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Simplicial Complexes and Open Subsets of
Non-Separable LF-Spaces

Kotaro Mine and Katsuro Sakai

Abstract. Let F be a non-separable LF-space homeomorphic to the direct sum ZnEN l>(7y), where
Rg < 71 < 72 < ---. Itis proved that every open subset U of F is homeomorphic to the product
|K| x F for some locally finite-dimensional simplicial complex K such that every vertex v € K©) has
the star St(v, K) with card St(v, K)© < 7 = sup 7, (and card K© < 7), and, conversely, if K is such
a simplicial complex, then the product |[K| X F can be embedded in F as an open set, where |K| is the
polyhedron of K with the metric topology.

1 Introduction

A locally convex topological linear space is called an LF-space if it is the strict in-
ductive limit of Fréchet spacesﬂ A typical LE-space is the limit R* of the Euclidean
spaces R C R? C R? C ---. Let £,(7) be Hilbert space with density dens /5(7) = .
According to the topological classification of LE-spaces ([10, Theorem 2.14] com-
bined with [19, Theorem 6.1]), every LF-space F is homeomorphic to (=) one of the
spaces R*, £5(7) x R® or )\ £>(7,), where 7 = densFand 71 < 7, < --- with
sup7; = densF.

Given a space E (called a model space), a paracompact Hausdorff space M is called
an E-manifold if it is locally homeomorphic to E, that is, each point of M has an open
neighborhood that is homeomorphic to an open set in E. In the theory of mani-
folds modeled on an LF-space, one can also consider three cases by the topological
classification of LF-spaces.

First of all, the theory of R°-manifolds has been well developed. The classifica-
tion, the open embedding, and the triangulation theorems were established in [4]
(cf. [3]), that is, two R°°-manifolds are homeomorphic if they have the same ho-
motopy type; every connected R°°-manifold can be embedded into R* as an open
set, and every R°°-manifold is homeomorphic to |K| x R for some locally finite
simplicial complex K. These results were derived from the stability theorem asserting
that M x R* =~ M for every R°°-manifold M. Later, a topological characterization
of R>°-manifolds was given in [17], where easy proofs of the above results were also
given.

Concerning the second case, it was proved in [11] that every open subset of
4,(T) X R* is homeomorphic to the product of an ¢,(7)-manifold and R*°. As a
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consequence, we obtained the stability, classification, and triangulation theorems for
open subsets of £,(7) x R*, where the triangulation theorem asserts that every open
subset of £,(7) x R* is homeomorphic to the product |K| x £,(7) x R for some
locally finite-dimensional simplicial complexf] K, where |K| is the polyhedron of K
with the metric topology. Thus, if the open embedding theorem were established for
45(1) x R*°-manifold, then the classification and triangulation theorems would be
obtained for /,(7) x R>-manifolds. But, this is still open.

In this paper, we show that the stability and triangulation theorems are valid for
open subsets of LF-spaces of the third type >\ £2(7,,), where Ry < 71 <75 < ---.
In the following, polyhedra are endowed with the metric topology instead of the
Whitehead (weak) topology. The set of vertices of a simplicial complex K is denoted
by K. For a simplex o € K, let ¥ be the set of vertices of o. The star St(v, K) at a
vertex v € K9 in K is the subcomplex consisting of all faces of simplexes o € K with
v € 0. Our first main result is the following trianglation theorem for open subsets
of LF-spaces.

Theorem 1.1 Every open subset U of )\ £2(7,) is homeomorphic to the product
IK| x> ,en LaTy) for some locally finite-dimensional simplicial complex K such that
each vertex v € K has the star St(v, K) with card St(v, K)© < sup,, o\ 7.

Observe that )\ £5(7,) X > o la(T) = >, cn fa(7y). This is trivial, since
ZneN 0, (7,) is regarded as the small box product [,en?,(7,) (see §1). As a corollary
of Theorem [L.]] we have the following stability theorem.

Corollary 1.2 (Stability) Every open subset U of )\ {2(7,) is homeomorphic to
U X Y en ba(Ty).

We can also prove the following converse of Theorem[L.1]

Theorem 1.3 For a locally finite-dimensional simplicial complex K, if card K <
T = sup,cy T, and card St(v, KO < T for each vertex v € KO then the product
K| % > ,en l2(T4) can be embedded in ) £>(7,) as an open set.

Remark 1.4 The condition card St(v, K)© < Sup,,cy Tx is equivalent to the con-
dition that card St(v, K)® < 7, for some n € N. Replacing the first condition
with the latter, Theorems [I.1] and are also valid in the case 1, < » < ---
(the same proof is available). When 7, = 7 for sufficiently large n € N, we have
Zn@\. ly(1,) = L(1) x R, which is the case of the previous paper [11]. In this
case, Theorem is none other than [11, Corollary 3]. But this induces the Main
Theorem of [11]. Indeed, |[K| x £5(7) x R & (|K| x £,(7)) x £r(T) x R*°. Since
|K| is a completely metrizable ANRH it follows from Torunczyk’s ANR Factor Theo-
rem [18] (see Section 1) that |K| x ¢5(7) is an ¢,(7)-manifold. On the other hand,
Theorem in this case is trivial. Indeed, by Toruniczyk’s ANR Factor Theorem,
IK| x £5(7) is an £,(7)-manifold with density 7, which can be embedded into ¢,(7)

2A simplicial complex K is locally finite-dimensional if each vartex v of K has the finite-dimensional
star, that is, sup{dimo | v € 0 € K} < o0.

3ANR = absolute neighborhood retract (for metrizable spaces); the local finite-dimensionality of K
implies the complete metrizability of [K| (cf. [9, Lemma 11.5]).
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as an open set by Henderson’s Open Embedding Theorem [5]. Thus, |[K|x £, (7) x R>
can be embedded into ¢,(7) x R°® as an open set.

A subcomplex L of a simplicial complex K is said to be full in K if every sim-
plex 0 € K with 0® c L® belongs to L. For such a pair L C K, let N(L,K) =
U,cro | St(v, SdK)|, where Sd K is the barycentric subdivision of K. To prove Theo-
rem we need the following theorem, which is well known for locally finite sim-
plicial complexes or the Whitehead topology but we are treating non-locally finite
simplicial complexes endowed with the metric topology.

Theorem 1.5 Let L be a full subcomplex of a locally finite-dimensional simplicial com-
plex K. Then, the topological boundary bd x| N(L,K) of N(L,K) in |K| is bicollared
in |K|.

Here, it is said that a subset A C X is bicollared in X if there exists an open embed-
ding k: A x (—1,1) — X such that k(x,0) = x for every x € A.

The Whitehead topology is preserved by subdivisions of K, but the metric topol-
ogy is not. To prove Theorem[L.5] we have to use simplicial subdivisions preserving
the metric topology. The barycentric subdivision is a typical one. In [7], D. W. Hen-
derson called such a subdivision a proper subdivision and gave its characterization
(see Theorem[5.2). Since it is not easy to check the condition even for derived subdi-
visions, we show the following characterization.

Theorem 1.6 For a locally finite-dimensional simplicial complex K, a derived subdi-
vision K' of K is proper if and only if K'© is discrete in |K|. [

2 Preliminaries

Let (X;);en be a sequence of topological spaces. The box product U;enX; is the prod-
uct [ [, Xi with the box topology, whose basis consists of sets [ [, Ui, where each
U, is open in X;. Given maps f;: X; — Y;, 1 € N, the box product Uien fi: UienXi —
O;enY; is defined by (,en fi) (x) = (fi(x:))ien for each x = (x;);en. Then, Oy f; is
obviously continuous. In case every X; is a pointed space with *; € X; the base point,
the following subspace of [J;cnX; is called the small box product:

ClienX; = {(xl-)ieN € UienX; ‘ x; = #*; except for finitely many i € N}

When each f;: X; — Y; is a pointed map (i.e., fi(*;) = #;), we can define the map
Bienfi: Hien Xi — HienY; as the restriction of ;e f;. For each n € N, we identify
H:l:l X; with H?:l X; = H?:l X; X {*,ﬁ_l} C Hm—i X;. Then,

i=

n
HienXi = U [ X
neNi=1

In case every X; is the same space X, [J;enX; and [J;enX; are denoted by (VX and
VX, respectively.

