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Abstract
In this article we prove exactness of the homotopy sequence of overconvergent fundamental groups for a smooth
and projective morphism in characteristic p. We do so by first proving a corresponding result for rigid analytic
varieties in characteristic 0, following dos Santos [dS15] in the algebraic case. In characteristic p, we then proceed
by a series of reductions to the case of a liftable family of curves, where we can apply the rigid analytic result. We
then use this to deduce a Lefschetz hyperplane theorem for convergent fundamental groups, as well as a comparison
theorem with the étale fundamental group.
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1. Introduction

One of the basic principles in ‘algebraic’ approaches to homotopy theory is that a smooth and proper
morphism 𝑓 : 𝑋 → 𝑆 of schemes (in any characteristic) should behave like a Serre fibration of
topological spaces. In particular, for any reasonable definition of homotopy groups, one expects a long
exact sequence relating the homotopy groups of the base S, the total space X and the fibre 𝑋𝑠 over some
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point 𝑠 ∈ 𝑆. For étale homotopy groups, for example, this was proved in [Fri73], at least after completing
away from the residue characteristics of S.

While the étale fundamental group controls the category of ℓ-adic local systems on varieties in
characteristics different from ℓ, the same is certainly not true for p-adic local systems in characteristic p.
In this situation, the version of the fundamental group that is usually considered is the one defined using
Tannakian duality; this is somewhat analogous to the full pro-algebraic completion of the topological
fundamental group 𝜋1 (𝑋) of a complex algebraic variety. (For now, we omit base points from the
notation.) In this world of ‘pro-algebraic homotopy theory’ much less is known than in étale homotopy
theory, even in the case of smooth varieties over the complex numbers.

For example, it is not completely clear what the correct analogues of the higher homotopy groups
are (although see [Toë00] for some work in this direction), and hence even formulating the analogue of
the homotopy long exact sequence is problematic. Even if one sticks to the well-understood terms – that
is, to the sequence

𝜋1 (𝑋𝑠) → 𝜋1 (𝑋) → 𝜋1 (𝑆) → 𝜋0 (𝑋𝑠) → 𝜋0 (𝑋) → 𝜋0 (𝑆) → ∗,

then showing exactness has in general proved to be rather difficult. If we work with de Rham fundamental
groups of complex varieties and assume that the base S and fibre 𝑋𝑠 are connected, then exactness
follows from ‘right exactness of the pro-algebraic completion functor’. More generally, it was shown
for fields of characteristic 0 using a mixture of algebraic and transcendental methods in [Zha14].
Similar exact sequences for logarithmic and/or unipotent fundamental groups have been proved in
[CDPS, DPS18, Laz15] and a version ‘over the generic point of S’ in [EH06].

A major new approach to these sorts of problems was introduced in [dS15], where the author showed
how to construct pushforwards of certain kinds of ‘non-linear D-modules’; that is, stratified schemes
over the total space X. He then used this construction to give a completely algebraic proof of exactness of
the 𝜋1-part of the sequence, assuming geometric connectedness of 𝑋𝑠 and S. One of the crucial insights
of his article is that by replacing linear representations with projective representations, one can avoid
completely one of the major difficulties in proving exactness of these sorts of ‘homotopy sequences’
(see Section 3).

Inspired by dos Santos’s methods, in this article we prove the following result.

Theorem 8.3. Let 𝑓 : 𝑋 → 𝑆 be a smooth, projective morphism of smooth varieties over a perfect field
k of characteristic 𝑝 > 0, with geometrically connected fibres and base. Let 𝑠 ∈ 𝑆(𝑘). Then the sequence
of fundamental groups

𝜋†1 (𝑋𝑠) → 𝜋†1 (𝑋) → 𝜋†1 (𝑆) → 1

classifying overconvergent isocrystals is exact.

If one tries to directly transport dos Santos’s construction to the overconvergent setting, one is very
quickly confronted by a seemingly insurmountable list of problems and subtleties: even in the linear
case the problem of constructing R0 𝑓∗ of an overconvergent isocrystal (without F-structure!) along a
smooth and proper morphism is unreasonably difficult (see Section 9). Instead, we proceed in a much
more roundabout fashion, advancing via a lengthy chain of reductions, which here we present in reverse
order to that found in the body of the article.

First we cut our given morphism 𝑓 : 𝑋 → 𝑆 by a sequence of hyperplane sections, which by some
diagram chasing and a very weak form of the Lefschetz hyperplane theorem for fundamental groups
allows us to reduce to the case of a family of curves. In this case, our morphism arises via pullback from
the universal curve

𝑋 ��

��

C𝑔

��

𝑆 �� M𝑔
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and hence by lifting the morphism 𝑆 →M𝑔 along some smooth lift of S (at least locally) we can assume
that the whole family of smooth projective curves lifts to characteristic 0. (This is not quite what we do,
but this is the basic idea.)

In this case we can write the overconvergent fundamental group 𝜋†1 (𝑆) as a quotient

lim
←−−
𝜆

𝜋dR
1 (𝑉𝜆) � 𝜋†1 (𝑆)

of the inverse limit of the de Rham fundamental groups 𝜋dR
1 (𝑉𝜆) as 𝑉𝜆 ranges over all strict neighbour-

hoods of the tube ]𝑆[ inside the generic fibre of the given lift. (Again, this is not strictly what we do,
but this is the essential idea.) Moreover, the same is true for 𝜋†1 (𝑋), and in fact we can choose a cofinal
system {𝑊𝜆} of strict neighbourhoods of ]𝑋 [ such that each 𝑊𝜆 is smooth and projective over𝑉𝜆. Some
more diagram chasing then allows us to reduce to the following result in rigid analytic geometry.

Theorem 2.5. Let 𝑓 : 𝑊 → 𝑉 be a smooth, projective morphism of smooth analytic varieties over
a p-adic field K, with geometrically connected fibres and base. Let 𝑣 ∈ 𝑉 (𝐾). Then the sequence of
fundamental groups

𝜋dR
1 (𝑊𝑣 ) → 𝜋dR

1 (𝑊) → 𝜋dR
1 (𝑉) → 1

classifying coherent modules with integrable connection is exact.

The point is that now we have reduced to a statement solely concerning smooth projective morphisms
of analytic K-varieties, with no reference to tubes or overconvergence. We are therefore in a situation
where we really can directly apply dos Santos’s ideas and arguments, as essentially all of the difficulties
we originally faced have disappeared. This is now what we do: the proof of this ‘de Rham’ homotopy
exact sequence consists entirely of translating dos Santos’s proof from [dS15] into the analytic context.

In actual fact, we do much less than this. Rather than reprove analytically all of dos Santos’s results
on ‘pushforwards’ of stratified schemes, we instead use various tricks to be able to reduce to cases
where we can in fact apply his results. The basic idea is that it in fact suffices to show that for a stratified
variety Z over W, the unit map 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 for the relative pushforward is a closed immersion,
and the image is stable under the stratification on Z. But now, by relative rigid analytic GAGA, these
relative pushforwards simply arise as the analytification of those considered in [dS15]. Moreover, that
the image is stable under the stratification can be checked after passing to the completed local ring at
any rigid point and hence to the various infinitesimal neighbourhoods of this point. The situation is now
completely algebraic over the ground field K, and so once more we can use dos Santos’s results. In fact,
a little care is needed, since these infinitesimal neighbourhoods will not be smooth over K, so a priori
the results of [dS15] do not apply. However, it is straightforward to show that the proofs of these results
apply in the situation we are interested in.

Finally, in Section 13, we discuss some applications of the homotopy exact sequence for overconver-
gent fundamental groups. First of all, we prove a Lefschetz hyperplane theorem, stating that if 𝑌 ⊂ 𝑋 is
a smooth hyperplane section inside a smooth projective variety, then the induced map

𝜋†1 (𝑌 ) → 𝜋†1 (𝑋)

on convergent fundamental groups is surjective. We are then able to use this to show that when the
ground field is algebraically closed and X is smooth and projective, there is a canonical isomorphism

𝜋0 (𝜋
†
1 (𝑋)) � 𝜋ét

1 (𝑋)

between the component group of the convergent fundamental group and the pro-finite étale fundamental
group. This generalises a result of Crew [Cre92, Proposition 4.4], in which objects were assumed to
have Frobenius structures.
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Notations and conventions

◦ We will denote by k a perfect field of characteristic 𝑝 > 0, V a complete DVR with residue field k
and fraction field K of characteristic 0. We will let 𝜛 denote a choice of uniformiser for V.

◦ An algebraic variety over k (respectively K) will mean a separated scheme of finite type, the category
of which will be denoted Var𝑘 (respectively Var𝐾 ). If V is an algebraic variety over either k or K, we
will denote by Var𝑉 the slice category of varieties over V.

