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Linear Conjugacy

Benjamin Steinberg

Abstract. We say that two elements of a group or semigroup are k-linear conjugates if their images
under any linear representation over k are conjugate matrices. In this paper we characterize k-linear
conjugacy for ûnite semigroups (and, in particular, for ûnite groups) over an arbitrary ûeld k.

1 Introduction

his article is motivated by aMathOver�ow question that was asked by James Propp
[7]. A well-known lemma of Brauer [3] asserts that two permutation matrices are
similar if and only if the corresponding permutations are conjugate, and the question
waswhether the same is true for matrices corresponding to functions. he answer for
functions is more complicated.

Let S be a semigroup and k a ûeld.We say that s, t ∈ S are k-linear conjugates if, for
every linear representation ρ∶ S → Mn(k), there is an invertible matrix A ∈ GLn(k)
such that Aρ(s)A−1 = ρ(t). his is clearly an equivalence relation on S.Also note that
if s and t are k-linear conjugates, then so are sk and tk for all k ≥ 1. When k is the
ûeld of complex numbers, then we just say that s, t are linear conjugates. Observe that
if k is a subûeld of F, then F-linear conjugates are also k-linear conjugates. his is a
consequence of the fact that the rational canonical form of amatrix does not change
when you extend the scalars.
For ûnite groups, linear conjugacy reduces to conjugacy. Indeed, conjugate ele-

ments of any group are k-linear conjugates over any ûeld k. If G is a ûnite group and
g , h ∈ G are linear conjugates, then every complex character ofG coincides on g and h.
As the irreducible characters of G form a basis for the space of functions constant on
conjugacy classes, we deduce that g , h are conjugate in G. For ûnite semigroups, the
situation is a bit more complex, as we shall see. Nonetheless, there is a syntactic de-
scription of linear conjugacy for ûnite semigroups that seems to be interesting in its
own right. We give, in fact, a characterization of k-linear conjugacy for ûnite semi-
groups over any ûeld k.

2 Linear Conjugacy for Finite Semigroups

Henceforth, all semigroups are assumed ûnite. A reference for semigroup represen-
tation theory is [11]. Fix a semigroup S. As usual, we shall denote by sω the unique
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idempotent power of s ∈ S and put sω+ j = s jsω for j ≥ 1; note that (sω+1) j = sω+ j for
j ≥ 1. If ∣S∣ = m, then sω = sm!. We say that s, t ∈ S are generalized conjugates if there
exist x , x′ ∈ S such that xx′x = x, x′xx′ = x′, x′x = sω , xx′ = tω , and xsω+1x′ = tω+1.
Note that this implies that x′tω+1x = sω+1 and, in fact, generalized conjugacy is an
equivalence relation. It was proved independently by McAlister [6] and by Rhodes
and Zalcstein [9] that s, t are generalized conjugates if and only if χ(s) = χ(t) for all
complex characters χ of S.

Two elements s, t ∈ S are J -equivalent, written sJ t, if they generate the same
principal two-sided ideal. Similarly, they areL -equivalent, written sL t, if they gen-
erate the same principal le� ideal and they are R-equivalent, written sR t, if they
generate the same principal right ideal.Wewrite Js , Ls , and Rs for the respectiveJ -,
L -, and R-classes of s. In a ûnite semigroup, sS1 ∩ Js = Rs and S1s ∩ Js = Ls , where
S1 is the result of adjoining an identity to S.

Notice that if ∣S∣ = n, then snJ sk for all k ≥ n. Another classical fact that we shall
need is that if e , f ∈ S are idempotents and xL e and xR f , then there exists x′ ∈ S
with x′Re and x′L f such that xx′x = x, x′xx′ = x′, xx′ = f , and x′x = e. he
maximal subgroup Ge at an idempotent e ∈ S is the group of units of themonoid eSe
(with identity e). In a ûnite semigroup S, one has that Ge = eS ∩ Se ∩ Je = eSe ∩ Je
for an idempotent e. he group Ge acts freely on the right of Le by multiplication. If
f is an idempotent in Je , one has that f S ∩ Le = R f ∩ Le ≠ ∅. his uses the stability of
ûnite semigroups. See [8, AppendixA] or [2] for the necessary details on the algebraic
theory of ûnite semigroups.

he main goal of this article is to provide a syntactic description of k-linear con-
jugacy for any ûeld k. For example, linear conjugacy has the following syntactic for-
mulation, to be proved shortly.

heorem 2.1 Let S be a ûnite semigroup. hen s, t ∈ S are linear conjugates if and
only if

(i) skJ tk for all k ≥ 1, or, equivalently, for all 1 ≤ k ≤ ∣S∣;
(ii) s and t are generalized conjugates.