4Recently, Theorem [ was proved in [12] for any subvidision of an arbitrary simplicial complex.
In [12], a proper subdivision is renamed an admissible subdivision.
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We always regard a topological linear space as a pointed space with 0 the base
point. In case every X; is a Fréchet space, the weak box product [;enX; is the strict
inductive limit of the tower X; C X; x X, C X; x X, x X3 C -+, which is denoted
by > ;cn Xi in [10] (it is no other than the direct sum ), X; in [21, §13-2] or the
locally convex direct sum @ieN X; in [13, Example 5.10.6]).

One should take caution that the inductive limit in the category of topological
linear spaces is different from the one in the category of topological spaces. In this
paper, the latter is called the direct limit. The direct limit of a tower X; C X, C --- is
denoted by lim X;.

For the reader’s convenience, we shall list the fundamental results on ¢,(7)-man-
ifolds that will be used in our proof. In the proof of Theorem [LI] we adopt the
same strategy as the previous paper [11], but we now need Torunczyk’s ANR Factor
Theorem [18].

Theorem 2.1 (ANR Factor) For every completely metrizable ANR X with dens X
< 1, the product X x £,(1) is an £, (7)-manifold. In case X is an AR, X X l,(1) = £,(T).

For a locally finite-dimensional simplicial complex K with card K©© < 7, |K| x
£,(7) is an ¢,(7)-manifold, where |K| is the polyhedron with the metric topology.
Indeed, |K| is a completely metrizable ANR and card K) < 7 implies dens |[K| < 7.

A closed set A in X is called a Z-set (or a strong Z-set) if there are maps f: X —
X\ A (or ANd f(X) = @) arbitrarily close to id. It is said that a subset A C X is
collared in X if there is an open embedding k: Ax [0, 1) — X such that k(x, 0) = x for
everyx € A. The following is well known (see the statement after [14, Corollary 4.4]).

Theorem 2.2 (Collaring) If a Z-set in an £,(T)-manifold M is also an £, (T)-manifold
then it is collared in M.

Combining [20, Theorem B1] with the ANR Factor Theorem, we have the follow-
ing.
Theorem 2.3 (Enlargement) Let X be a completely metrizable ANR and A a strong
Z-setin X. If X \ A is an £y(7)-manifold, then X is also an £(T)-manifold.

We call an embedding f: X — Y a Z-embedding if f(X) is a Z-set in Y. The
following Z-Set Unknotting Theorem was established in [1].

Theorem 2.4 (Z-set Unknotting) Let A be a Z-set in an {,(7)-manifold M. If a Z-
embedding h: A — M is homotopic to (=) id, then h extends to a homeomorphism
h: M — M that is isotopic to id.

We also use the following version.

Corollary 2.5 Let A be a Z-set in an {,(T)-manifold M and f: M — N a home-
omorphism from M onto another {,(T)-manifold N. If a Z-embedding g: A — N is
homotopic to the restriction f|A, then g extends to a homeomorphism §: M — M that
is isotopic to f.

The following is proved in [8] (cf. [6]).
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Theorem 2.6 (Classification) Let M and N be {,(1)-manifolds. Every homotopy
equivalence f: M — N is homotopic to a homeomorphism.

The following result is due to the second author [15] (cf. [16]).

Theorem 2.7 Let M be an {,(7)-manifold with dens M = 7 and N a Z-set in M that
is an {,(7)-manifold and contains a strong deformation retract of M. Then, there is a
closed embedding h: M — 0,(7) such that h(N) = bd h(M) is bicollared in £ (7).

3 The First Step in the Proof of Theorem [1.1]

In this section, we translate the argument in the previous paper [11] by replacing the
intervals [0, 1) (resp. [0, 1]) by the unit open (resp. closed) ball B; (resp. B;) of £,(;).
For the sake of readers’ convenience and completeness, we repeat the arguments. We
also improve the notation.

In Theorem [1.1] ZieN Uy(1;) = [ijents(7;) can be replaced with [1;cyB; because
{,(7;) ~ B;. For each s > 0, let

B = {x € &(1) | ||x]| < s} and sB; = {x € Lr(;) | ||x|| <s}.

For a subset N C []/_, B; and a map a: N — (0, 1), we define

n+l
N(a) ={(x,y) € N xBu1 | [|7|| < alx)} C [] B

i=1

Let U be an open set in [;cyB;. Foreachn € N, let U, =U N H?:l B;. Then, U,
is an ¢, (7, )-manifold and U, is closed in U,,;,. For a sequence o = (a)ren of maps
ax: Ux — (0, 1) satisfying the condition Uy(ax) C Ui+, we can inductively define

Unslag,...,on) = Uylay, ..., o5_1)(ar) C Up(ax) C Upyq for each k > n.
Then; Un(an) - Un(an; an+1) C Un(an; an+1705n+2) C---. Let

U= U Un(ag,...,a) CU.
k>n

Thus, we have a tower Uf' C Uy C Ug C --- with U = (J,y Uy If each Uy is

open in U, then U is the direct limit of this tower, that is, U = lim U}

Lemma 3.1 There exists a sequence & = (ay)ken of maps ax: Uy — (0,1) such
that Ux(ax) C Upyy for every k € N and each U is open in U, hence U = hi>n U,.
Moreover, each x € Uy has a neighborhood V in Uy with a; > 0, i > k such that
inf,cy ax(y) > 0 and

inf{ () | yeV x I] aiﬁi} > 0 for every n > k.

i=k+1
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Proof For each k € N, let Vy = {V | A € Ay} be a locally finite open cover of
U with ay; € (0,11, 7 > k, such that 1V x [;gay;B; C U for each k € N and
A € Ay, where Ay N Ay = @ if k # k'. Suppose that Wy = {W) | A € Ai} isan
open cover of Uy that is a shrinking of Vi, that is, cl W) C V), for each A € Ay. We
define B;: U — I as follows:

Br(x) = maX{ %

k .
xedW, x [] “;*’183,»,A6A,~,j§k},

i=j+1

k
i=j+1

where cdl W), x ] ZiBi = W, if j = k. Observe

_ kayi— a1
{xeixI|t<B}=U U dwix I] B; x |0, ,
i<k AEA; i—jt1 2 2

which is closed in Uy x 1. This means that (3; is upper semi-continuous. Moreover,
we can define a lower semi-continuous function 7;: Up — I as follows:

k
'yk(x) = max{ ay k+1 ’ x eV, X H a,\inBii, AE A]‘, ] < k}

i=j+1

Since By < . there exists a continious map ay: Uy — (0, 1) such that G < o < .
Then, Ux(ax) C Uy for every k € N.
From the definition, it follows that

Wy x ] Ari B; x ax""H@nH C Uy(ay,) foreach A € Ayandn > k,

i=k+1 2

which implies inf, e, ax(y) > axx+1/2 > 0and

inf{ ay(y) ’ yeWyx ] a,\,i@i} > % > 0 for every n > k.

i=k+1

To show that each U{ is open in U, let x € US. Choose k > n so that x €
Un(ay,...,ar) C Uy, Since Upy = U/\EAM W, it follows that x € W for some
A € Mgy Let G= Wy NUy(ay, ..., ax). Then, G x [y 4B is a neighborhood
of x in [;enB;. By induction on m > k, we shall show that

m+1 ay;—
Gx ] S B C Uy - -, ).

i=k+2

Take an arbitrary point y = (W, zx42, - . . , Zm+1) from the left side in the above. By the
inductive assumption, we have

ay;—
M. C Uiy -y i)

)//:(W7Zk+27~--72m)EGX H

i=k+2
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Since ||zp11]] < axme1/2 < aum(y’), we have
y € Un(ana ceey am—1)(am) = Un(ana cey ).