◦ An analytic variety over K will mean an adic space, separated and locally of finite type over Spa (𝐾,V).
Since all rigid spaces will be locally of finite type over K, we may, without ambiguity, denote an
affinoid adic space Spa (𝐴, 𝐴+) simply by Spa (𝐴). We will let Rig𝐾 denote the category of analytic
varieties over K, and for any such V the slice category will be denoted Rig𝑉 . The analytification of an
algebraic variety over K will always be considered as an adic space. Throughout, we will implicitly
use [FK18, Theorem II.A.5.2] to apply the results of [FK18] to objects of Rig𝐾 .

◦ If Y is a k-variety, we will denote by Isoc†(𝑌/𝐾) the category of overconvergent isocrystals on 𝑌/𝐾 .
◦ A closed subgroup of an affine group scheme will always mean a closed subscheme that is also a

subgroup, and a surjective homomorphism will be a group scheme homomorphism which is faithfully
flat.

◦ Unadorned tensor or fibre products will be over 𝑘, 𝐾 or V, which will be clear which from the context.
Sometimes, in order to avoid confusion, we will denote the fibre product of a diagram 𝑋

𝑓
→ 𝑍

𝑔
← 𝑌 by

one of 𝑋 × 𝑓 ,𝑍 ,𝑔 𝑌 , 𝑋 × 𝑓 ,𝑍 𝑌 or 𝑋 ×𝑍,𝑔 𝑌 , depending on which structure morphism needs clarifying.

2. The homotopy sequence for analytic K-varieties

The first goal of this article will be the proof of a homotopy exact sequence for certain classes of families
of smooth analytic K-varieties. To start with, we will need to define the de Rham fundamental group of
such spaces. So let V be an analytic variety over K.

Proposition 2.1. Assume that V is smooth, geometrically connected and admits a rational point 𝑣 ∈
𝑉 (𝐾). Then the category MIC(𝑉/𝐾) of coherent O𝑉 -modules with integrable connection is neutral
Tannakian over K, with fibre functor 𝑣∗.

Proof. We first claim that any coherent module with integrable connection is locally free. Indeed, this
question is local, and we may assume𝑉 = Spa (𝐴) to be affinoid. In particular, E comes from a coherent
sheaf 𝐸𝑎 on Spec (𝐴) and it suffices to prove that 𝐸𝑎 is locally free. But this may be checked after
passing to the completed local ring 𝐴𝔪 at any closed point 𝔪 ∈ Spec (𝐴), which by enlarging K can be
assumed to be K-valued. Now choosing étale co-ordinates Spa (𝐴) → D𝑛

𝐾 in some neighbourhood of
this given K-point induces an isomorphism 𝐴𝔪 � 𝐾 [[𝑥1, . . . , 𝑥𝑛]]. Moreover, the integrable connection
on E induces a formal integrable connection on 𝐸𝑎 ⊗𝐴 𝐴𝔪. Hence, we may apply [Kat70, Proposition
8.9].

It therefore follows that

𝑣∗ : MIC(𝑉/𝐾) → Vec𝐾

is a faithful, K-linear, exact tensor functor, and since V is connected, we can see that if 𝑣∗(𝐸) has
dimension 1, then E is a line bundle. Hence, applying [DMOS82, Ch. II, Proposition 1.20], it suffices
to prove that the natural map

𝐾 → 𝐻0
dR(𝑉/𝐾) := 𝐻0(𝑉,Ω∗𝑉 /𝐾 )

is an isomorphism. Applying 𝑣∗ we obtain a retraction

𝐻0
dR(𝑉/𝐾) � EndMIC(𝑉 /𝐾 ) (O𝑉 ) → End𝐾 (𝑣

∗O𝑉 ) = 𝐾
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of this map. In particular, if 𝐻0
dR (𝑉/𝐾) were strictly bigger than K, then Γ(𝑉,O𝑉 ) would contain a

nontrivial idempotent element, contradicting the connectedness of V. �

Definition 2.2. Let (𝑉, 𝑣) be as in Proposition 2.1. Then we define the de Rham fundamental group
𝜋dR

1 (𝑉, 𝑣) of V to be the Tannaka dual of MIC(𝑉/𝐾) with respect to the fibre functor

𝑣∗ : MIC(𝑉/𝐾) → Vec𝐾 .

Now let 𝑓 : 𝑊 → 𝑉 be a proper morphism of analytic K-varieties. Recall from [Con06] that a line
bundle L on W is said to be f -ample if it is so on each fibre 𝑊𝑣 over a rigid point 𝑣 ∈ 𝑉 . In other words,
for each rigid point 𝑣 ∈ 𝑉 , some tensor power L| ⊗𝑛𝑊𝑣

defines a closed immersion 𝑊𝑣 ↩→ P𝑁 ,an
𝐾 (𝑣)

.

Definition 2.3. We say that a proper morphism 𝑓 : 𝑊 → 𝑉 of analytic K-varieties is projective if W
admits an f -ample line bundle.

Remark 2.4. With this definition, a projective morphism admits a closed immersion𝑊 → P𝑁 ,an
𝑉 locally

on the base V, by [Con06, Theorem 3.2.7]. Such an embedding need not exist globally, although it will
if the base is affinoid or itself projective over Spa (𝐾). Note also that with this definition, a composition
of projective morphisms is projective, but projectivity is not necessarily local on the base.

Suppose that 𝑓 : 𝑊 → 𝑉 is a morphism of smooth, geometrically connected K-varieties and
𝑤 ∈ 𝑊 (𝐾) is a K-valued point, and set 𝑣 = 𝑓 (𝑤). If the fibre 𝑊𝑣 is also smooth and geometrically
connected, then we call the sequence

𝜋dR
1 (𝑊𝑣 , 𝑤) → 𝜋dR

1 (𝑊, 𝑤) → 𝜋dR
1 (𝑉, 𝑣) → 1

of affine group schemes the homotopy sequence associated to the pair ( 𝑓 , 𝑤). Then the main result of
the first part of this article is the following.

Theorem 2.5. Let 𝑓 : 𝑊 → 𝑉 be a smooth projective morphism of smooth analytic K-varieties, with
geometrically connected fibres and base, and let 𝑤 ∈ 𝑊 (𝐾). Then the homotopy sequence of the pair
( 𝑓 , 𝑤) is exact.

3. Exactness criteria and polarisable G-varieties

The strategy to prove Theorem 2.5 is essentially to translate dos Santos’s proof of exactness of the
homotopy sequence in [dS15] from the algebraic to the analytic setting. The need to work analytically
will present us with several difficulties and, consequently, at many points we will prove weaker results,
and with extra hypotheses, than those obtained in [dS15]. In order to be able to get away with this, we will
need to combine the ‘projective’ criteria for exactness of a sequence of affine group schemes discussed
in [dS15, §4] with more traditional ‘linear’ versions considered for example in [EHS08, Appendix A].
To begin with, let us quickly recall how these criteria work.

Theorem 3.1 ([dS15], Lemma 4.3). Let

𝐿
𝑞
→ 𝐺

𝑝
→ 𝐴→ 1

be a sequence of affine group schemes such that p is faithfully flat. Then the sequence is exact if and
only if for all 𝑉 ∈ Rep(𝐺) the inclusion

P(𝑉)ker 𝑝 (𝐾) ⊂ P(𝑉)𝐿 (𝐾)

of K-points on the fixed schemes is an equality.
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Theorem 3.2 ([EHS08], Theorem A.1(iii)). Let

1→ 𝐿
𝑞
→ 𝐺

𝑝
→ 𝐴→ 1

be a sequence of affine group schemes, such that q is a closed immersion and p is faithfully flat. Then
the sequence is exact if and only if the following three conditions hold:
1. If 𝑉 ∈ Rep(𝐺), then 𝑞∗(𝑉) is trivial in Rep(𝐿) if and only if 𝑉 � 𝑝∗(𝑊) for some 𝑊 ∈ Rep(𝐴);
2. for any 𝑉 ∈ Rep(𝐺), if 𝑊0 ⊂ 𝑞∗(𝑉) is the maximal trivial subobject in Rep(𝐿), then there exists

𝑊 ⊂ 𝑉 ∈ Rep(𝐺) such that 𝑞∗(𝑊) = 𝑊0 ⊂ 𝑞∗(𝑉);
3. any object of Rep(𝐿) is a subobject of one in the essential image of 𝑞∗.