Let k be a ûeld. hen s, t ∈ S are said to be k-character equivalent if χ(s) = χ(t)
for each character χ of S over k. Recall that the character of a representation
ρ∶ S → Mn(k) is themapping χ∶ S → k sending s to the trace of ρ(s). For example, s
and t are C-character equivalent if and only if they are generalized conjugates. Char-
acter equivalence over an arbitrary ûeld was described in [5]. Let us now formulate
our main result, which can then bemade explicit using the results of [5]. Notice that
if k is a subûeld of F, then F-character equivalence implies k-character equivalence
because every matrix representation over k is a representation over F.

heorem 2.2 Let S be a ûnite semigroup and k a ûeld. hen s, t ∈ S are k-linear
conjugates if and only if

(i) skJ tk for all k ≥ 1, or, equivalently, for all 1 ≤ k ≤ ∣S∣;
(ii) s and t areQ-character equivalent;
(iii) s and t are k-character equivalent.
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Note that if k has characteristic zero or characteristic relatively prime to the order
of each maximal subgroup of S, then the third item implies the second, as is easily
seen from the description of k-character equivalence given below. We remark that
heorem 2.2 seems to be new for ûnite groups.

To describe the results of [5],we shall need further notation. If p > 0 is a prime and
G is a ûnite group, then an element g ∈ G is called p-regular if it has order prime to p.
We shall consider all elements to be p-regularwhen p = 0. So fromnow on let p be 0 or
a prime number. Each element g ∈ G has a unique factorization g = g(p)g(p′) such
that g(p)g(p′) = g(p′)g(p), g(p) has order a power of p, and g(p′) is p-regular. If
p = 0, then g = g(p′) and g(p) = 1. Otherwise, write ∣g∣ = pkr with gcd(p, r) = 1.
hen g(p) = gm and g(p′) = gn , where m, n > 0 satisfy

m ≡ 1 mod pk , n ≡ 0 mod pk ,
m ≡ 0 mod r, n ≡ 1 mod r.

Recall that s ∈ S is a group element if s generates a cyclic group, that is, s = sω+1.
One can then talk about p-regular group elements of S. We put s(p) = sω+1(p) and
s(p′) = sω+1(p′); these are group elements. If p = 0, then s(p) = sω and s(p′) = sω+1.
Fix an algebraic closure k of k and let ξ be a primitive n-th root of unity in kwhere

n is the least common multiple of the orders of the p-regular group elements of S;
note that gcd(n, p) = 1 if p > 0. heGalois group Gal(k(ξ)/k) can be identiûed with
a subgroup H of Z×n via themap σ ↦ k where σ(ξ) = ξk . For example, if k = Q, then
H = Z×n . With this notation, s, t ∈ S are k-character equivalent if and only if there
exist x , x′ ∈ S with xx′x = x, x′xx′ = x′, x′x = sω , xx′ = tω , and xs(p′)x′ = t(p′) j

with j ∈ H. See [5, heorem 2.12], where the result is stated for monoids but works
equally well for semigroups. Note that if k is algebraically closed, then k(ξ) = k and
so the group H is trivial, whence s, t are k-character equivalent if and only if there
exist x , x′ ∈ S with xx′x = x, x′xx′ = x′, x′x = sω , xx′ = tω , and xs(p′)x′ = t(p′).
For example, s, t are Q-character equivalent if and only if there exist x, x′ ∈ S

with xx′x = x, x′xx′ = x′, x′x = sω , xx′ = tω , and x⟨sω+1⟩x′ = ⟨tω+1⟩ using that
Gal(k(ξ)/k) = Z×n . Notice that C-character equivalence, i.e., the relation of being
generalized conjugates, implies k-character equivalence for every ûeld k.

he proof ofheorem 2.2 consists of two steps: proving the necessity and the suf-
ûciency of these conditions. Our proof of suõciency uses the Fitting decomposition
of a linear operator.