Thus, it follows that

m+1
GXD,>k+1a/\lB; U (GX H a/\l ) C U U(a,,,. 7a7YI):Ur(1J{

ok i—kr2 2 mk

Therefore, U is open in U. [ ]

Now, we shall construct a sequence ¥ = (¢;);cn of open embeddings ;: U; x
Bit1 — Uit so that 9;(x,0) = (x,0) for every x € U; and U is homeomorphic to
the direct limit Uy of the following open tower:

U, x[is1B;, € U, x[s,B; C

Wy xid 1y Xid
where U, x [J;~,B; is regarded as an open set in U,;4; X [;~,,11B; by the embedding
”L/)n x id : U, x D,‘>,,B,‘ =U, X Bn“ X D,‘>n+1B,‘ — Ups1 X D,‘>n+1]B§i.

Lemma 3.2 There exists a sequence ¥ = () uen of open embeddings 1,,: U, x
Buy — Un+1juch that Uy =~ U, ¥,(x,0) = (x,0) for every x € U, and 1,|U, %
SBui1: Uy X sByr1 — Upyy is a closed embedding for each s € (0, 1).

Proof Let o = (a,),en be a sequence of maps «,: U,, — (0, 1) obtained in Lemma
Bl Then, U isopeninU and U = lim U;;". The desired open embeddings ¢,: Uy X
Bui1 — Uuir, 1 € N, are defined by Uu(x, ) = (x, a,(x)y). It is sufficient to show
that Uy = U because the other conditions are easily observed.

For every k € N, we inductively define §,,x: U, X H"”‘

i— i1 Bi — Bk as follows:

5n,k(x7 Yn+1,- - 7}’n+k) =

Qpik—1 (xu 6n,l(x7 yn+l)7 ceey (Sn,kfl(-xu )’n+17 LR >}’n+k71)> )’n+k7

where 6,1 (x, ) = a,(x)y. Then, by induction, we have the following equation:

Zn+1 Zn+k
(31) 6n,k(x7 ! PR ! ) = Zn+k
an(x) Qik—1(X, Znt1s -+ - Zntk—1)

Define h,: U, X Uis,Bi — US and g,: UY — U, X i~ ,B; as follows:

hn(-xa )’n+1’)’n+27 .. ) = (xa 5,171(.7(:, )’n+1)a 6;1.2(.7(7, )’n+17)’n+2)7 .- ) and

Zn+1 Zn+2 Zn+3 )
’ ’ PR
Qy (X) Q1 (X, Zn+1 ) Qpt2 (X, Zn+1, Zn+2)

(X, Zpi1, 242y - ) = (x,

https://doi.org/10.4153/CJM-2010-083-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2010-083-5

Simplicial Complexes and Open Subsets of LF-Spaces 443

As is easily observed, g, o h, = id. By B.1), h, 0 g, = idya. Hence, g, is a bijection
with h, = g, !. Moreover, the following diagram commutes:

U C Ug

n+l

gﬂl l &n+1

Up X DisyB; —S— Upyy X Eis s B
P, xid

Indeed, let (x, zy11, Zps2, - - . ) € U Then, ((x, z411), Zns2, - .. ) € Ug,, and

(thn x id) © gu(X, Zps1, Zne2, - - - ) = (P X id)(x, Zn] Znt )

an(x)7 an+1(x7 Zn+1) T

_ Zn+1 Pn+2
B (% (x’ an(x)) Tt (x,2p1) >

Zn+2
= (xzp11), —F———, .-
a1 (X, Zpy1)

= g1 (%, Zu11), Zne2, -+ ) -

It remains to show that each h, and g, are continuous, which means that g, is a
homeomorphism. Thus, we would have

U= hi)nU:: ~ hi,n (Un X Iz’i>n]B;i) = U\II-

To see the continuity of h, at x € U, x [;~,B;, let V be a neighborhood of h,,(x)
in UZ. Then, x is contained in some U, x H:’:; +1 Bi, which implies that h,(x) €

Un(Qy -« -, Qurk—1). We can find a neighborhood V' in h,(x) in U, x H"Jrk B; and

i=n+1
0<eg <1,i=2n+k+1,suchthat h,(x) € V' x HispkeiBi C V. Since b1, -5

d,k are continuous, it follows that h,|U, x H:‘:’; .1 Bi is continuous, hence x has a

neighborhood W in U,, x H"+k IB; such that i,(W) C V’. Then, W x [is,1x&:B;

i=n+1

is a neighborhood of x in U,, x [;~,B; and
hn(W X Eli>n+k5iBi) cV’'x LisnkeiB; C V,

which implies that h,, is continuous at x.

To see the continuity of g, at x € U, let V be a neighborhood of g,(x) in
U, x [i~,Bi. Then, g,(x) is contained in some U,, X H::ﬁﬂ B;. Putm = n+ kand
choose an openset W in U, and ; > 0,1 > m+ 1, so that g,(x) € W x [j>,eiBi C
V. Since v, ..., auy—; are continuous, it follows that g,|U, (v, . . ., auy—1) is con-
tinuous, hence we have a neighborhood W' of x in U, (v, . . ., atu—1) C U, such
that g,(W' x {(0,0,...)}) € W x {(0,0,...)}. By virtue of Lemma[3] it can be
assumed that inf, ey a,(y) > 0 and

m+l
inf{ Am1(y) ‘ yeW’' x J] 5,&8%} > 0 foreveryl € N.

i=m+1
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We can find 0 < 9,11 < €515, L € N, such that

V4
y €W’ |zm1] < O = Iz < &my and
am(y)
, m+l
(¥, Zmt1y -+ > Zme1) € W' X H €ilB;, ||Zm+l+1|| < Omilr1
i=m+1
y4
H m+l+1H < Em+l+l-
Oém+l()’a Zntkils - - - 5 Zmtl)

Then, we have g,,(W’ X Ei>m§i]B%i) C W x s meiB;i C V, which implies that g, is
continuous at x. [ ]

4 The Second Step in the Proof of Theorem [1.1]

To construct the simplical complex K in Theorem [[I] for each n € N, let K,, be
a locally finite-dimensional simplicial complex of the homotopy type of U, and
&n: U, — |K,| a homotopy equivalence with a homotopy inverse 7,: |K,| — U,.
Moreover, take a subdivision K, < K, and a simplicial approximation ¢,: K, —
K1 of Epirintn: |Ky| — |Kys1|, where i,: U, = U, x {0} C U,y is the inclusion.

The simplex with vertices vy, . . ., v, is denoted by (v, .. ., v,), where we allow the
case vy, ..., v, are not pairwise distinct. We give orders on K\” and K,© such that
the set (¥ of vertices of each simplex o is totally ordered. The simplicial mapping
cylinder Z(p,) of ,: K — K, can be defined as follows:

Z(pw) = Koo U {{@u(0), -+ 0u ), vjs v | 1y € KL

v <<, 1<i<j<k}.