In practice, the first two of the conditions in Theorem 3.2 are (conceptually at least) very easy to
verify and the third is extremely difficult. It will therefore be useful to see what happens when we drop
it. Note that the intersection of any collection of closed normal subgroups of an affine group scheme
G is also a closed normal subgroup; hence, we may define the normal closure 𝐻norm ⊂ 𝐺 of a closed
subgroup 𝐻 ⊂ 𝐺 as the intersection of all closed normal subgroups containing it.
Definition 3.3. We say that a sequence of affine group schemes

𝐿
𝑞
→ 𝐺

𝑝
→ 𝐴→ 1

is weakly exact if 𝐺
𝑝
→ 𝐴 is surjective, the composition 𝐿

𝑝◦𝑞
→ 𝐴 is trivial and if ker(𝑝) = 𝑞(𝐿)norm. In

other words, the sequence

1→ 𝑞(𝐿)norm → 𝐺 → 𝐴→ 1

is exact.
Weak exactness turns out to be exactly what we can prove without the third condition in Theorem 3.2.

Theorem 3.4. Let 𝐿
𝑞
→ 𝐺

𝑝
→ 𝐴 → 1 be a sequence of affine group schemes over K such that p is

faithfully flat. Assume that
1. if 𝑉 ∈ Rep(𝐺), then 𝑞∗(𝑉) is trivial in Rep(𝐿) if and only if 𝑉 � 𝑝∗(𝑊) for some 𝑊 ∈ Rep(𝐴);
2. for any 𝑉 ∈ Rep(𝐺), if 𝑊0 ⊂ 𝑞∗(𝑉) is the maximal trivial subobject in Rep(𝐿), then there exists

𝑊 ⊂ 𝑉 ∈ Rep(𝐺) such that 𝑞∗(𝑊) = 𝑊0 ⊂ 𝑞∗(𝑉).
Then 𝐿 → 𝐺 → 𝐴→ 1 is weakly exact.
Proof. First note that by [EHS08, Theorem A.1] we may describe Rep(𝑞(𝐿)) as the full subcategory of
Rep(𝐿) consisting of objects which are subquotients of objects in the essential image of 𝑞∗ : Rep(𝐺) →
Rep(𝐿). In particular, it is straightforward to verify that both conditions continue to hold if we replace L
by 𝑞(𝐿), in other words, we may assume that q is a closed immersion and L is in fact a closed subgroup
of G.

We next claim that, moreover, the conditions continue to hold if we replace L by the normal subgroup
𝐿norm it generates, the nontrivial one is (2). In this case, we know from condition (2) applied to L that for
any representation V of G, the subspace𝑉𝐿 is in fact stable by G. Since𝑉𝐿 is therefore a G-representation
on which L acts trivially, it follows that 𝐿norm acts trivially; in particular, we have 𝑉𝐿 = 𝑉𝐿norm , which
suffices to prove that (2) also holds for 𝐿norm.

In other words, we may in fact assume that 𝐿 = 𝐿norm and, in particular, that L is a normal subgroup
of G. But now we note that by [EHS08, Theorem A.1(ii)] any object of Rep(𝐿) is a subobject of one in
the essential image of 𝑞∗; hence, applying Theorem 3.2 we can see that the sequence

1→ 𝐿 → 𝐺 → 𝐴→ 1

is exact. �
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As mentioned before, the conditions of Theorem 3.4 are often easy to verify, and in the situation of
Theorem 2.5 we may do so as follows. Let 𝑓 : 𝑊 → 𝑉 , 𝑤 ∈ 𝑊 (𝐾) be as in Theorem 2.5, and suppose
we are given 𝐸 ∈ MIC(𝑊/𝐾). We define

𝑓dR∗𝐸 := R0 𝑓∗

(
𝐸 ⊗O𝑊 Ω∗𝑊 /𝑉

)
= ker

(
𝑓∗𝐸 → 𝑓∗(𝐸 ⊗ Ω1

𝑊 /𝑉 )
)

= 𝑓∗ ker
(
𝐸 → 𝐸 ⊗ Ω1

𝑊 /𝑉

)
to be the sheaf of relative horizontal sections. Since f is proper, 𝑓dR∗𝐸 is a coherent sheaf on V, and
exactly as in [KO68, §2], we may endow it with an integrable connection. One easily verifies that

𝑓 ∗ : MIC(𝑉/𝐾) � MIC(𝑊/𝐾) : 𝑓dR∗

are adjoint functors and that for any K-valued point 𝑣 ∈ 𝑉 (𝐾) there is a natural isomorphism

𝑣∗ 𝑓dR∗𝐸 � 𝐻0
dR (𝑊𝑣/𝐾, 𝐸 |𝑊𝑣 ).

Lemma 3.5. In the situation of Theorem 2.5 the sequence

𝜋dR
1 (𝑊𝑣 , 𝑤) → 𝜋dR

1 (𝑊, 𝑤) → 𝜋dR
1 (𝑉, 𝑣) → 1

is weakly exact.

Proof. Using the fact that 𝑣∗ 𝑓dR∗𝐸 � 𝐻0
dR(𝑊𝑣/𝐾, 𝐸 |𝑊𝑣 ), one easily checks that the adjunction map

𝐹 → 𝑓dR∗ 𝑓
∗𝐹 is an isomorphism for any 𝐹 ∈ MIC(𝑉/𝐾); thus, the functor 𝑓 ∗ is fully faithful. If we

are given a subobject 𝐸 ⊂ 𝑓 ∗𝐹, then again applying 𝑓 ∗ 𝑓dR∗ we obtain

𝑓 ∗ 𝑓dR∗𝐸 ⊂ 𝐸 ⊂ 𝑓 ∗𝐹

and we claim that in fact 𝑓 ∗ 𝑓dR∗𝐸 = 𝐸 . But since this can be checked on fibres, it follows from the fact
that any subobject of a trivial object in MIC(𝑊𝑣/𝐾) is itself trivial.

Hence, the map 𝜋dR
1 (𝑊, 𝑤) → 𝜋dR

1 (𝑉, 𝑣) is faithfully flat. To show that condition (1) in Theorem 3.4
holds, we note that for 𝐸 ∈ MIC(𝑊/𝐾) the adjunction map 𝑓 ∗ 𝑓dR∗𝐸 → 𝐸 is an isomorphism iff it is so
on fibres, which happens iff 𝐸 |𝑊𝑣 is trivial. Similarly, for (2) we can take 𝑓 ∗ 𝑓dR∗𝐸 ⊂ 𝐸 as the required
subobject. �

The reason that this is useful is that now we can formulate an alternative version of dos Santos’s
criterion (Theorem 3.1).

Proposition 3.6. Let 𝐿
𝑞
→ 𝐺

𝑝
→ 𝐴→ 1 be a weakly exact sequence of affine group schemes. Then the

sequence is exact if and only if for any 𝑉 ∈ Rep(𝐺) the fixed scheme

P(𝑉)𝐿 ⊂ P(𝑉)

is invariant under G.

Proof. By Theorem 3.1 we must prove that the inclusion P(𝑉)ker 𝑝 (𝐾) ⊂ P(𝑉)𝐿 (𝐾) of K-points on the
fixed scheme is an equality. If P(𝑉)𝐿 is invariant under G, then we obtain a homomorphism

𝜌 : 𝐺 → Aut𝐾 (P(𝑉)𝐿)

of functors on K-schemes that by definition satisfies 𝑞(𝐿) ⊂ ker 𝜌. Since P(𝑉)𝐿 is a projective variety,
the functor Aut𝐾 (P(𝑉)𝐿) is representable by a group scheme over K; hence, ker 𝜌 is a closed normal
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subgroup of G. Since it contains 𝑞(𝐿), it must also contain 𝑞(𝐿)norm, from which we deduce that ker 𝑝
must act trivially on P(𝑉)𝐿 . Hence, the claimed equality does indeed hold. �

This shows the importance of considering projective schemes together with actions of the fundamental
group, and many results from [dS15] involve extending the classical Tannakian duality to include these
sorts of objects. We expect many of these results to also hold in the analytic context, but in our impatience
to prove Theorem 2.5 (and consequently Theorem 8.3) we have not investigated this fully. Instead, we
will stick to the more restrictive category of varieties together with a polarisable action.

Definition 3.7. Let G be an affine group scheme over K, Y a proper K-variety and 𝜌 : 𝐺 → Aut𝐾 (𝑌 )
an action of G on Y. We say that the action is polarisable if

1. 𝜌 factors through an algebraic quotient 𝐺 � 𝐻;
2. there exists an ample line bundle L on Y admitting a H-linearisation.

Note that ‘polarisable’ simply means that such an H and L exist; we do not specify them as part of
the data.

Lemma 3.8. A G-action on Y is polarisable if and only if there exists some 𝑉 ∈ Rep(𝐺) and a G-
equivariant closed embedding

𝑌 ↩→ P(𝑉).

Proof. Since the action on any such V must factor through an algebraic quotient, the existence of such
an embedding clearly implies polarisability. For the converse, we may assume that G is algebraic and
that the line bundle L in condition (2) is very ample. In this situation, 𝐻0 (𝑌,L) is a finite-dimensional
representation of G and the natural map

𝑌 → P(𝐻0 (𝑌,L))

is G-equivariant. �

Remark 3.9. In fact, the proof of this lemma shows that the condition in Definition 3.7 that the action
of G on either Y or the ample line bundle L factors through some algebraic quotient is redundant.