Let T be a linear operator on a ûnite dimensional k-vector spaceV . Note that there
are chains of T-invariant subspaces

kerT ⊆ kerT2 ⊆ ⋅ ⋅ ⋅
TV ⊇ T2V ⊇ ⋅ ⋅ ⋅

and as soon as two consecutive values of either of these chains are the same, the re-
spective chain stabilizes. By ûnite dimensionality, each of these chains does stabilize.
For convenience, we put ker∞ T = ⋃k≥1 kerT k and im∞ T = ⋂k≥1 T kV and call
the latter the eventual range of T . he following theorem is standard linear algebra;
see [11,heorem 5.38].

B. Steinberg888

https://doi.org/10.4153/S0008439519000031 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000031


heorem 2.3 (Fitting decomposition) Let T be a linear operator on a ûnite-dimensi-
onal k-vector space V . hen there is a unique direct sum decomposition V = U ⊕W
into T-invariant subspaces such that T ∣U is nilpotent and T ∣W is invertible. Moreover, if
m > 0 is such that kerTm = kerTm+1 and TmV = Tm+1V , then U = ker∞ T = kerTm

andW = im∞ T = TmV .

We give a characterization of conjugacy of linear operators, based on the Fitting
decomposition, inspired by ideas of Kovács [4]. If T is a linear operator on an
n-dimensional vector space V , the rank sequence of T is

r⃗(T) = (dimTV , dimT2V , . . .).

Note that the rank sequence is aweakly decreasing sequence of non-negative integers
bounded by n, which becomes constant (and equal to the dimension of the eventual
range of T) as soon as two consecutive values are equal. In particular, there are only
ûnitely many rank sequences of operators on an n-dimensional vector space. Also
note that r⃗(T) = r⃗(T ′) implies that the eventual ranges of T and T ′ have the same
dimension.

Corollary 2.4 Let T , T ′ be linear operators on a ûnite dimensional k-vector space
V . hen T , T ′ are conjugate if and only if r⃗(T) = r⃗(T ′) and there is a vector space
isomorphism F∶ im∞ T → im∞ T ′ such that FTv = T ′Fv for all v ∈ im∞ T .

Proof Trivially, if A is an invertible operator with ATA−1 = T ′, then r⃗(T) = r⃗(T ′).
Also, by the uniqueness in the Fitting decomposition,

A(im∞ T) = im∞ T ′ .

Clearly, if v ∈ im∞ T , then ATv = T ′Av. hus the conditions are necessary.
For suõciency, note that dim im∞ T = dim im∞ T ′ because r⃗(T) = r⃗(T ′). In

light of the Fitting decomposition and the existence of the isomorphism F, to show
that the k[x]-module corresponding to the action of T on V is isomorphic to the
k[x]-module corresponding to the action of T ′ on V , it suõces to show that the
nilpotent operators N = T ∣ker∞ T and N ′ = T ′∣ker∞ T′ have the same Jordan canonical
form (note that they are both operators on a space of the same dimension). Notice
that dimT iV − dimT i+1V = dimN i(ker∞ T) − dimN i+1(ker∞ T) is the number of
Jordan blocks of N of degree greater than i for all i ≥ 0. hus r⃗(T) determines the
Jordan canonical formof N ; similarly, r⃗(T ′) determines the Jordan canonical formof
N ′ and so r⃗(T) = r⃗(T ′) implies that N and N ′ have the same Jordan canonical form.
his proves that T and T ′ are conjugate. ∎

he Fitting decomposition for the image of an element under a representation of
a ûnite semigroup is easy to describe.

Proposition 2.5 Let ρ∶ S → Mn(k) be a representation of a ûnite semigroup and put
V = kn with its usual le�kS-module structure.hen, for s ∈ S, the Fitting decomposition
of ρ(s) is given by ker∞ ρ(s) = (1 − sω)V and im∞ ρ(s) = sωV .
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Proof Choose m > 0 such that im∞ ρ(s) = ρ(s)mV = ρ(s)m+kV and ker∞ ρ(s) =
ker ρ(s)m = ker ρ(s)m+k for all k ≥ 1. As sω = sN for some N > m, we conclude that
im∞ ρ(s) = sωV and ker∞ ρ(s) = ker ρ(sω) = (1− sω)V , where the last equality uses
that sω is idempotent. ∎

he Fitting decomposition essentially reduces the problem from semigroups to
groups.