Then, K/ and K,,;, are subcomplexes of Z(y,) and Z(p,)® = K!© u K,(lg)l. We also
define the triangulation I(K,, K}) of the product |K, | x [2n — 1, 2n] as follows:

(K, K) = (K, x {2n—1}) U (K, x {2n})
U{(o(o) x {2n— 1} U{vp, -+ ,vu} X {20}) | o €K,

(Vo V) EKyy vy <o <y 0 C (v, ,Vm>}.

Identifying K, and K,,41 in Z(p,,) with K x {2n} C I(K,,,K,,) and K,;1; x {2n+1} C
I(Ky41, K., ) respectively, we can obtain the simplicial complex

K= U UKy, KU Z(pp)).
neN

Take an increasing sequence 0 < ¢; < ¢; < -+ withsup yc, = 1 (eg, ¢y =

https://doi.org/10.4153/CJM-2010-083-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2010-083-5

Simplicial Complexes and Open Subsets of LF-Spaces 445

n/(n+1),n € N). For each n € N, let
n—1
N, = ([Ky| x [2n = 1,2n — 3)) U U ([I(K;, K| U [Z(1)]),
i=1

n—1

=1

n+1 n+l
M, =N, x [[cBi, M, =N, x [] ¢,B; and

i=1 i=1

. n+l .
oM, =M, \Mn = <en(Kn|) X H Cn]B§i> U (N, X Dn+1)7
i=1
where 6,,: |K,| — |K,| x {2n — 1} C N, \ N, C N,, is the natural injection and

n+l n+1 n+l n+1
Dn+1 = H C,,IB;,' \ H Cn]Bgi = Cn( H ]B;l \ H ]B;l> .
i=1 i=1 i=1 i=1
It should be remarked that
(4.1) Opt190n = 0, in N,y1 \ N, for each n € N.
Lemma 4.1 Every D, is homeomorphic to €5 (T11).
Proof By induction, we shall show that
. n+l n+1
D12+1 = C; Dn+1 = H lB;, \ H ]B, ~ 62(7}”_1)7
i=1 i=1

so we will hjve Dyt = {(7y11). The unit sphere S,11 = B \ B,+1 and the unit
closed ball B,,+; of £,(7,,+1) is homeomorphic to ¢5(7,,41). Then, D] = S; & £,(7).
Assume that D/, 2 £,(7,,). Observe

D!, =D} xBu1)UB; x -+ x B, X Sy41) and
(D; x Bye) N (By X -+ x By X Sp1) = Dy, X Sy
By the ANR Factor Theorem, we have
D) X By & By x -+ X By X Sy & D) X Spi1 & o (Tyr1)-
As is easily observed, D!, X S,;1 isa Z-setin both D! x B,;; and B x - - - X B, X S41.

Since £5(Ty41) X (—=1,1) & £y(Tye1) X [0, 1) & £y(7,41), it is easy to obtain D/, ~
45(Ty+1) by the Z-set Unknotting Theorem. [ |

Lemma 4.2 Each M,, M,,, and OM,, is an £,(T,4)-manifold, and OM,, is a Z-set
inM,.
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Proof Since B,;; ~ D, ~ {,(7,:1), the following are £;(7,,)-manifolds by the
ANR Factor Theorem:

n+1

M,, My, 0,(/K,|) x T] ¢.Bi, N, X Dy and
i=1

n+l
(911(|Kn|) X H Cn]Bi> N (Nn X Dn+l) = 9n(|Kn|) X Dpy1.

i=1

The last one in the above is a Z-set in the both 0,,(|K,,|) x H:’:i c,B; and N,, x D, 1, so
it is collared in them by the Collaring Theorem. Then, OM,, is an ¢,(7,+;)-manifold
because

n+l —
oM, = <9n(Kn|) x ] cnlBﬁi> U (Ny X Dyy1).
i=1

Observe that 0,,(|K,,|) x H:’;l ¢,B; and N,, X D4, are Z-setsin M,, = N, X Hf: B

Thus, OM,, is a Z-set in M,,. [ |

We also consider the following sets:

8Mn = (aMn X CnEnJrZ) U (Mn X CnSnJrZ)

n+2 o n+2 n+2
= <9n(Kn|) x T1 cn]B%i> U (Nn X ( 1B\ I1 cnlB;,-) ) ,
i=1 i=1

i=1
Ly = M;ﬁl \ (M, X cyBp2)

o n+2 _ o n+2 _ n+2
= ((Nn+1 \Nn) X H Cn+1Bi> U <Nn+1 X < H Cn+1]B;i \ H Cn]B%i> ) .
i=1 i=1

i=1

Then, we can write M1 = My, X ¢,Bps2) ULpsq and OM,, = (M, X ¢,Bys2) N Lys1,
where OM,, is the topological boundary of both L,;;; and M,, X ¢, B4, in M,41.

Lemma 4.3 Each OM, and L., is an {(7,,)-manifold, and OM,, is a Z-set in L,,.,.

Proof The following two sets are bicollared in M, ;:

n+2 o o n+2 n+2
0,(|Ky]) X T €4r1B; and N,4q X ( TeBi\ 1 cn]Bi,-) )
i=1 i=1

i=1

Then, it is easy to construct a homeomorphism f: M,;; — M, arbitrarily close to
id such that

i=

n+2 _ o _ n+2 o
(N,, x I1 anlB%i) N clf((N,m \N,) x [] c,,HIBi,-) = ¢ and
i=1 i=1

_ nt2 o n+2 _ont2
(Nn+1 x I1 cnIBE,') N clf(N,m X ( 1B\ T cnlB§i> ) =g,
i=1 i=1

i=1
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which implies (M, X ¢,By2)Nclyz | f(Lps1) = @. Since OM,, C My, X ¢, B,112, we have
amap f|Lys1: Lyy1 — Ly arbitrarily close to id such that OM, N cl f(L,y,) = @.
Hence, OM,, is a strong Z-set in L,,;;. Observe that L,,;;\OM,, = M1\ (M, x¢,B,12).
Since M1, is an £, (7,4+,)-manifold by Lemma it follows from the Enlargement
Theorem that L, is an ¢, (7,,,,)-manifold.

By the ANR Factor Theorem, OM,, X ¢,B,12 and M,, X ¢,S,+2 are £5(7,4,)-mani-
folds because B2 & Sy12 & l2(Tyi2). Observe that

(OM,, x Cn@nJrZ) N (M, X c4Sni2) = OMyy X €,Snia,

which is also an Ez(Tn+2)—marLifold by the ANR Factor Theorem. Since OM,, X ¢,S,+2
is a Z-set in both OM,, x ¢,B,+, and M, X ¢;,Sps2, it is collared in them. Then it
follows that OM,, is an ¢,(7,,4,)-manifold. [ |

For eachn € N, let j,: N, — N, X {v,41} C M, be the natural injection, where

n+1 n+l

Vnt1 = (Cnelv s 7Cnen+1) € Dyy1 = H Cn@i \ H c,B;
i=1 i=1

and each ¢; € S; is a fixed point. It should be remarked that
Jnbn([Kul) = O0a([Kul) X {Vis1} = [Ku| X {20 = 3} X {vas1} C OM,.
Since j,41(Ny1 \ Ny) C Lyy1, the following follows from (&.1):
(4.2) Jnr10n1190n = ju10y in Ly for every n € N.
Lemma 4.4 Foreachn € N, there exists a retraction r,: M, — ,0,(|K,|) such that
rp > id rel. j,0,(|K,|) in M, and r,|OM,, ~ id rel. j,0,(|K,|) in OM,,
where the latter homotopy is obtained as the restriction of the former, hence
(rp x id)|OM,, ~ id rel. j,0,(|K,|) X c,Bps2 in OM,,.

Moreover, 1,41 satisfies that r,41|Lyy1 =~ id rel. ju10,401(|Kys1]) in Lygr, which is
obtained by restricting rpp1 ~ id rel. ju110,41(|Kys1|) in M.