Corollary 3.10. If 𝐺 → 𝐻 is a homomorphism of affine group schemes and Y is a proper K-variety
with a polarisable H-action, then the induced G-action is also polarisable.

4. Stratified analytic spaces

The proof of Lemma 3.5 demonstrates that the problem of proving weak exactness of the homotopy
sequence is more or less that of constructing well-behaved ‘pushforwards’ of coherent modules with
integrable connections along the given map 𝑓 : 𝑊 → 𝑉 . Similarly, one of the key insights of [dS15] is
that the problem of proving that the conditions of Theorem 3.1 hold is essentially one of constructing
pushforwards of more general, nonlinear fibre bundles over W, endowed with ‘nonlinear connections’.
The construction of such pushforwards is exactly what we will want to imitate in the analytic setting.
First, however, we will need to discuss the concept of a stratification on an analytic variety over some
given base, which is the correct way to generalise integrable connections to nonlinear objects.

So let 𝑉/𝐾 be an analytic variety, which for now we will not necessarily assume to be smooth. Let
𝑃𝑛
𝑉 denote the nth-order infinitesimal neighbourhood of V inside 𝑉 × 𝑉 and 𝑝𝑛

𝑖 : 𝑃𝑛
𝑉 → 𝑉 for 𝑖 = 0, 1

the projection maps.

Definition 4.1. Let 𝑍 → 𝑉 be an analytic variety over V. Then a stratification on Z is a collection of
compatible isomorphisms

𝜀𝑛 : 𝑍 ×𝑝𝑛0
𝑃𝑛
𝑉

∼
→ 𝑃𝑛

𝑉 ×𝑝𝑛1
𝑍
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of 𝑃𝑛
𝑉 -varieties such that 𝜖0 = id and which satisfy the cocyle condition (see, for example, [Ber74, Ch.

II, §1]). A morphism of stratified varieties is simply a morphism compatible with the maps 𝜀𝑛, and the
category of such objects will be denoted Str(𝑉/𝐾). We will denote the full subcategory of Str(𝑉/𝐾)
consisting of varieties 𝑍 → 𝑉 which are projective over V by StrP(𝑉/𝐾).

Example 4.2. Assume that V is smooth.

1. If 𝑍 → 𝑉 is a bundle of analytic affine spaces – in other words, is locally isomorphic to the projection
A

𝑛,an
𝑉 → 𝑉 (with linear transition maps) – and the stratification maps

𝑍 ×𝑝𝑛0
𝑃𝑛
𝑉

∼
→ 𝑃𝑛

𝑉 ×𝑝𝑛1
𝑍

are linear, then we recover the notion of a coherent module with integrable connection on V.
2. If E is a coherent O𝑉 -module with integrable connection, with associated affine bundle E→ 𝑉 , then

the projectivisation P(𝐸) → 𝑉 of E inherits a stratification from that on E.

More generally, a natural source of stratified varieties will be varieties equipped with an action of
the fundamental group. From now on we will assume that V is smooth, connected and equipped with a
K-rational point 𝑣 ∈ 𝑉 (𝐾).

Definition 4.3. We will denote the category of proper K-varieties together with a polarisable 𝜋dR
1 (𝑉, 𝑣)-

action by R𝑉 .

It is worth pointing out that the category we have denoted R𝑉 is not the direct analogue in the
analytic context of dos Santos’s category of the same name considered in [dS15, §6.2]. Our conditions
are rather more restrictive; however, R𝑉 will still have enough objects for our purposes.

The construction of objects in StrP(𝑉/𝐾) from those in R𝑉 is relatively straightforward. Indeed,
if (𝑌, 𝜌) ∈ R𝑉 , then we may choose an equivariant embedding 𝑌 ↩→ P𝑁𝐾 for some linear action of
𝜋dR

1 (𝑉, 𝑣) on A𝑁+1
𝐾 . Via this embedding we may view the projective co-ordinate ring

𝑆𝑌 :=
⊕

𝑛

Γ(𝑌,OP𝑁𝐾 (𝑛))

as a 𝜋dR
1 (𝑉, 𝑣)-representation. By construction, we know that 𝑆𝑌 is the colimit of its finite-dimensional

subrepresentations, and hence via the usual Tannakian correspondence we can construct an associated
ind-coherent sheaf S𝑌 of graded rings on V, equipped with an integrable connection. We now define

U𝑉 (𝑌, 𝜌) := ProjO𝑉 (S𝑌 )

via the relative Proj construction of [Con06]. The integrable connection on S𝑌 induces a stratification on
U𝑉 (𝑌, 𝜌), making it into an object of StrP(𝑉/𝐾). This generalises Example 4.2(2) in that if 𝑌 = P(𝐸𝑣 )

for some 𝐸 ∈ MIC(𝑉/𝐾), then U𝑉 (𝑌 ) � P(𝐸).

Proposition 4.4. This construction induces a functor U𝑉 : R𝑉 → StrP(𝑉/𝐾) from polarisable
𝜋dR

1 (𝑉, 𝑣)-varieties to projective stratified V-varieties. It is compatible with pullback via morphisms
𝑓 : 𝑊 → 𝑉 in the sense that the diagram

R𝑉

��

�� StrP(𝑉/𝐾)

��

R𝑊
�� StrP(𝑊/𝐾)

is 2-commutative.

Proof. There are two things to check: firstly, that U𝑉 (𝑌, 𝜌) does not depend on the choice of 𝜋dR
1 (𝑉, 𝑣)-

linearised ample line bundle L and, secondly, that we can make the association functorial in (𝑌, 𝜌). For
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the first claim, we note that given two equivariant embeddings 𝑌 → P(𝐸𝑣 ) and 𝑌 → P(𝐹𝑣 ), giving rise
to polarised 𝜋dR

1 (𝑉, 𝑣)-varieties (𝑌, 𝜌) and (𝑌, 𝜎), we can simply consider their product

𝑌 ↩→ P(𝐸𝑣 ) ×𝐾 P(𝐹𝑣 )

as a polarised 𝜋dR
1 (𝑉, 𝑣)-variety (𝑌, 𝜏) and show that the two projection maps induce isomorphisms

U𝑉 (𝑌, 𝜏)
∼
→ U𝑉 (𝑌, 𝜌), U𝑉 (𝑌, 𝜏)

∼
→ U𝑉 (𝑌, 𝜎).

Similarly, to obtain functoriality, we factor a given map 𝑌 → 𝑌 ′ of polarisable 𝜋dR
1 (𝑉, 𝑣)-varieties into

the closed immersion 𝑌 ↩→ 𝑌 ×𝐾 𝑌 ′ followed by the projection 𝑌 ×𝐾 𝑌 ′ → 𝑌 ′ to reduce to considering
either the case of a closed immersion or that of a projection. These can both be very easily handled.

Finally, functoriality in 𝑓 : 𝑊 → 𝑉 follows from the facts that the homomorphism 𝜋dR
1 (𝑊, 𝑤) →

𝜋dR
1 (𝑉, 𝑣) corresponds to 𝑓 ∗ on the level of modules with integrable connection and that Proj commutes

with pullback of ind-coherent modules by [Con06, Theorem 2.3.6]. �

With additional polarisability assumptions, ‘Tannakian reconstruction’ theorems are very easy to
prove using the classical linear versions.

Definition 4.5. We say that 𝑍 ∈ StrP(𝑉/𝐾) is polarisable if there exists 𝐸 ∈ MIC(𝑉/𝐾) and a closed
embedding 𝑍 ↩→ P(𝐸) of stratified V-varieties.

Clearly, the functor R𝑉 lands inside the full subcategory StrPol(𝑉/𝐾) ⊂ StrP(𝑉/𝐾) consisting
of polarisable stratified V-varieties. For us, polarisable stratified varieties will always assumed to be
projective, although this is not clear from the terminology.

Theorem 4.6. The functor

U𝑉 : R𝑉 → StrPol(𝑉/𝐾)

is an equivalence of categories.

Proof. This follows very easily from ordinary Tannakian duality and the relative Proj construction
introduced in [Con06]. We first claim that given (𝑌, 𝜌) ∈ R𝑉 , the functor U𝑉 induces a bijection
between 𝜋dR

1 (𝑉, 𝑣)-invariant subschemes of Y and closed stratified subvarieties of U𝑉 (𝑌, 𝜌). Indeed,
injectivity is clear, since for 𝑇 ⊂ 𝑌 closed and 𝜋dR

1 (𝑉, 𝑣)-invariant we may recover T as the fibre of
U𝑉 (𝑇, 𝜌) over v.