We shall need the following key lemma; see [3] for a proof.

Lemma 2.6 (Brauer’s lemma) Let P,Q ∈ GLn(k) be permutation matrices. hen P
and Q are conjugate in GLn(k) if and only if they are conjugate in the symmetric group
Sn (viewed as the group of n × n permutation matrices).

Our next goal is to understand how the Galois action aòects conjugacy.

Proposition 2.7 Let k be a ûeld of characteristic p ≥ 0 and ξ a primitive n-th root of
unity in an algebraic closure k of k, where gcd(n, p) = 1 in the case that p > 0. Suppose
that T is a linear operator on a ûnite-dimensional k-vector space V satisfying Tn = 1.
hen T and T j are conjugate for any j ∈ H,whereH is the subgroup ofZ×n corresponding
to Gal(k(ξ)/k) as above.

Proof First note that since j ∈ Z×n and T has ûnite order dividing n, it follows that
⟨T⟩ = ⟨T j⟩ and hence T and T j have the same invariant subspaces of V . Conse-
quently, they have the same cyclic invariant subspaces. As V is a direct sum of cyclic
invariant subspaces,wemay assumewithout loss of generality thatV is a cyclic invari-
ant subspace for both T and T j . Moreover, since the polynomial xn − 1, which splits
into distinct linear factors over k(ξ) by hypothesis on n, vanishes on both T and T j ,
it follows that the minimal polynomials of p(x) and q(x) of T and T j , respectively,
both split into distinct linear factors over k(ξ). To prove the proposition, it suõces to
show that p(x) = q(x).

Let λ1 , . . . , λr be the roots of p(x) in k(ξ). As p(x) has no repeated roots and V
is cyclic, there is a basis of k(ξ)⊗k V such that T is a diagonal matrix with diagonal
entries λ1 , . . . , λr and hence T j is also diagonal in this basis with diagonal entries
λ j
1 , . . . , λ

j
r . hus {λ j

1 , . . . , λ
j
r} are the roots of q(x) in k(ξ). As the λ i are n-th roots

of unity, and hence powers of ξ, if σ ∈ Gal(k(ξ)/k) is the element with σ(ξ) = ξ j ,
then σ(λ i) = λ j

i . It follows that the roots of q(x) are σ(λ1), . . . , σ(λr) and hence
p(x) = q(x) because Gal(k(ξ)/k) permutes the roots of p(x) and both p(x) and
q(x) have no repeated roots and split over k(ξ). ∎

We are now prepared to prove our main result; heorem 2.1 is the special case that
k = C.

Proof of Theorem 2.2 Assume that k has characteristic p ≥ 0. We begin with the
necessity of (i), (ii), and (iii). If s and t are k-linear conjugates, then each character of
S over k agrees on s and t and so (iii) holds. Suppose that sk is not J -equivalent to tk

for some k ≥ 1. Without loss of generality, assume that the principal ideal generated
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by sk is not contained in the principal ideal I generated by tk . Let S1 be the result of
adjoining an identity to S. hen V = kS1/kI is a le� kS-module annihilated by tk but
not by sk (as sk(1 + kI) ≠ kI)). herefore, if ρ is the representation aòorded by V ,
then ρ(s) is not conjugate to ρ(t). hus (i) holds.

he proof of (ii) is a bit trickier. Put e = sω and f = tω and note that e J f by (i).
Put g = sω+1 and h = tω+1. Notice that g and h are group elements. By considering the
actions of s and t on kS1, and using that they are k-linear conjugate, we deduce that
⟨s⟩ ≅ ⟨t⟩ via an isomorphism taking s to t and hence g and h have the same order.