Proof Observe that6,(|K,|) = |K,|x{2n—3} isa strong deformation retract of N,,,
D,y is a strong deformation retract of H:g ¢,B;, and {v,, } is a strong deformation
retract of D,4;. It is easy to construct a deformation h: M,, x I — M, such that
h(OM,, x I) C OM,, hy: M, — j.0,(|K,|) is a retraction and h;|j,0,(|K,|) = id for
every t € I. Then, r, = h; is the desired retraction.

In case n > 1, 0,(|K,]|) is a strong deformation retract of N, \ N,—; and N, \
N,_ is a strong deformation retract of N,,. Then, we can construct & so as to satisfy
h(L, x 1) C L, m
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By Lemma [3.2] we have a sequence ¥ = (3););en of open embeddings v;: U; X
Bit1 — Uit such that U is homeomorphic to the direct limit Uy of the open tower

U; x [i=1B; C U, x [;s,B;  C

 xid 1, xid
Theorem [T.Tlis reduced to the following.
Lemma 4.5 |K| x ienB; =~ Uy.

Proof Here, we regard Uy as the direct limit of the open tower

U X His1aB; € U, x [His0B; C
i

1 xid 1, xid
For eachn € N, let
Mso = Nn X BieNani = Mn X D,‘>n+1CnB,’.

Then, M{® C M3° C --- are open in |K| x ElienB; and [,y Mi° = K| x ElienlB;.
To show that |K| x [J;enB; &~ Uy, we may construct homeomorphisms h,,: M3° —
U, X Bi=uc,Bi, n € N, so that the following diagram commutes:

C
o} foe}
M; M,

h,,l l [}

Un X WispcaB; % Uni1 X Uispr16011Bi-
Y X

Note that M,, X ¢,B,+2 C M,41. If we could construct homeomorphisms f,: M, —
Uy X cuBus1, 1 € N, so that the following commutes:

M, X ¢, B2 — M1

f”XidJ, l fan1

Un X ciBu1 X Btz —d) Unt1 X a1 B2,
P X1

then the desired homeomorphism A, could be defined as follows:
hn = fn x id : M::o = Mn X Eli>n+lcn]B§i — Un X Eli>ncn]B;i~

By Lemma[£4] we have a retraction r,: M, — j,0,(|K,|) such that r, ~ id rel.
ju0n(IKy]) in My, and r,|0OM, =~ id rel. j,0,(|K,|) in OM,, hence both r, and
2|OM,: OM,, — j,0,(|K,|) are homotopy equivalences. Let

ir: Uy — Uy X {cpen1} C Uy X 6Su1 C Uy X ¢,Bi1

be the natural injection. Recall 77,,: |K,,| — U, is a homotopy equivalence. Then, the

map q, = 1;Mu( j,,@n)’lrn: M, — U, x¢,B,+1 is a homotopy equivalence. Moreover,
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Yt =~ i, in Uy, where iy, : U, = U, X {0} C U,y is the inclusion. Since S,41 is
an AR, the restriction g,|0M,,: OM,, — U, X ¢,Su+1 is also a homotopy equivalence.

We shall construct homeomorphisms f,, M, — U, X ¢,Bu1, n € N, so that
fu =~ qu fu(OM,) = U, X ¢,Sp1 (ie., f,(M,) = U, X ¢,B,;1) and the following
diagram commutes:

Mn X CnEnJrZ ;) erl

fnxidl lfnﬂ

Un X CnEnJrl X Cn@n+2 ﬁ) Un+l X Cn+lgn+2-
Dy X 1

Then, f, = f,,|M,,, n € N, are the desired homeomorphisms.
First, by the Classification Theorem, we have two homeomorphisms

f:M1—>U1 XEZ and f’:8M1—>U1 XSZ

such that f ~ g; and f’ ~ q;|0M,. Since f’ ~ f|OM; in U; x B,, we can apply the
Z-set Unknotting Theorem to extend f’ to a homeomorphism f;: M; — U; x B,
that is isotopic to f, hence f; ~ g;.

Now, assume that f, has been obtained. Let

Ey = (hu fu x id)(OM,)
= (Yufa(OM,) X €,Bps2) U (Yu (M) X €4Sus2)
= (Yu(Up X cuSps1) X caBui2) U (¥u(Uy X cuBps1) X €4Sus2) and
Wit = (Unst X cu1Bui2) \ (?/Jnfn X id)(My, X ¢,Bps2)
= (Ups1 X cus1Buiz) \ (Vn(Upy X uBui1) X ciBpi2).
Then, we have
Uit X Cur1Brsz = (ufo X id)(Myy X ¢,Bri2) U W1,
Fy = (Wufu X id)(M,, X ¢,Bpi2) N Wiy
and the homeomorphism
= (b x id)(f, x id)|OM,, = (ufy % id)|OM,: OM,, — F,.

Hence, F,, is an ¢, (7,,)-manifold. Similarly to Lemmal4.3] it can be shown that W,
is also an #,(7,,42)-manifold and F,, is a Z-set in W,,;1. Recall

= (8Mn X CnEnJrZ) U (Mn X CnSn+2) C Mn X Cn@nJrZ C erl-

Note that ¢,S,+, is a strong deformation retract of ¢,B,., and {c,e,2} is a strong
deforn}ation retract of ¢,S,42. Let ¢: ¢,1Bui2 — {cueni2} be the constant map.
Since f, =~ gy, it follows that

g~ (1/)nfn X €)|OM,, =~ (g, X ©)|OM,, = (it x c)(nn(jnen)*lrn x id)|OM,, in F,.
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In addition to the natural injection i, : Uye1 — U1 X {Cus1€n42} C W,py, consider

the natural injection i}, : Upy1 — Uyer X {cnensa} C Wyy1. Then we have

ok . Y . ok . .
Yuy X € iy X € =1y iy Py, 2 1in Pry, 0 Wiy,

Since Ny1&nr1 = idy,,, and @, is a simplicial approximation of &,1i,7,, it follows
that

8§~ inyin PrU,,(nnGJljilrn x id)|OM,,

S WIRT MUY RY ) M. e Pry, |OM,,

S R ST I P, [OM, in Wi
Note that 7,41 |Lyt1: Lys1 — Jus160u1(|Koe1]) is @ retraction. By (£2), we have

<Pn9;1jr71 = e;-lljr:i-llrwrljn+19n+l<pﬂ9;1j;1
=~ 9;;11 j,;rllrn+1jn+19n9;1j;1 = (jn+19n+1)_lrn+1jn+1j,1_l in |Kn+1‘-
Then it follows that
8 2 i Mt Gre1 Onet) ™ Tt et iy Py, |OM,,
= i2+177n+1(jn+10n+1)_lrn+1jn+1 Prﬁn(Tn X id)|(79Mn in W.,.

