartesian coordinates
(xFlab

1 , xFlab
2 , xFlab

3 ) in the laboratory frame, Flab, we apply rotations about the three
coordinate axes, but in subsequent frames, so that

Flab = F0

χyaw about x
Flab
3−−−−−−−−−→ F1

χpitch about x
F1
2−−−−−−−−−→ F2

χroll about x
F2
1−−−−−−−−−→ F3 = Fb. (A1)

Given a vector a with components a
Fj
i in frame Fj, its components in the subsequent

frame are given by

[
a
Fj+1
1 , a

Fj+1
2 , a

Fj+1
3

]T = RFj+1
Fj

[
a
Fj
1 , a

Fj
2 , a

Fj
3

]T
, (A2)

where the matrices RFj+1
Fj

are standard orthogonal rotation matrices, e.g.

RF1
F0

=
⎛
⎝ cos(χyaw) sin(χyaw) 0

− sin(χyaw) cos(χyaw) 0
0 0 1

⎞
⎠ with RF0

F1
=
(
RF1

F0

)−1 =
(
RF1

F0

)T
, (A3)

and each of these matrices depend only on the single angle describing the associated
rotation. Thus, translating the velocity of the disk’s centre of mass from Flab to Fb is
achieved by [

UFb
1 , UFb

2 , UFb
3

]T = RFb
Flab

[
UFlab

1 , UFlab
2 , UFlab

3

]T
, (A4)

where

RFb
Flab

= RFb
F2
RF2

F1
RF1

Flab
. (A5)

Furthermore, the rate of change in the Tait–Bryan angles (which perform rigid body
rotations about coordinate axes aligned with subsequent frames, see (A1)) results in an
overall rate of rotation ω whose components in the body frame are

[
ω
Fb
1 , ω

Fb
2 , ω

Fb
3

]T = RFb
F2
RF2

F1

[
0, 0,

dχyaw

dt

]T

+ RFb
F2

[
dχpitch

dt
, 0, 0

]T

+
[

0,
dχroll

dt
, 0
]T

= S
[

dχpitch

dt
,

dχroll

dt
,

dχyaw

dt

]T

, (A6)

where

S =
⎛
⎝cos(χroll) 0 − cos(χpitch) sin(χroll)

0 1 sin(χpitch)
sin(χroll) 0 cos(χpitch) cos(χroll)

⎞
⎠ (A7)

which is independent of χyaw.
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This allows us to transform (2.6) into quantities in the laboratory frame of reference,⎛
⎜⎜⎜⎜⎜⎝
RFb

F2
(χroll)RF2

F1
(χpitch)RF1

Flab
(χyaw)

[
drFlab

M,1

dt
,

drFlab
M,2

dt
,

drFlab
M,3

dt

]T

S(χpitch, χroll)

[
dχpitch

dt
,

dχroll

dt
,

dχyaw

dt

]T

⎞
⎟⎟⎟⎟⎟⎠

=
(

K CT
M

CM ΩM

)−1

⎛
⎜⎝ RFb

F2
(χroll)RF2

F1
(χpitch)RF1

Flab
(χyaw)

[
FFlab

1 , FFlab
2 , FFlab

3

]T

RFb
F2

(χroll)RF2
F1

(χpitch)RF1
Flab

(χyaw)
[
TFlab

pitch, TFlab
roll , TFlab

yaw

]T

⎞
⎟⎠ ,

(A8)

which is easily rewritten in the form (3.2). The reason for keeping the equations in
this form, and for spelling out explicitly the dependence of the rotation matrices on the
various Tait–Bryan angles is that it shows that the equations are not affected by rigid body
translations, rFlab

M,i (t) → rFlab
M,i (t) + δrFlab

M,i for arbitrary constants δrFlab
M,i , because none of the

coefficients depend on the position of the disk. Furthermore, since for free sedimentation
we have [FFlab

1 , FFlab
2 , FFlab

3 ] = [0, 0, −πh/L] and TFlab
{roll,pitch,yaw} = 0, a change in the yaw

angle by an arbitrary constant δχyaw so that χyaw(t) → χyaw(t) + δχyaw, corresponding to
a rigid body rotation about the vertical axis, does not affect the right-hand side, while on
the left-hand side it simply subjects the trajectory to a rigid body rotation by that same
angle, i.e. [rFb

M,1(t), rFb
M,2(t), rFb

M,3(t)]
T → R1

lab(δχyaw) [rFb
M,1(t), rFb

M,2(t), rFb
M,3(t)]

T. Thus, of
the six initial conditions required for the solution of the governing equations, four translate
into trivial rigid body modes. The shape of the trajectory and the rate at which the disk
reorients relative to the direction of gravity while its centre of mass sediments along that
path depend only on the initial values for the pitch and roll angles.