he group C = ⟨g⟩ acts freely on the right of the L -class Le of e and we denote
the orbit of x ∈ Le by xC. We can deûne a kS-module structure on k[Le/C] by

s ⋅ xC =
⎧⎪⎪⎨⎪⎪⎩

sxC if sx ∈ Le ,
0 otherwise,

for x ∈ Le and s ∈ S. By Corollary 2.4, Proposition 2.5, and our assumption
that s and t are k-linear conjugates, there must be a vector space isomorphism
T ∶ ek[Le/C] → f k[Le/C] intertwining the actions of s and t. However, s acts the
same as g on ek[Le/c] and t acts the same as h on f k[Le/C], and so T intertwines
the actions of g and h. Note that eLe ∩ Le = Ge is the maximal subgroup of S at e,
and so e[kLe/C] ≅ k[Ge/C] is a permutation module for C.Also, f Le ∩Le = R f ∩Le
is permuted by ⟨h⟩ on the le� and C on the right with commuting actions, and so
f k[Le/C] is a permutation module for ⟨h⟩. Now g has a ûxed point onGe/C, namely
the coset C. It follows from Lemma 2.6 that h has a ûxed point xC with x ∈ R f ∩ Le ;
so hxC = xC. By basic semigroup theory, there is then an element x′ ∈ Re ∩ L f with
xx′x = x, x′xx′ = x′, x′x = e, and xx′ = f . One easily checks that ψ∶G f → Ge
given by ψ(z) = x′zx is a group isomorphism, and so x′hx is an element of Ge of the
same order as h and hence of the same order as g. But x′hxC = x′xC = C, and so
x′hx ∈ C = ⟨g⟩. hus x′⟨h⟩x = ⟨x′hx⟩ = ⟨g⟩ as x′hx and g have the same order. We
conclude that s and t areQ-character equivalent.

To prove suõciency, assume that (i), (ii), and (iii) hold. Let n be the least common
multiple of the orders of the p-regular group elements of S and let H ≤ Z×n be the
subgroup associated with Gal(k(ξ)/k), where ξ is a primitive n-th root of unity in a
ûxed algebraic closure of k. Note that n is not divisible by the characteristic of k.

Let ρ∶ S → Mr(k) be a representation. Put V = kr with its usual le� kS-module
structure. From (i) and thewell-known fact that twomatrices areJ -equivalent if and
only if they have the same rank [2, §2.2, Exercise 6], it follows that r⃗(ρ(s)) = r⃗(ρ(t)).
hus, to prove that ρ(s) and ρ(t) are conjugate, it suõces byCorollary 2.4 and Propo-
sition 2.5 to construct a linear isomorphism F∶ sωV → tωV such that F(sv) = tF(v)
for all v ∈ sωV .

Since s and t are Q-character equivalent, we can choose x , x′ ∈ S with xx′x = x,
x′xx′ = x′ and x′x = sω , xx′ = tω such that h = xsω+1x′ generates the same cyclic
group as g = tω+1. We ûrst deûne a linear isomorphism F′∶ sωV → tωV such that
F′(sv) = hF′(v) for all v ∈ sωV . Deûne F′ by F′(v) = xv for v ∈ sωV ; clearly F′ is
linear. First note that xv = xx′xv = tωxv and so F′(v) ∈ tωV . Also,

hF′(v) = hxv = xsω+1x′xv = xssωx′xv = xssωv = xsv = F′(sv),
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using that x′x = sω and sωv = v. Similarly, there is a linear mapping G∶ tωV → sωV
deûned by G(w) = x′w, since sωx′w = x′xx′w = x′w. We claim that thesemappings
are mutually inverse. Indeed, GF′(v) = x′xv = sωv = v for v ∈ sωV ; similarly
F′G(w) = xx′w = tωw = w for w ∈ tωV . his shows that F′ is a linear isomor-
phism intertwining the action of s on sωV and h on tωV . It therefore suõces to show
that there is an invertible operator on W = tωV conjugating h∣W to t∣W (or equiva-
lently g∣W ).Also note that by construction h is a generalized conjugate of s and hence
k-character equivalent to s, and thus to t by (iii).