Since M,, X ¢,S,42 is a strong deformation retract of M, and

jn+1 prﬁn |Mn X CnSn+2 ~id in Mn X CnSn+27

we have j,1 pry |OM,, ~ id in OM,,. On the other hand, due to Lemma &4} (r, x
id)|OM,, ~ id in OM,,. Thus, we have

g = i:+lnn+l(jn+19n+1)_lrn+l|5Mn = Qn+l|8Mn in Wn+1-

Recall that g,41|0My41: OMys1 — Uil X 64415042 is @ homotopy equivalence.
By the Classification Theorem, we have a homeomorphism g’: OM,.; — U,41 X
Cn+1Sn+2 such that ¢’ ~ g,,,1|0M,,4;. On the other hand, due to Lemma[4£.4]

rn+1|Ln+1 ~ ld rel. jn+10n+l(|Kn+l|) in Ln+17

hence 741|Lus1: L1 = jur10n+1(|Kus1|) is a homotopy equivalence. Then it follows
that qur1|Lyt1: Lyst — Wiy is also a homotopy equivalence. By the Classification
Theorem, we have a homeomorphism g'’: L,y; — W41 such that g/ =~ gp41|Ly+1-
Note that M,, and OM,,,; are disjoint Z-sets in the ¢, (7,,)-manifold L,,, and F,
and Uy41 X €u415042 are disjoint Z-sets in the ¢,(7,4,)-manifold W,,,;. Since g ~
Gni1|OM,, ~ ¢"'|OM,, and g’ ~ qu1|0M,y1 ~ g''|OM,;1, we can apply the Z-set
Unknotting Theorem to obtain a homeomorphism f: L,.; — W, such that f
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is isotopic to g’’, f|OM, = g and f|OM,,;; = g’. Then f can be extended to a
homeomophism

fn+1 : Mn-%—l - Un+1 X Cn+1]B;n+2 bY fn+1‘Mn = (7/1;1 X ld)(fn X ld)
Recall that r,,4; ~ id in M,,,; and

Tn+1(Mn+1) = jn+19n+1(|Kn+1D - 8Mn+1~

It follows that f_,m ~ fnﬂrnﬂ = ¢'fui1 = GuiiTur1 = gne1. This completes the
proof. ]

5 Proofs of Theorems 1.5 and

In this section, we shall prove Theorems [[5] and For each point x € |K]|, let
(B (x))yexo € X be the barycentric coordinate, that is, ) .y Gy (x) = 1 and
{v € K9 | BX(x) > 0} is the set of vertices of the carrier of x, which is the simplex
of K containing x as an interior point. Then we can write x = ) ¢« BX(x)v. The
open star at v € K% is defined by

O(v,K) = {x € |K| ‘ B85 (x) > 0}.
The metric px for the polyhedron |K]| is defined as follows:
pr(xy) =Y B = B ()]
veK©)
A simplicial subdivision K’ of K is properﬁ if and only if the metric px/ is admissible

for |K]|.

Remark 5.1 Identifying x with (85(x)),cx0 € £1(K®), we can regard |K| as a
subspace of the Banach space ¢;(K?)). Then, the metric px is induced by the norm
of El (K(O) )

The following characterization was established by D. W. Henderson.

Theorem 5.2 ([7, Lemma V.5]) A simplicial subdivision K’ of K is proper if and only
if the open star O(v, K') at each vertex v € K" is open in |K|.

For each x € |K], let 0, € K be the carrier of x and define O(x,K) =
ﬂvea“” O(v, K). Then, O(x, K) is open in |K| with cljx| O(x, K) = | St(ox, K)|, where

x,

St(c, K) is the star at ¢ € K, which is the subcomplex of K defined as follows:
St(o,K) ={c' €K ’ Jo'" € K suchthato,o’ <o} I
For 0 < t < 1, we can define ¢} : | St(oy, K)| — | St(oy, K)| by

©i(y) =1 —t)x+ty fory € |St(oy, K)|.

>Or admissible (cf. Footnote 4).
%The notation ¢ < ¢’ means that o is a face of o.
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Lemma 5.3 Foreachx € |K| and 0 < t < 1, the image ©}(| St(ox, K)|) is closed in
K|, and ©¥(O(x, K)) is open in |K]|.

Proof Regarding |K| C ¢,(K'?) as in Remark [5.1] above, ¢} extends to the home-
omorphism @*: £;(K”) — ¢,(K®). Hence, ¢* is a closed embedding, and the
restriction ¢¥|O(x, K): O(x,K) — O(x, K) is an open embedding. [ |

For A C |K|,1et C(A,K) = {o € K | o NA = @}. Then C(A, K) is a subcomplex
of K. In case A = {x}, we write C({x},K) = C(x,K). Then, O(x,K) = |K] \
|C(x, K)|. Observe that K = St(o,K) U C(c°, K) for each simplex o € K, where ¢°
is the interior of o. In particular, K = St(v, K) U C(v, K) for each vertex v € K.
Note that K # St(o, K) U C(o, K) in general.

Let V C |K| such that O(v,K) N O(v',K) = @ ifv # v’ € V. Foreachv € V
and o € St(c,,K) N C(v,K), let vo be the simplex spanned by {v} U ¢, that is,
(vo) O = {v} U 0. Then, we can define the simplicial subdivision Ky of K as
follows:

Ky =C(V,K)U{vo | vEV, 0 € St(0,,K) NC(v,K) }.

Observe that K\) = VUK©®, C(V,Ky) = C(V,K), and O(v, Ky) = O(v,K) for each
v € V. When V' = {w}, we write K;,,; = K,,. The operation K — K,, is a starring
K at w. A subdivision obtained by finite starrings is known as a stellar subdivision

(cf. [2]).

Lemma 5.4 Foreachw € |K|\ K%, K,, is a proper subdivision of K.

Proof Let 0,, € K be the carrier of w. Observe that O(v,K,,) = O(1,K), v €
K9\ ¢ and O(w,K,) = O(w,K) = ﬂveao) O(v,K) are open in |K|. To apply
Theorem[5.2] it remains to show that O(v, Ky) is open in |K| for each v € o9, Since
O(v,K,,) = (B%)~1((0,1]), it suffices to prove the continuity of 3%~: |K| — I for
eachv € O'(O)

By using the barycentric coordinate with respect to K, each point x € |K| can be
written

x = 5w+ Z B (x)u.

u€K©®
Since 3X(v) = 1 and BX(u) = 0 for each u € K \ {v}, it follows that

B (x) = B8 (x) 85 (w) + 5 (x),

hence 35+ (x) = 85 (x) — 85+ (x) 3K (w). Since X : |K| — Tis continuous, it is enough
to show that 3%+ |K| — T is continuous.
We shall show that 3K+ |K| — Iis lower semi-continuous. For each t € [0, 1),

B, 1]) = o} (0w, K)) = {tw+ (1 — 1)z | z€ O(w,K) },
which is open in |K| by Lemma 53] Indeed, let y € (8%)71((¢,1]). If BX+(y) = 1,
then y = w € ¢V_,(O(w, K)). When 35+(y) < 1, we have

(5.1) = Z o (y) VEUyC|St(0W7K)\.

yeK®©®
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Observe that 85+ (y*) = 0and y = BX(y)w+ (1 — B8 (y))y*. Since L (y) > t, we

have
Koy =t 1=88(y) B
Z:ﬁ 1{1‘ w4+ lﬁ_ty y e(ﬁvffw) 1((0,1])=O(W,K).
Then it follows that

tw+ (1 =tz =tw+ (B (y) — hw+ (1 — B (1)y*
=By w+ (=B (n)y* =,
hence y = ¥ ,(2) € @¥_,(O(w,K)). Conversely,
z€ O(w,K) = (B,)71((0,1]) =
By (P (2) = By (tw+ (1 = )2) = t + (1 = 1) B (2) > t,

which means ¢, (O(w, K)) C (B5) (¢, 1]).
Next, we shall show that 8%: |[K| — I is upper semi-continuous. Note that
(BR%)=1(1) = {w} is closed in |K]|. For each t € (0, 1),

BEYN([1,1]) = @, (| Stlo, K))) = {tw+ (1 = 1)z | z € | St(0,, K|},

which is closed in |K| by Lemma[5.3] Indeed, let y € (85)~1([¢, 1]). If BX(y) = 1,
then y = w € ¢V (| St(oy, K,)|). When 3X+(y) < 1, take the same y* as (B1)) in
the above. Then, since ﬁﬁW( y) = t, we have

Ky _ — pKy
L_BSp 188 (G)
1—t 1—t

y* € |St(ow, K)|.
Similarly to the above, it follows that

y=tw+ (1l —t)z= ¢\ ,(2) € p7_, (] St(o, Ky)|)-

The inclusion ¥, (| St(a,, K)|) C (8%)~1([¢, 1]) follows from the following impli-
cation:

z € | St(w,K)| = ﬁf"((p‘f’f&Z)) = ﬁﬁw(tw+ 1=tz =t+(1— t)ﬁff“’(z) >t.