For surjectivity, we note that by construction U𝑉 (𝑌, 𝜌) = ProjO𝑉 (S𝑌 ) for some ind-coherent graded
O𝑉 -algebra S𝑌 , equipped with an integrable connection. The closed subvariety T ↩→ U𝑉 (𝑌, 𝜌) is
therefore given by some quotient

S𝑌 → ST

which, since T is a stratified subvariety, must be horizontal. There is therefore an induced integrable
connection on ST. Moreover, since S𝑌 is the colimit of its coherent, horizontal subbundles, the same
is true of ST. Hence, by the usual Tannakian correspondence this has to come from some 𝜋dR

1 (𝑉, 𝑣)-
invariant quotient 𝑆𝑌 := S𝑌 ,𝑣 → 𝑆𝑇 := ST,𝑣 . Then 𝑇 = Proj(𝑆𝑇 ) is the required invariant closed
subscheme of Y.

This immediately implies essential surjectivity of U𝑉 and in fact also implies full faithfulness.
Indeed, as in Proposition 4.4, to prove full faithfulness it suffices via the graph construction to treat
closed immersions and projections from products. The latter is obvious, and we have just proved the
former. �
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5. Relative stratifications and pushforwards

To construct appropriate ‘pushforwards’ of smooth, projective stratified varieties along a smooth and
projective morphism in [dS15], dos Santos proceeds in two stages. First of all, he considers the push-
forward of a ‘relatively stratified variety’ Z and then shows that when this arises from a variety with an
‘absolute’ stratification, there is a canonical induced stratification on this pushforward. The analogy to
bear in mind from the linear case is that the pushforward 𝑓dR∗𝐸 of some module with integrable con-
nection 𝐸 ∈ MIC(𝑊/𝐾) is constructed by first viewing it as an object in MIC(𝑊/𝑉); one then puts a
connection on 𝑓dR∗𝐸 by using the fact that E came from MIC(𝑊/𝐾).

In this section we will achieve the first step for stratified analytic varieties by appealing to GAGA.
This will tell us that we can actually apply dos Santos’s results to provide the required pushforwards. In
Section 7 we will then find another way to complete the proof of Theorem 2.5 without having to develop
the analytic analogue of the ‘infinitesimal equivalence relations’ used in [dS15], instead by reducing
to the situation over the formal polydisc Spf (𝐾 [[𝑥1, . . . , 𝑥𝑛]]). We start by introducing certain ‘formal
adic spaces’, which will allow a slightly better way of talking about stratifications.

Definition 5.1. Let 𝑇 ↩→ 𝑉 be a closed immersion of analytic K-varieties; it is therefore by [FK18,
Proposition II.7.3.5] defined by a coherent ideal sheaf I𝑇 ⊂ O𝑉 . Let 𝑉 (𝑛)𝑇 denote the closed subvariety
of V defined by the ideal sheaf I𝑛+1

𝑇 (i.e., 𝑉 (𝑛)𝑇 is the nth infinitesimal neighbourhood of T in V). We
define the ‘formal completion of V along T’ to be the ind-object 𝑉/𝑇 := {𝑉 (𝑛)𝑇 }𝑛 ∈ Ind(Rig𝐾 ) in the
category of analytic K-varieties.

Let Sh(Rig𝐾 ) denote the category of sheaves on Rig𝐾 for the analytic topology. Since objects of
Rig𝐾 are locally quasi-compact, we have a fully faithful embedding

Ind(Rig𝐾 ) ↩→ Sh(Rig𝐾 )

and we will use this to view 𝑉/𝑇 as such a sheaf.

Example 5.2. If 𝑉 = Spa (𝐾 〈𝑥〉,V〈𝑥〉) and 𝑇 ↩→ 𝑉 is the zero section, then

𝑉 (𝑛)𝑇 = Spa
(
𝐾 [𝑥]

(𝑥𝑛+1)
,V + 𝑥 𝐾 [𝑥]

(𝑥𝑛+1)

)
.

So we should think of 𝑉/𝑇 as being given by something like

‘Spa (𝐾 [[𝑥]],V + 𝑥𝐾 [[𝑥]])′

where the topology on 𝐾 [[𝑥]] has a basis of open subgroups of the form 𝜛𝑚V[[𝑥]] + 𝑥𝑛𝐾 [[𝑥]]. Note that
with this topology, 𝐾 [[𝑥]] is not an f -adic ring, and hence the pair (𝐾 [[𝑥]],V+𝑥𝐾 [[𝑥]]) is not an affinoid
ring in the sense of [Hub96, §1.1]. It would be interesting to see if there is a more general category of
adic spaces in which things like Spa (𝐾 [[𝑥]],V + 𝑥𝐾 [[𝑥]]) make sense.

By considering the diagonal Δ : 𝑉 → 𝑉2 of an analytic K-variety, we obtain the ind-variety that
we will denote by 𝑃𝑉 , which comes equipped with two ‘projection’ maps 𝑝𝑖 : 𝑃𝑉 → 𝑉 . With this
language, we can rephrase the data of a stratification on some variety 𝑍 → 𝑉 as an isomorphism

𝜀 : 𝑍 ×𝑝0 𝑃𝑉
∼
→ 𝑃𝑉 ×𝑝1 𝑍

in the slice category Sh(Rig𝐾 )/𝑃𝑍 of sheaves over 𝑃𝑉 , subject to certain obvious conditions. If we let
𝑠 : 𝑃𝑉 → 𝑃𝑉 denote the map switching the factors and 𝑐 : 𝑃𝑉 ×𝑝1 ,𝑉 , 𝑝0 𝑃𝑉 → 𝑃𝑉 the map induced by
((𝑣0, 𝑣1), (𝑣1, 𝑣2)) ↦→ (𝑣0, 𝑣2), then exactly as in [Ber74, Ch. II, §1] we can show that the data

𝑝0, 𝑝1 : 𝑃𝑉 ⇒ 𝑉, 𝑐 : 𝑃𝑉 ×𝑝1 ,𝑉 , 𝑝0 𝑃𝑉 → 𝑃𝑉 , Δ : 𝑉 → 𝑃𝑉 , 𝑠 : 𝑃𝑉 → 𝑃𝑉
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forms a ‘formal groupoid’ over Spa (𝐾) and that a stratification on a V-variety Z is equivalent to an
action of this groupoid.

Similarly, if we are given some morphism 𝑓 : 𝑊 → 𝑉 , then we may consider the formal completion
𝑃𝑊 /𝑉 along the diagonal Δ : 𝑊 → 𝑊 ×𝑉 𝑊 . We have

𝑝0, 𝑝1 : 𝑃𝑊 /𝑉 ⇒ 𝑊, 𝑐 : 𝑃𝑊 /𝑉 ×𝑝1 ,𝑊 ,𝑝0 𝑃𝑊 /𝑉 → 𝑃𝑊 /𝑉 , Δ : 𝑊 → 𝑃𝑊 /𝑉 , 𝑠 : 𝑃𝑊 /𝑉 → 𝑃𝑊 /𝑉

exactly as before, giving rise to a formal groupoid over V.

Definition 5.3. A V-linear stratification on a W-variety Z is an action of the groupoid 𝑃𝑊 /𝑉 ⇒ 𝑊 . We
denote the category of W-varieties with a V-linear stratification by Str(𝑊/𝑉) and the full subcategory
of objects which are projective over W by StrP(𝑊/𝑉).

These notions satisfy all of the usual functorialities, which can be summarised by saying that for any
commutative square

𝑊 ′ ��

��

𝑊

��

𝑉 ′ �� 𝑉

there is an induced morphism [
𝑃𝑊 ′/𝑉 ′ ⇒ 𝑊 ′

]
→

[
𝑃𝑊 /𝑉 ⇒ 𝑊

]
of formal groupoids, and hence a pullback functor Str(𝑊/𝑉) → Str(𝑊 ′/𝑉 ′). This is transitive in the
obvious manner. For example, taking the diagram

𝑊 ��

��

𝑊

��

𝑉 �� Spa (𝐾)

we obtain the forgetful functor Str(𝑊/𝐾) → Str(𝑊/𝑉).
Now let us suppose that we have a smooth, projective morphism 𝑓 : 𝑊 → 𝑉 of analytic K-varieties,

with geometrically connected fibres. Note that we do not assume at this point that the base V is smooth.
If P(𝑉) = StrP(𝑉/𝑉) denotes the category of projective V-varieties, then, as we have just seen, there is
a pullback functor

𝑓 ∗ : P(𝑉) → StrP(𝑊/𝑉).