Note that since h and g generate the same cyclic subgroup C, they have the same
invariant subspaces on W . Write ∣C∣ = prm, where pr is interpreted as 1 if p = 0,
and gcd(p,m) = 1 if p > 0. hen h(p′) and g(p′) both have order m and hence
generate the same cyclic subgroup C′ of C. Observe that W = V1 ⊕W ′, where V1 is
the generalized eigenspace of 1 for g∣W (which is also the generalized eigenspace of 1
for h∣W , as they are both powers of each other) andW ′ is a semisimple kC-module
not containing the trivial representation, since

kC ≅ k[z]/((z − 1)pr
) × k[z]/(z

m − 1
z − 1

)

and gcd(m, p) = 1 if p > 0, whence zm − 1 splits into distinct linear factors over k.
Since g and h have the same invariant subspaces on V1, the vector space V1 is a di-

rect sum of indecomposable invariant subspaces, and each indecomposable invariant
subspace is isomorphic to a Jordan blockwith eigenvalue 1 for both g and h, it follows
that g∣V1 and h∣V1 have the same Jordan canonical form, and hence there is an invert-
ible operator on V1 conjugating h∣V1 to g∣V1 . Note that h(p) and g(p) act trivially on
any semisimple kC-module (since h(p)− 1 and g(p)− 1 are nilpotent in the commu-
tative algebra kC) and so h∣W′ = h(p′)∣W′ and g∣W′ = g(p′)∣W′ . As h(p′) and g(p′)
have order m prime to p, the subgroup C′ they generate has a semisimple algebra
over k. SinceW ′ contains no copy of the trivial kC-module and h(p′)∣W′ = h∣W′ and
g(p′)∣W′ = g∣W′ , it follows that W ′ is the sum of all non-trivial isotypic components
ofW for C′ and V1 is the isotopic component of the trivial representation. Let ψ be
the automorphism of C′ taking h(p′) to g(p′). For U a kC′-module, let Uψ denote
the kC′-modulewith underlying vector spaceU andmodule action x ⋅u = ψ(x)u for
x ∈ C′ and u ∈ U . If Th(p′)∣WT−1 = g(p′)∣W = ψ(h(p′))∣W with T ∈ GL(W), then
T provides an isomorphismW →Wψ . It follows that if γ is an irreducible representa-
tion of C′, then T takes the isotypic component of γ in W to the isotypic component
of γ inWψ ,which as a subspace ofW is the isotypic component of γ○ψ−1 with respect
to the original module structure.herefore, T(V1) = V1 and T(W ′) =W ′.hus to get
that h∣W′ = h(p′)∣W′ is conjugate to g∣W′ = g(p′)∣W′ , it suõces to prove that h(p′)∣W
is conjugate to g(p′)∣W as operators on W .

Since h is k-character equivalent to t, we can ûnd y, y′ ∈ S with yy′y = y,
y′yy′ = y′, yy′ = tω = hω = y′y, and yh(p′)y′ = g(p′) j with j ∈ H. hen y, y′ ∈ Gtω

and y′ = y−1, and so h(p′) is conjugate to g(p′) j in Gtω ; hence they have conjugate
actions onW .hus it suõces to show that g(p′) j ∣W is conjugate to g(p′)∣W . Note that
g(p′) is a p-regular group element of S and hence has order dividing n. hus g(p′)∣W
is conjugate to g(p′) j ∣W by Proposition 2.7. his completes the proof. ∎
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3 Examples

In this sectionwe explore linear conjugacy in some important families of semigroups.

3.1 Full Transformation Monoids

Consider Tn , the full transformation monoid of degree n. Deûne the rank of f ∈ Tn
to be the cardinality of its image. It is well known that fJ g if and only if they have
the same rank [2, heorem 2.9]. An element f ∈ Tn acts on the image of f ω as a
permutation. One has that f , g ∈ Tn are generalized conjugates if and only if f ω and
gω have the same rank and f and g have the same cycle structure as permutations
of Im f ω and Im gω , respectively; see [11, Execise 7.10]. Two functions f and g are
conjugate by an element of Sn if and only if they have isomorphic functional digraphs,
where the functional digraph of h ∈ Tn has vertex set {1, . . . , n} and an edge from i
to h(i) for each i ∈ {1, . . . , n}.
By the standard representation of Tn , wemean the representation ρ∶Tn → Mn(C)

given by

ρ( f )i j =
⎧⎪⎪⎨⎪⎪⎩

1 if f ( j) = i ,
0 otherwise.

heorem 3.1 Let f , g ∈ Tn . hen the following are equivalent.