This completes the proof. ]

Lemma 5.5 LetV be a discrete set in |K| such that O(v,K) N O(v',K) = @ if v #
v € V. IfdimK = n < oo, then Ky is a proper subdivision of K.

Proof Due to Theorem[.2] the proof is reduced to show that O(v, Ky) is open in |K|
for every v € K\(,O) = VUKW, Ify € V, then O(v,Ky) = O(v,K) is open in |K].
When v € K, since O(v,Ky) = (B5)~1((0,1)), it suffices to show the continuity
of Y. K| — L.
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Note that each x € |K| can be written as follows:

=D A w+ Y B,

wev UEK®
where ﬂ{f: (x) > 0 at most one wy € V. Then we have
By (x) = By ()35 (we) + 5,7 ().
Thus, the following holds:
(5.2) Vv e K9, B (x) = B (x) — B ()85 (ws).
Now let v € K be fixed. To see the continuity of 85 at x € |C(V, K)|, for any

e >0,let
e dist(oy, V) < €

4n

0<éd=

[\

Then we shall show the following:
y € 0(x,K), pr(x,y) <8 = |8, (y) = B (0)] <e.

Let 0,0, € K be the carriers of x and y respectively. Since x € |C(V, K)|, we have
ox NV = @, which implies 35" (x) = 8K (x). If o, NV = &, then 3% (y) = BX(y)
and hence

185 (y) — B ()] = 1B5(y) — BX(x)| < px(x,9) <6 <e.

In case 0, NV # &, we have w, € V such that 4 (y) > 0, which implies that the
carrier o, € K of w, is a face of 0. Then it follows from (5.2)) that

185 (y) = B ()| = 187 (9) = By ()5 (wy) = B ()]
<185 (») — ﬂf(x)l + B (1B (wy) < p(x, ) + BYY (7).

Since px(x, y) < &/2, it remains to show that ﬁff;(y) < €/2. We can take z € o,
such that 3% (z) > BX(w,) for each u € 5. Observe that

pr(z,wy) = Y (BN = Bi(wy) + Z B (wy)

ueol ueol \crY

=1- > Bf(w)+ Z BEw) =2 > BNw,).

ucol® u€aiy) \o” ucog\o

Since dist(oy, V) < px(z, wy), we have

Z 5K( w) > dlSt(UX,V)

quw},\Ux
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Hence, Bf(wy) > dist(oy, V)/2n for some u € a&?} \ 0')((0) because dimo,,, < n. By
virtue of (5.2)), we have

Koo BE) = BNy By pr(x, y) 2nd €
)= T Gy S By = BEGwy) © dist(on V) 2

Finally, it remains to show the continuity of 85 at x € |K| \ |C(V, K)|. Note that
ox NV # @, which is the singleton {wy}. For every y € O(x,K), o is a face of o,
hence 0, NV = {w,}. Then it follows from (5.2)) that

B (y) = By (y) — By ()B4 (wy) for every y € O(x, K).

K, Lo . .
Observe that ﬂffx‘ |O(x,K) = (4" |O(x, K), which is continuous as saw in the proof
of Lemmal5.4l Since 3X is continuous, 3% |O(x, K) is also continuous. [ |

Lemma 5.6 Let K be a finite-dimensional simplicial complex. Then, a derived subdi-
vision K’ of K is proper if K'¥) is discrete in |K|.

Proof Let dimK = nand K'” = KO U {v, | 0 € K\ K9}, where each v, is
an interior point of 0. For eachi = 1,...,n,letV; = {v, | 0 € K&\ K=V},
By downward induction, we define subdivisions K; of K as follows: K; = (Kis1)v,,
where K,,1; = K. Note that V; is discrete in |K| by the assumption and O(v, Ki11) N
O(',Kiy1) if v # v/ € V;. By using Lemma 5.5l inductively, we can see that each K;
is a proper subdivision. Observe that K’ = K;j. Thus, we have the result. ]

Now, Theorem [ easily follows from Lemma

Proof of Theorem[I.d Since K’ is discrete in |[K'|, it suffices to show the “if” part.
For each vertex v € K'¥, let 0, € K be the carrier of v and u € ¢!®. Then,
O(v,K') C O(v,K) C |St(u,K)|. Let L’ be the subdivision of L = St(u, K) induced
from K'. Since dim L < oo and L'?) is discrete in |L|, it follows from Lemmal[5.8 that
L' is a proper subdivision of L. Thus, O(v,K’) = O(v, L") is open in |L| = | St(u, K)|,
and therefore in O(u, K). Since O(u, K) is open in |K|, it follows that O(v, K') is open
in |K|. Then, K’ is a proper subdivision of K by Theorem[5.21 [ |

By using Theorem[I.6] Theorem[L.5lcan be proved in the standard way.

Proof of Theorem[L3 Let f: |[K| — I be the simplicial map defined by f(L”) = 0
and f(K\ L) = 1. Then, f~!(0) = |L| and N(L,K) C f~!([0, 1)). Moreover,
f7(3) is bicollared in |K|. In fact, for each 0 < ¢ < t' < 1, there is a homeo-
morphism h: f~1(t) x I — f~1([t,t']) such that h(f~1(¢) x {0}) = f~!(t) and
h(f~'(t) x {1}) = f~'(¢'). This can be shown as follows: let (3,(x)),cxo be the
barycentric coordinate for x € |K]|, thatis, x = >y« 0,(x)v. Note that x € f (1)
ifand onlyif ) ;0 B,(x) = 1—tand EVEK(")\L(O) B,(x) = t. Then, h can be defined
as follows:

hx.s) = Z 1-— ((11— sit +St/)5v(x)v+ Z wﬁv(x)u
yeL© o vEKO\LO
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Thus, to see that bd N(L, K) is bicollared in | K], it is sufficient to construct a homeo-
morphism ¢: |[K| — |K] such that p(bdjx| N(L,K)) = f~'(3).
Now, let
S={oekK | cONLO #£ g, o0\ LO £ o}

For each o € S, let 0 and 7, be the faces of & spanned by ¢'¥ N L® and ¢© \ L
respectively, and define v, = %éo + %61 ef _1(%) N o°. By using the barycenters
6 of 0 € K\ S and the points v, for o € S, we define the derived subdivision K.
Then, K’ is discrete in |K|. Indeed, SAK® \ {4 | o € S} is discrete in |K|. Note
that f~'(3) is closed in |K|. Then, it suffices to see that {v, | ¢ € S} is discrete in
f7'(3). Foreach x € f~'(3), let 0 € K be the carrier of x. Then O(6y,SdK) is a
neighborhood of x in [K|. If v, € O(6y, SdK), then o, is a proper face of . Since
BX(x) = 0and BX(v,) > 1/2(dimo + 1) for every v € o\ U,(CO), it follows that

dimo —dimo, 1 dimo, + 1
pr(X,Ve) 2 ————— = = —
2(dimo + 1) 2 2(dimo+1)
1 dimo, + 1 1
> -

2 2(dimo, +2)  2(dimo, +2)°

Thus, x has a neighborhood in |K| that meets {v, | o € S} at most one point.