We wish to construct an ‘adjoint’ to 𝑓 ∗, at least under certain extra conditions on objects in StrP(𝑊/𝑉).
To do so, suppose therefore that we are given some 𝑍 ∈ StrP(𝑊/𝑉). Define a functor

𝑓∗𝑍 : Rig𝑉 → Sets
𝑇/𝑉 ↦→ {sections of 𝑍 ×𝑉 𝑇 → 𝑊 ×𝑉 𝑇}

where sections are considered as certain closed subvarieties of 𝑍 ×𝑉 𝑇 . (Thus, 𝑓∗𝑍 is a subfunctor of
the Hilbert functor and the usual flatness condition is redundant for 𝑓∗𝑍 , since W is flat over V.)

Proposition 5.4. The functor 𝑓∗𝑍 is representable by an analytic variety over V which has the following
property: for each open affinoid Spa (𝐴) ⊂ 𝑉 , the restriction of 𝑓∗𝑍 ×𝑉 Spa (𝐴) → Spa (𝐴) to each of
its connected components arises as the analytification of a quasi-projective A-scheme.
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Proof. This is similar in spirit to [Con06, Theorem 4.1.3]. Since 𝑓∗𝑍 is clearly a sheaf for the analytic
topology on Rig𝐾 , we may in fact assume that 𝑉 = Spa (𝐴) is affinoid. Hence, by relative rigid analytic
GAGA [Con06, Example 3.2.6], W is the analytification of a smooth projective A-scheme 𝑊𝑎, and
𝑍 → 𝑊 is the analyitification of a projective morphism 𝑍𝑎 → 𝑊𝑎. We consider the corresponding
functor

𝑓 𝑎∗ 𝑍
𝑎 : Sch𝐴→ Sets

𝑇/𝐴 ↦→ {sections of 𝑍𝑎 ×𝐴 𝑇 → 𝑊𝑎 ×𝐴 𝑇}

of locally Noetherian A-schemes, which by [Gro61, §4, Variant c.] is representable by a disjoint union
of quasi-projective A-schemes. It therefore suffices to show that the analytification of 𝑓 𝑎∗ 𝑍

𝑎 represents
the functor 𝑓∗𝑍 . Since both are sheaves for the analytic topology, it suffices to check this on affinoids
Spa (𝐵) → Spa (𝐴). In this case, we can again appeal to rigid analytic GAGA, which says that any closed
subvariety of 𝑍 ×Spa(𝐴) Spa (𝐵) is algebraic; that is, comes from a unique closed subscheme of 𝑍𝑎

𝐵. �

Let 𝑏 : 𝑇 → 𝑓∗𝑍 be a point of 𝑓∗𝑍 , corresponding to a section 𝜏𝑏 : 𝑊 ×𝑉 𝑇 → 𝑍 ×𝑉 𝑇 . Pulling back
by the two projections 𝑝𝑖 : 𝑃𝑊 /𝑉 → 𝑊 – that is, applying 𝑃𝑊 /𝑉×𝑝𝑖 ,𝑊 – we obtain sections

𝑝∗𝑖 (𝜏𝑏) : 𝑃𝑊 /𝑉 ×𝑉 𝑇 → 𝑃𝑊 /𝑉 ×𝑝𝑖 ,𝑊 𝑍 ×𝑉 𝑇

of id ×𝑝𝑖 ,𝑊 𝑔. We say that b is horizontal if 𝜖 (𝑝∗0 (𝜏𝑏)) = 𝑝∗1 (𝜏𝑏), where 𝜖 is the stratification on Z.

Definition 5.5. We define 𝑓dR∗𝑍 ⊂ 𝑓∗𝑍 to be the subfunctor of horizontal sections.

Proposition 5.6. The subfunctor 𝑓dR∗𝑍 is representable by a closed analytic subvariety of 𝑓∗𝑍 . If Z is
smooth over W, then for any open affinoid Spa (𝐴) ⊂ 𝑉 the restriction of 𝑓dR∗𝑍 ×𝑉 Spa (𝐴) → Spa (𝐴)
to each of its connected components is projective.

Proof. Being a closed subvariety is local, and hence we may in fact assume that𝑉 = Spa (𝐴) is affinoid.
Now again the whole situation algebrises: we have some smooth projective 𝑓 𝑎 : 𝑊𝑎 → Spec (𝐴)
and some projective 𝑍𝑎 → 𝑊𝑎 giving rise to Z upon analytification. Moreover, since the algebraic
infinitesimal neighbourhoods give rise to the analytic ones upon analytification, it follows that the
analytic stratification on Z comes from a unique A-linear algebraic stratification on 𝑍𝑎. Now we simply
note that the results of [dS15, §10] apply over any separated, Noetherian base scheme; for example,
Spec (𝐴). Translated into algebraic terms, what we have termed ‘horizontal’ corresponds exactly to what
dos Santos calls ‘tangential’; hence, we may again use rigid analytic GAGA to show that our functor
𝑓dR∗𝑍 is simply the analytification of dos Santos’s scheme 𝐻 𝑓 𝑎 (𝑍

𝑎). �

The defining property of 𝑓dR∗𝑍 gives a section 𝑊 ×𝑉 𝑓dR∗𝑍 → 𝑍 ×𝑉 𝑓dR∗𝑍 , and by composing with
the first projection, we therefore obtain a morphism 𝜀𝑍 : 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 of W-varieties. Essentially all
of the main properties of 𝑓dR∗𝑍 can then be deduced from those proved in [dS15].

Proposition 5.7. Let 𝑍 ∈ StrP(𝑊/𝑉) be smooth over W.

1. The map 𝜀𝑍 : 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 is horizontal with respect to the pullback (V-linear) stratification on
𝑓dR∗𝑍 and the given (V-linear) stratification on Z.

2. Formation of 𝑓dR∗𝑍 is compatible with base change: if 𝑉 ′ → 𝑉 is a morphism of K-varieties, then
( 𝑓dR∗𝑍) ×𝑉 𝑉 ′ � 𝑓dR∗(𝑍 ×𝑉 𝑉 ′) and, via this isomorphism, 𝜀𝑍×𝑉𝑉 ′ = 𝜀𝑍 ×𝑉 𝑉 ′.

3. If the base 𝑉 = Spa (𝐾) is a point, 𝑤 ∈ 𝑊 (𝐾) is a rational point and 𝑍 = U𝑊 (𝑌, 𝜌) for some
(𝑌, 𝜌) ∈ R𝑊 , smooth over K, then 𝜀𝑍 : 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 is obtained by applying U𝑊 to the closed
immersion

𝑌 𝜋dR
1 (𝑊 ,𝑤) → 𝑌,

considered as a morphism of 𝜋dR
1 (𝑊, 𝑤)-varieties.

https://doi.org/10.1017/fms.2021.63 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.63


14 Christopher Lazda and Ambrus Pál

Proof. Note that the first two are local on V and therefore follow from their algebraic versions [dS15,
Proposition 12.1, Corollary 12.4]. For the third, we wish to algebrise and apply [dS15, Proposition
14.5]; the point is to check that the induced (algebraic) stratification on Z is simple. This follows from
the argument in the paragraph preceding the proof of [dS15, Proposition 14.5]. �

6. Formal stratifications, integrability and base change

It will be necessary for us to have a formal analogue of the above constructions, working for now over
an arbitrary field F. Since the basic ideas are essentially identical to those in the previous section, we
will not give too many details. Let 𝑡 = (𝑡1, . . . , 𝑡𝑑) be a collection of variables and set 𝑆 = Spf (𝐹 [[𝑡]])
to be the d-dimensional formal polydisc over F (using the t-adic topology). We will let 𝑓 : 𝑋 → 𝑆 be a
smooth morphism of finite type. In this situation we may define the formal groupoids

𝑃𝑋 ⇒ 𝑋, 𝑃𝑋/𝑆 ⇒ 𝑋, 𝑃𝑆 ⇒ 𝑆

exactly as before. If 𝑔 : 𝑍 → 𝑋 is a morphism of formal schemes, then an F-linear (respectively S-
linear) stratification on Z is then an action of the groupoid 𝑃𝑋 ⇒ 𝑋 (respectively 𝑃𝑋/𝑆 ⇒ 𝑋). We
similarly have the notion of an F-linear stratification on some formal S-scheme.

If 𝑋/𝑆 is projective and 𝑔 : 𝑍 → 𝑋 is a projective formal X-scheme equipped with an S-linear
stratification, then we may define the pushforward 𝑓∗𝑍 as a disjoint union of formal schemes over S,
as well as the closed subscheme 𝑓dR∗𝑍 ⊂ 𝑓∗𝑍 , exactly as in the previous section. If we let 𝑆𝑛, 𝑋𝑛, 𝑍𝑛

denote the mod 𝑡𝑛+1-reductions, then we could equally well construct 𝑓dR∗𝑍 and 𝑓∗𝑍 as the limits

𝑓dR∗𝑍 = colim𝑛 ( 𝑓𝑛,dR∗𝑍𝑛), 𝑓∗𝑍 = colim𝑛 ( 𝑓𝑛,∗𝑍𝑛)

of the algebraic pushforwards along 𝑓𝑛 : 𝑋𝑛 → 𝑆𝑛, as considered by dos Santos in [dS15, §10] (and
that he terms 𝐻0 (𝑍𝑛) and 𝐻 𝑓𝑛 (𝑍𝑛), respectively). The following represents a simple extension to formal
schemes of the results of [dS15].