(i) rank( f i) = rank(g i) for i = 1, . . . , n and f ∣Im f ω has the same cycle structure as
g∣Im gω .

(ii) ρ( f ) is similar to ρ(g).
(iii) f and g are linear conjugates.

Proof heorem 2.1 shows that (i) implies (iii). Clearly, (iii) implies (ii). Since the
rank of a mapping h is the same as the rank of the matrix ρ(h), if ρ( f ) is simi-
lar to ρ(g), then rank( f i) = rank(g i) for i = 1, . . . , n. Notice that the matrix of
ρ( f )∣Im ρ( f ω) is the permutation matrix for the action of f on Im f ω , and similarly
for g. If ρ( f ) is similar to ρ(g), then these two permutation matrices are similar by
Corollary 2.4 and Proposition 2.5. So by Lemma 2.6 we deduce that f ∣Im f ω has the
same cycle structure as g∣Im gω . his completes the proof. ∎

Note that linear conjugacy in Tn is strictly between generalized conjugacy and con-
jugacy by an element of Sn .Condition (ii)was the subject of James Propp’sMathOver-
�ow question [7] that prompted this work.

3.2 Symmetric Inverse Monoids

he symmetric inverse monoid In (also called the rook monoid [10]) is the monoid
of all partial injective mappings on {1, . . . , n}. he rank of a partial injection is the
size of its image (or, equivalently, domain). he group of units of In is the symmetric
group Sn . It is well known that two elements of In are J -equivalent if and only if
they have the same rank. Also, if f ∈ In , then f acts as a permutation of Im f ω and it
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is well known that f , g ∈ In are generalized conjugates if and only if f ω and gω have
the same rank and f ∣Im f ω has the same cycle structure as g∣Im gω ; see [11, Exercise 7.8].

heorem 3.2 Two elements of In are linear conjugates if and only if they are conjugate
by an element of Sn .

Proof Clearly, if f and g are conjugate by an element of Sn , then they are linear
conjugates. If f and g are linear conjugates, then by heorem 2.1 we have that
rank( f i) = rank(g i) for all i ≥ 1. We also have that f and g are generalized conju-
gates, which means that f ∣Im f ω has the same cycle structure as g∣Im gω . It then follows
from [11,heorem 3.19] that f and g are conjugate by an element of Sn . ∎

3.3 Full Matrix Monoids

Next we consider themonoid Mn(Fq) of n × n matrices over the ûeld of q elements
Fq .

heorem 3.3 Let q be a prime power.henA, B ∈ Mn(Fq) are linear conjugates if and
only if they are similar matrices, that is, they are conjugate by an element of GLn(Fq).

Proof Clearly, if A and B are similar, then they are linear conjugates. On the other
hand, if A and B are linear conjugates, then, since C-character equivalence implies
k-character equivalence for any ûeld k, (i) and (ii) of heorem 2.1 are suõcient to
guarantee Fq-linear conjugacy by heorem 2.2. Since the identity map is a represen-
tation of Mn(Fq) over Fq , we deduce that A and B are similar. ∎

3.4 Groups and Completely Regular Semigroups

If S is a completely regular semigroup (that is, s = sω+1 for all s ∈ S), then condition
(ii) ofheorem 2.2 implies condition (i) of the theorem, and hence k-linear conjugacy
is the same as Q-character equivalence plus k-character equivalence for completely
regular semigroups; this applies, in particular, to groups. Note that k-character equiv-
alence for groups was ûrst described, in general, by Berman [1]. Let us spell out the
characterization of k-linear conjugacy explicitly for ûnite groups.

heorem 3.4 Let G be a ûnite group and k a ûeld. hen g, h ∈ G are k-linear conju-
gates if and only if they generate conjugate cyclic subgroups and are k-character
equivalent.

In positive characteristic, k-character equivalence is diòerent than k-linear conju-
gacy for groups, as is easily seen by considering a non-trivial p-group over a ûeld k of
characteristic p. Indeed, all elements of a ûnite p-group G are k-character equivalent
over a ûeld of characteristic p since the only irreducible representation of G is the
trivial representation. But no non-trivial element is k-linear conjugate to the identity.
For the case of bands, semigroups in which each element is idempotent, the con-

ditions ofheorem 2.2 are well known to reduce to J -equivalence.
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