In fact, these two angles are the system’s only genuine degrees of freedom: given the
structure of RF1

Flab
(χyaw), the right-hand side of (A8) depends only on χpitch and χroll, and

it has non-zero entries only in the first three rows. This implies that χpitch and χroll can
be determined independently from the fourth and fifth row of the ODE system (A8) since
these ODEs do not involve rFlab

M,i (t) and χyaw. This leads to (3.3a,b). The evolution of the

yaw angle χyaw(t) and the position of the centre of mass, rFlab
M,i (t), can then be determined

a posteriori from the remaining four ODEs ((3.6) and (3.7) in § 3.2).

Appendix B. The structure of the resistance matrix and the derived quantities

The U-shaped disks considered in this study have two mutually orthogonal planes of
symmetry. Happel & Brenner (1983) show that for objects of this type the translation,
rotation and coupling tensors have the form

K =
⎛
⎝K11 0 0

0 K22 0
0 0 K33

⎞
⎠ , (ΩM) =

⎛
⎜⎝Ω

(M)
11 0 0
0 Ω

(M)
22 0

0 0 Ω
(M)
33

⎞
⎟⎠ ,

CM =
⎛
⎝ 0 C(M)

12 0
C(M)

21 0 0
0 0 0

⎞
⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1a–c)
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The two diagonal blocks K and ΩM of the resistance matrix are diagonal, just as in the
case of a flat disk. The key difference, which gives rise to non-trivial dynamics, arises
from the translation–rotation coupling described by CM . For flat disks we have CM = 0,
allowing them to sediment along simple, rotation-free trajectories. The fact that C(M)

33 = 0
implies that our U-shaped disks can sediment along the body fitted xFb

3 directions without
reorienting or drifting sideways. This corresponds to the vertical sedimentation of the
disk in its upright and upside-down U orientations. For all other orientations the non-zero
entries in CM imply that a translation in the xFb

1 and xFb
2 direction induce rotations about

the xFb
2 and xFb

1 axes, respectively.
In terms of the non-zero entries in these three tensors, the coefficients featuring in the

ODEs (3.3a,b), (3.6) and (3.7) in § 3.2 are then given by

B = K33Ω33

(
C12

2C21 + C12 C21
2 − C12K22Ω11 − C21K11Ω22

)
, (B2)

D = C21K33Ω33

(
C12

2 − K11Ω22

)
, (B3)

E =
(

C21
2K33 − K22K33Ω11

) (
C12

2Ω33 − K11Ω22Ω33

)
, (B4)

F =
(

C21
2 − K22Ω11

) (
(K33 − K11) Ω22 + C12

2
)

, (B5)

G =
(

C21
2 − K22Ω11

) (
(K33 − K11) Ω22 + C12

2
)

, (B6)

H = K33

((
(−K11 + K22) Ω11 − C21

2
)

Ω22 + C12
2Ω11

)
, (B7)

I = K33

((
(−K11 + K22) Ω22 + C12

2
)

Ω11 − C21
2Ω22

)
, (B8)

J = K33Ω11

(
C12

2 − K11Ω22

)
, (B9)

K = K33

(
C21

2 − K22Ω11

) (
C12

2 − K11Ω22

)
. (B10)

Appendix C. The importance of wall effects

The analysis presented in this paper relies heavily on the observation that wall effects only
have a modest effect on the rolling and pitching behaviour of the disk. This allowed us to
compute the resistance matrix for a disk sedimenting in an unbounded fluid by performing
computations in a large but finite computational domain. The subsequent analysis was then
performed by analysing the solutions of a small system of ODEs.

Given that in Stokes flow boundary effects are known to act over large distances, we
briefly revisit the importance of the domain size (which features both in computations
and in experiments) on our results. We showed in § 4.5 that the (in general) chiral
sedimentation of U-shaped disks is due the non-zero off-diagonal blocks CM in the
resistance matrix. We reconciled the behaviour of U-shaped disks with the flat counterpart
by showing that these blocks to go zero as the disk’s radius of curvature, Rc, increases.
Figure 10(a) shows that the dependence of the off diagonal block CM on the disk’s radius
of curvature is not visibly affected by an increase in the size of the computational domain.
Conversely, the corresponding plots for the Frobenius norms of the two diagonal blocks
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Figure 10. The Frobenius norms of the submatrices K , ΩM and CM , which comprise the resistance matrix,
shown as a function of the radius of curvature of the disk and for box sizes L = 160 (black ‘+’) and L = 320
(red ‘×’). (a) Log–log plot of the norm of the coupling tensor CM ; the solid line shows a power-law fit to the
final five data points, with the fitted exponent shown via the slope-triangle; (b) Semilogarithmic plot of the
linear and rotational drag tensors K and ΩM ; the dotted lines indicate the analytic values for a flat circular disk
in an unbounded fluid.