Theorem 6.1. Assume that X is projective over S and that Z is smooth and projective over X, equipped
with an F-linear stratification. Then there exists an F-linear stratification on 𝑓dR∗𝑍 as a formal S-scheme
such that the map

𝑓 ∗ 𝑓dR∗𝑍 → 𝑍

is compatible with the F-linear stratifications on both sides.

Proof. This essentially follows from [dS15] upon taking the limit in n, although a little care is needed to
achieve this. Consider for all n the mod 𝑡𝑛+1 reduction 𝑍𝑛

𝑔𝑛
→ 𝑋𝑛

𝑓𝑛
→ 𝑆𝑛 of everything in sight, we wish

to construct a stratification on 𝑓𝑛,dR∗𝑍𝑛 as an 𝑆𝑛-scheme such that 𝑓 ∗𝑛 𝑓𝑛,dR∗𝑍𝑛 → 𝑍𝑛 is compatible with
the stratifications. We cannot directly apply the results of [dS15] since 𝑆𝑛 is not smooth over F, but we
can get around this as follows.

Firstly, let us recall that dos Santos views stratifications as particular kinds of ‘infinitesimal equiv-
alence relations’, and without using any smoothness assumptions on the ‘base’ of the fibration (in our
case 𝑆𝑛) he constructs an infinitesimal equivalence relation on 𝑓𝑛,dR∗𝑍𝑛 such that 𝑓 ∗𝑛 𝑓𝑛,dR∗𝑍𝑛 → 𝑍𝑛 in-
tertwines these two equivalence relations. The point is then to try to prove that this equivalence relation
on 𝑓𝑛,dR∗𝑍𝑛 actually comes from a stratification. This is the content of [dS15, Proposition 13.4], and
this proposition is the only place where smoothness assumptions are used.

But here we can exploit the fact that our situation arises as the mod 𝑡𝑛+1 reduction of 𝑍
𝑔
→ 𝑋

𝑓
→ 𝑆 with

S formally smooth over K. In particular, if we choose local étale co-ordinates 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) for 𝑋/𝑆 and
𝑧 = (𝑧1, . . . , 𝑧𝑚) for 𝑍/𝑋 , then the stratification on Z corresponds to some section O𝑍 [[𝑑𝑡, 𝑑𝑥, 𝑑𝑧]] →
O𝑍 [[𝑑𝑡, 𝑑𝑥]] of the natural inclusion O𝑍 [[𝑑𝑡, 𝑑𝑥]] → O𝑍 [[𝑑𝑡, 𝑑𝑥, 𝑑𝑧]]. In particular, we may therefore
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choose m elements 𝐹1, . . . , 𝐹𝑚 generating the kernel, locally on X and Z. Now reducing mod 𝑡𝑛+1 we
can follow the proof of [dS15, Proposition 13.4] word for word to conclude. �

For this to be useful, we will need to compare this with the setup considered previously. Let us
therefore return to that situation. So we have some smooth projective map 𝑓 : 𝑊 → 𝑉 of analytic K-
varieties, with geometrically connected fibres, and 𝑔 : 𝑍 → 𝑊 some smooth and projective stratified
variety over W. If 𝑣 ∈ 𝑉 is a smooth rigid point of V, then we may consider the various infinitesimal
neighbourhoods 𝑣 (𝑛) := 𝑉 (𝑛)𝑣 as before. The point is that now the base change 𝑍𝑣 (𝑛) → 𝑊𝑣 (𝑛) → 𝑣 (𝑛)

algebrises relative to the ground field K, so we may consider 𝑍𝑣 (𝑛) → 𝑊𝑣 (𝑛) as a projective morphism
of projective K-schemes, equipped with a K-linear stratification. Thus, taking the limit in n we obtain a
smooth projective stratified formal scheme 𝑍𝑣

𝑔𝑣
→ 𝑊𝑣

𝑓𝑣
→ Spf (Ô𝑉 ,𝑣 ), where Ô𝑉 ,𝑣 is simply considered

with the maximal-adic topology (not any kind of p-adic topology). Since v was chosen to be a smooth
point, we therefore find ourselves in the situation of Theorem 6.1.

Hence, we have some projective stratified formal scheme 𝑓𝑣,dR∗𝑍𝑣 over Spf (Ô𝑉 ,𝑣 ). Alternatively,
since the base change of 𝑓dR∗𝑍 to 𝑣 (𝑛) is a disjoint union of projective 𝑣 (𝑛) -schemes, we may take the
limit in n to obtain 𝑓dR∗𝑍 ×𝑉 Spf(Ô𝑉 ,𝑣 ) which is a disjoint union of projective formal Ô𝑉 ,𝑣 -schemes.
Note that this is simply notation, since there is no actual map Spf(Ô𝑉 ,𝑣 ) → 𝑉 of locally ringed spaces.

Proposition 6.2. There is a natural isomorphism

𝑓dR∗𝑍 ×𝑉 Spf (Ô𝑉 ,𝑣 )
∼
→ 𝑓𝑣,dR∗𝑍𝑣

of disjoint unions of projective formal schemes over Ô𝑉 ,𝑣 , such that the diagram

𝑓 ∗ 𝑓dR∗𝑍 ×𝑉 Spf (Ô𝑉 ,𝑣 ) ��

𝜀𝑍×𝑉 Spf (Ô𝑉 ,𝑣 )
��

𝑓 ∗𝑣 𝑓𝑣,dR∗𝑍𝑣

𝜀𝑍𝑣
��

𝑍 ×𝑉 Spf (Ô𝑉 ,𝑣 ) 𝑍𝑣

of formal schemes with 𝑉𝑣 -linear stratifications commutes.

Proof. This simply follows from applying Proposition 5.7(2) to the various infinitesimal neighbourhoods
𝑣 (𝑛) → 𝑉 and then taking the limit in n. �

Corollary 6.3. If 𝑍 ∈ StrP(𝑊/𝐾) is smooth over W, then for each connected open affinoid Spa (𝐴) ⊂ 𝑉
the fibre product

𝑓dR∗𝑍 ×𝑉 Spa (𝐴)

is flat and projective over Spa (𝐴).

Proof. We may assume that 𝑉 = Spa (𝐴) and that 𝑓 , 𝑔 come from algebraic maps

𝑓 𝑎 : 𝑊𝑎 → Spec (𝐴) , 𝑔𝑎 : 𝑍𝑎 → 𝑊𝑎

of projective A-schemes. We have already observed in Propostion 5.6 that in this situation 𝑓dR∗𝑍 is
the analytification of a disjoint union 𝑓 𝑎dR∗𝑍

𝑎 of projective A-schemes. Moreover, for any closed point
𝔪 ∈ Spec (𝐴), we know by Theorem 6.1 that the base change 𝑓 𝑎dR∗𝑍

𝑎⊗𝐴𝐴𝔪 admits a formal stratification.
In particular, by applying [dS15, Lemma 6.2], we can see that 𝑓 𝑎dR∗𝑍

𝑎 ⊗𝐴 𝐴𝔪 must be flat over 𝐴𝔪.
Since this is true for all𝔪, it follows that 𝑓 𝑎dR∗𝑍

𝑎 is flat over A, so the restriction of 𝑓 𝑎dR∗𝑍
𝑎 → Spec (𝐴)

to each of its connected components is flat and projective. Since Spec (𝐴) is connected, each of these
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components must be set theoretically surjective over Spec (𝐴), so each has a nonempty fibre over 𝔪.
Hence, the map

𝜋0 ( 𝑓
𝑎

dR∗𝑍
𝑎 ⊗𝐴 𝐴/𝔪) → 𝜋0 ( 𝑓

𝑎
dR∗𝑍

𝑎)

on connected components is surjective. Now applying [dS15, Proposition 6.4] and Proposition 5.7(3)
to the fibre 𝑓 𝑎dR∗𝑍

𝑎 ⊗𝐴 𝐴/𝔪, we know that this it has only finitely many connected components.
Therefore, so does 𝑓 𝑎dR∗𝑍

𝑎 and it is thus flat and projective over A. The claim now follows by taking the
analytification. �

7. Invariance under the stratification and exactness of the homotopy sequence

Having constructed the relative pushforwards in Section 5, what we should do next is emulate the
construction of [dS15, §13] to endow 𝑓dR∗𝑍 with a stratification, at least when 𝑍/𝑊 is smooth and
comes from an object of StrP(𝑊/𝐾). We should then show that 𝑓dR∗ is a ‘weak adjoint’ to 𝑓 ∗. In fact,
to obtain the proof of Theorem 2.5 we can get away with the formal version of this result, namely,
Theorem 6.1.