By Theorem the metric topology for |K’| coincides with the one for |K]|,
that is, |[K’| = |K| as topological spaces. Recall that | SdK| = |K| as topological
spaces. Then the desired homeomorphism is obtained as the simplicial isomorphism
¢: |SdK| — |K'| defined by p(6) = 6 foroc € K\ Sand p(6) = v, forc €S. R

6 Proof of Theorem

In this section, we shall prove Theorem[I.3] Replacing each ¢,(7;) with the unit open
ball B;, we construct an open embedding of |[K| x [H;enB; into [;enIB;.

Lemma 6.1 There exists a tower Py C P, C --- of polyhedra in |K| such that
U,en Pn = K|, each P, is triangulated by a subcomplex of the n-th barycentric subdi-
vision Sd" K, dens P, < 7, P, C int|g| Pyy1, and bd|g| P, is a bicollared in |K|, hence
itisa Z-set in both P, and |K| \ intg| P,.

Proof Since cardK© < 7 = SUp,, .y Ty, WE Can write KO = U,.en Vi where Vy C
V, C --- and cardV, < 7, foreachn € N. Foreachn € N, letV, = {v € V,, |
card St(v,K) < 7,}. Since cardSt(v,K) < 7 for each v € K we have K© =
U,enVi- Moreover, let V¥ = (Sd""' K)© n U,ev; O, K). Then St(v, Sd" KO ¢
V¥, foreachv € V. Indeed, v € O(+/,K) for some v’ € V. Since v € (Sd"~' K)©,
it follows that | St(v, Sd" K)| C O(v’, K), hence we have St(v, Sd" K)©® < (Sd" K)® N
o', K) C V7.,
For each n € N, we define a polyhedron

P,= U [St(v,Sd"K)| C U [St(v,K),

VeV veV,
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that is, P, = |N(L,,Sd" "' K)|, where L, is the full subcomplex of Sd"~' K with
LY = v (C (Sd" ' K)©). It follows from Theorem L5 that bd P, is bicollared
in |K|. Observe that densP, < 7, and P, C UveV;‘H O(v,8Sd"™ K) ¢ int|g| Pps1-
Moreover, |K| = (J,cy Pr. Indeed, each x € [K] is contained in O(v, K) for some
v € K%, Choose n € N so that v € V! and x € | St(v/,Sd" K)| C O(v, K) for some
v/ € (Sd" ' K)©. Then v/ € V¥, which implies x € P, [ ]

It should be remarked that the local finite-dimensionality of K implies the com-
plete metrizability of |K| and the barycentric subdivision is a proper subdivision, that
is, it does not change the topology on |K|. Thus, in Lemma[6.]] above, each P, is a
completely metrizable ANR.

Similarly to the second step of the proof of Theorem [T} take an increasing se-
quence 0 < ¢; < ¢ < --- with sup,y ¢, = 1. Now, for each n € N, we define

M, = intjg| Py x [] ¢aBi, M, = P, x [] ¢,B; and
i1

i=1

oM, = M, \ M, = <bd|,< P, x ] ani> U (P, x D,),
i=1

where D,, is the same as in Section 3, that is, D, = [[_, ¢,Bi \ [ [, cxBi. Moreover,
let

Lyy1 = My \ (M, X ¢,B41) and 8Mn = (OM, x Cn@rﬂrl) U (Mn X €ySnt1)-
Then it should be noted that
MrHl =L, U (Mn X Cn]B;rﬁl) and (E)Mn =L, N (Mn X CnErHl)-

Lemma 6.2 Each M,,, M,,, and OM,, is an £, (T,,)-manifold with density T,,, and OM,,
is a Z-set in M, that contains a strong deformation retract of M,,.

Proof Except for the last statement, the proof is the same as Lemma [42] Since
D, and H?:1 c,B;i are AR’s (cf. Lemma[41)), D, is a strong deformation retract of
H?:l ¢,B;, hence P, x D, is a strong deformation retract of M,, = P, x H?:l B, |

Lemma 6.3 Each OM,, and Ly, is an {,(7,.1)-manifold with density 7,.,, both
OM,+1 and OM,, are Z-sets in L,y and OM,, contains a strong deformation retract

Oan+1-

Proof Because of the similarlity with Lemmal[4.3] we shall show that OM,,; is a Z-
set in L,4+; and it contains a strong deformation retract of L,.1. Since OM,4; is a
Z-set in M4, with OM,y; C M4, \ M,, and M,,;; \ M,, is open in both M,,;; and
L,+1, it follows that OM,,;; is a Z-set in L,;;. As we saw in the proof of Lemma
D, =TT, e:Bi \ [T, cuB;i is a strong deformation retract of [[;_, ¢,B;, hence
[T, cus1Bi \ TT, cuB; is a strong deformation retract of []"_, ¢,+1B;. Moreover,
Dy = [T, cun1Bi\I T, cus1B; is also a strong deformation retract of [T\ 1B\
H:’:l c,Bi. Then it easily follows that P41 X D,y is a strong deformation retract of
Ln+1- n
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Now, we can complete the proof of Theorem [L3]

Proof of Theorem[I.3] Observe that M; x [i~1¢,B; C My X [isac,B; C -+ are
open in |K| x [;enB; and

|K| X ElieN]B;i = U (Mn X Di>ﬂcn]83i).

neN
We shall inductively define closed embeddings g,: M,, — []"_, Bi, n € N, such that
2:(0M,) =bdg,(M,,)) and g,1|M, X ¢,Bui1 = gy x id.
Now we have the following commutative diagram of open embeddings

M, X BisneaB; € My X His 161 B;

g,lxidl lgy,ﬂ xid

This induces the open embedding ¢: |K| X H;enB; — HienB;.

By Lemmal6.2] we can apply Theorem 2.7 to obtain an embedding g, : M| — 1B,
such that g;(OM;) = bd g;(M,) is bicollared in B;. Now, assuming that g1, ..., g,
have been obtained, we shall construct g,. Let E = Hg; B; \ (g.(M,,) X ¢;Bps1).
Observe that g,(OM,) X B,.; and [T, B; X ¢,Su41 are bicollared in H:ii B;. Then,
similarly to the proof of Lemma[£3] we can see that (g, x id)(OM,,) is a strong Z-set
in E and hence E is an ¢, (7,41 )-manifold. Since ¢,S,+; is a strong deformation retract
of both ¢,B,11 and By+1 \ ¢uBy41, it is easy to see that []'_ | B; X ¢,S1 is a strong
deformation retract of E. Since S,+ is contractible, so is E, hence E ~ ¢,(7,,+1) by the
Classification Theorem.

By Theorem [2.7]and Lemma[6.3] we have an embedding ¢’: L,+; — E such that
g’ (OM,11) = bdg g'(L,41) is bicollared in E. Note that g’ (OM,,) is a Z-set in E because
it is closed in E and a Z-set in the open set g'(L,+1 \ OM,11) C E. By using the Z-
set Unknotting Theorem, we have a homeomorphism g’’: E — E such that (g, x
id)|OM,, = g'’¢’|OM,,. Then, we can define an embedding

o n+1 o o
Gne1: M1 — [ Bi by gu1|M,; X ¢,B; and g,11|E = ¢''¢'|E.

i=1

Since gyi1(Lot1 \ OMyt1) = g7¢'(Lysr \ OM,41) is open in E, we have an open set
W in Hlnj B; such that g,41(Lys1 \ OMyy1) = W N E. Since g1 (M, X ¢,B,) =
gn(M,,) X ¢, B, is open in Hg: IB;, it follows that g,,+1(My11) = g1 (M, X ¢,B,) UW
is open in H?: Bi. Hence, we have g1 (OM;11) = bdg gu+1(Mp41). This completes
the induction. Then we have the result. [ |
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