KM and ΩM in figure 10(b) show that, as the disk’s radius of curvature is increased, both
norms approach constant values which are slightly above the theoretical values of 16

√
17/3

and 32
√

3/3 for a flat disk sedimenting in an unbounded fluid. The data computed in a
domain of twice the (linear) size can be seen to be closer to the theoretical value for an
unbounded fluid which is approached from above, indicating that the finite-size effects
increase the translational and rotational drag (Brenner 1962; Caswell 1972).

To assess how this affects the disks’ behaviour figure 11 shows representative plots
of (figure 11a) the trajectory of the disk’s centre of mass, (figure 11b) the disk’s closed
orbits in the (χpitch, χroll)-phase plane, and (figure 11c,d) the time evolution of the
three Tait–Bryan angles. Solid and dashed lines represent the predictions obtained using
the resistance matrix computed in domains of size L = 160 and L = 320, respectively.
As anticipated from all the results presented so far, the (χpitch, χroll)-phase planes
obtained from the two matrices are virtually identical. The slightly increased drag in the
smaller domain results in small changes to the disk’s predicted velocity, causing the two
centre-of-mass trajectories shown in figure 11(a) to drift apart while the disk undergoes its
periodic pitch–roll cycle. The time trace of the Tait–Bryan angles shows that the resistance
matrix computed in the larger domain leads to a slight decrease in the period of the
pitch–roll cycle which again causes the time-traces to drift apart. However, this has no
effect on the qualitative behaviour within each roll-pitch cycle. This is illustrated by the
close-up plot shown in figure 11(d), where the dash–dotted line was obtained by adding
a suitable time offset to the dashed line in figure 11(c), so that the two time-traces are
(re-)aligned at the beginning of that period. Following this realignment of the curves, the
two time-traces are nearly indistinguishable again.

Appendix D. Validation

In order to construct a suitable validation case for our numerical scheme, we considered
the special case of a flat, circular disk moving in an unbounded and otherwise quiescent
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Figure 11. Trajectories for a disk with Rc = 0.5, released with initial conditions χ
[0]
pitch = 0.4π, χ

[0]
roll = 0.4π.

Data was obtained with resistance matrices computed in domains of different sizes: L = 160 (solid) and L =
320 (dashed). (a) Trajectories of the centres of mass; (b) phase-space trajectory of the disk orientation; (c) time
trace of the Tait–Bryan angles; (d) close-up time trace of the Tait–Bryan angles, with a time offset applied to
the L = 320 (dashed) trace to align the two trajectories at t̃ = 6.65.

fluid; for this case we have a closed-form exact solution (uexact, pexact) (Happel & Brenner
1983), for which the force and torque on the disk are given by

F exact = 16
3

⎛
⎝2 0 0

0 2 0
0 0 3

⎞
⎠ · UM, T exact = 32

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ · ω. (D1a,b)

We chose an arbitrary rigid body motion of the disk, UM = {−0.7, −0.3, 0.6}, ω =
{−3.1, 0.1, 0.9}, which we imposed via the boundary conditions (2.2) on the disk surface.
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Figure 12. Relative error (in per cent) of the computed drag (circles) and torque (squares) as a function of the
mesh refinement, for a validation case in which a flat circular disk moves with UM = {−0.7, −0.3, 0.6}, ω =
{−3.1, 0.1, 0.9}. Filled symbols are for classical Taylor–Hood elements; hollow symbols are for the
PDE-constrained solution where the velocity and pressure fields are augmented with appropriate singular
functions, as described in § 3.1.

On the outer boundaries of the computational domain (a cuboid of size 1.55 × 1.55 ×
0.55) we applied the analytical velocity field as a Dirichlet conditions, except for the top
surface where we imposed the analytical traction τ exact · n as a Neumann condition. We
then uniformly refined the mesh several times, and for each mesh computed the numerical
solution using both classical Taylor–Hood elements and our augmented finite elements.
The results of this convergence study are shown in figure 12, where we show the relative
error between the analytical and computed values for drag and torque, obtained with both
methods, as a function of the number of elements in the mesh. The figure demonstrates
that the augmentation by singular functions described in § 3.1 not only outperforms the
non-augmented elements by two orders of magnitude, but converges at a rate of more than
twice the asymptotic order under mesh refinement.
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