Let us put ourselves in the situation of Theorem 2.5, so that 𝑓 : 𝑊 → 𝑉 is smooth with geometrically
connected fibres and V is smooth and geometrically connected. Fix 𝑤 ∈ 𝑊 (𝐾) and set 𝑣 = 𝑓 (𝑤). Let
(𝑌, 𝜌) ∈ R𝑊 and assume that Y is smooth over K. Let 𝑍 = U𝑊 (𝑌, 𝜌) ∈ StrP(𝑊/𝐾). By applying the
forgetful functor StrP(𝑊/𝐾) → StrP(𝑊/𝑉) we may construct 𝜀𝑍 : 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 as in the previous
section.

Proposition 7.1. The map 𝜀𝑍 : 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 is a closed immersion.

Proof. We first note that by Proposition 5.7 the given map 𝜀𝑍 : 𝑓 ∗ 𝑓dR∗𝑍 → 𝑍 becomes a closed
immersion on the fibre 𝑊𝑣 over the given K-valued point 𝑣 ∈ 𝑉 (𝐾). By letting v vary and possibly
increase the base field K, we deduce that the same is true over any rigid point of V. Moreover, we know
from Corollary 6.3 that on any connected open affinoid Spa (𝐴) ⊂ 𝑉 , the base change

𝑓dR∗𝑍 ×𝑉 Spa (𝐴) → Spa (𝐴)

is projective over A. Since 𝜀𝑍 being a closed immersion is local on V, we therefore find ourselves in the
following general situation. We have a smooth projective morphism 𝑓 : 𝑊 → Spa (𝐴) over an affinoid
base and a morphism 𝑇 → 𝑍 of projective W-varieties, which is a closed immersion after passing to any
rigid point of Spa (𝐴). We wish to show that𝑇 → 𝑍 is a closed immersion. This is now a situation which
can be algebrised, since by rigid analytic GAGA all three of 𝑊,𝑇, 𝑍 come from projective A-schemes,
as do all of the morphisms between them.

Since the role of W can now be ignored, we can reduce to the following. Let A be a Noetherian ring
and 𝑖 : 𝑇𝑎 → 𝑍𝑎 a morphism of projective A-schemes, which is a closed immersion on the fibres over
all closed points of A. Then we wish to show that i is an closed immersion. To see this, note that the
quasi-finite locus of i must contain every closed point of 𝑍𝑎; it must therefore be equal to 𝑍𝑎 by [Gro66,
Théorème 13.1.5]. Therefore, i is quasi-finite and projective, and hence finite, say locally of the form
Spec (𝐶) → Spec (𝐵). Moreover, for any maximal ideal 𝔪 of B, the induced map 𝐵

𝔪 → 𝐶 ⊗𝐵
𝐵
𝔪 is

either the zero map or an isomorphism and, in particular, it is surjective. Hence, i is a closed immersion
as claimed. �

Definition 7.2. We say that a closed subvariety 𝑇 ↩→ 𝑍 is stable under the (K-linear) stratification if the
composite map

𝑇 ×𝑊 ,𝑝0 𝑃𝑊 → 𝑍 ×𝑊 ,𝑝0 𝑃𝑊
pr𝑍◦𝜖
−→ 𝑍

factors through T.
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Theorem 7.3. Let 𝑍 = U𝑊 (𝑌, 𝜌) for some (𝑌, 𝜌) ∈ R𝑊 smooth over K. Then the closed immersion

𝑓 ∗ 𝑓dR∗𝑍 ↩→ 𝑍

is stable under the K-linear stratification on Z.

Proof. Let us write T for 𝑓 ∗ 𝑓dR∗𝑍 to save on notation. First of all, the claim is local on V, which we may
therefore assume to be affinoid, 𝑉 = Spa (𝐴). Applying Theorem 6.1 and Proposition 6.2, we know that
for any rigid point 𝑣 ∈ 𝑉 the base change 𝑇 ×𝑉 Spf (Ô𝑉 ,𝑣 ) (again, this is just notation) is stable under
the pullback stratification. Now, since we are in characteristic zero, stability under the stratification (of
either T or 𝑇 ×𝑉 Spf (Ô𝑉 ,𝑣 )) amounts simply to stability under the induced action of D𝑒𝑟𝐾 (O𝑊 ).
Therefore, what we need to show is that for any local section 𝜕 ∈ D𝑒𝑟𝐾 (O𝑊 ) and any local section
𝑓 ∈ I𝑇 of the ideal of T in Z, the section 𝜕 ( 𝑓 ) is also in I𝑇 ; that is, maps to zero in O𝑇 .

Since Z is projective over Spa(𝐴), we may algebrise Z to produce a projective scheme 𝑍𝑎 over
Spec (𝐴) and replace f by an local section of O𝑍𝑎 , as well as 𝜕 by a suitable algebraic derivation. Since
𝑇 ×𝑉 Spf (Ô𝑉 ,𝑣 ) is stable under the connection, we know that 𝜕 ( 𝑓 ) restricts to zero as a local section
of O𝑇 ×𝑉 Spf (Ô𝑉 ,𝑣 ) . Hence, we are reduced to the following situation: A is a regular Noetherian ring, T is
a flat and projective scheme over A1 and 𝑔 ∈ O𝑇 is some local section of the structure sheaf of T.2 We
are given that, for any maximal ideal 𝔪 of A, g vanishes as a local section of O𝑇/𝔪

, the structure sheaf
of the formal completion of Z along 𝔪. We wish to show that in fact 𝑔 = 0.

If g is nonzero, there exists some closed point 𝑡 ∈ 𝑇 such that g is nonzero in O𝑇 ,𝑡 . Since O𝑇 ,𝑡 is
Noetherian, the map O𝑇 ,𝑡 → Ô𝑇 ,𝑡 is faithfully flat, and hence g is nonzero in Ô𝑇 ,𝑡 . But now if 𝔪 is the
image of t in Spec (𝐴), we have the factorisation O𝑇 ,𝑡 → O𝑇/𝔪 ,𝑡 → Ô𝑇 ,𝑡 and so g must be nonzero in
O𝑇/𝔪 ,𝑡 , which is a contradiction. Hence, we do indeed have 𝑔 = 0 as required. �

We can now complete the proof of Theorem 2.5.

Proof of Theorem 2.5. Suppose that we have some 𝐸 ∈ MIC(𝑊/𝐾). Then applying Theorem 7.3, we
obtain a closed subvariety

𝑓 ∗ 𝑓dR∗P(𝐸) ↩→ P(𝐸)

which is stable under the stratification and by Proposition 5.7 recovers the inclusion

P(𝐸𝑤 )
𝜋dR

1 (𝑊𝑣 ,𝑤) ↩→ P(𝐸𝑤 )

on the fibre over w. Since 𝑓 ∗ 𝑓dR∗P(𝐸) is stable under the stratification on P(𝐸), it therefore acquires an
induced stratification such that

𝑓 ∗ 𝑓dR∗P(𝐸) ↩→ P(𝐸)

is a closed immersion of stratified W-varieties. We now apply Theorem 4.6 to deduce that the closed
immersion 𝑓 ∗ 𝑓dR∗P(𝐸) ↩→ P(𝐸) must come from a unique 𝜋dR

1 (𝑊, 𝑤)-invariant closed subscheme of
P(𝐸𝑤 ). Put differently, we can see that the closed subscheme P(𝐸𝑤 )

𝜋dR
1 (𝑊𝑣 ,𝑤) ⊂ P(𝐸𝑤 ) is invariant

under 𝜋dR
1 (𝑊, 𝑤). Hence, we may conclude by applying Proposition 3.6. �

8. The homotopy sequence for algebraic k-varieties

In the second part of this article, we will use Theorem 2.5 to deduce a corresponding result for algebraic
k-varieties. The particular positive characteristic analogue of the category MIC(𝑊/𝐾) that we will be

1Flatness comes from Corollary 6.3.
2in our case, g is the image of 𝜕( 𝑓 ) under the quotient map O𝑍 → O𝑇 .
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interested in is the category Isoc†(𝑋/𝐾) of overconvergent isocrystals on a k-variety X, and to begin
with we will quickly recall the basic definitions and constructions. The interested reader should consult
[Ber96a, LS07] for more details.

Definition 8.1. A frame over V is a triple (𝑋,𝑌,𝔓) consisting of an open immersion 𝑋 ↩→ 𝑌 of k-
varieties and a closed immersion 𝑌 ↩→ 𝔓 of formal V-schemes of finite type. We say that it is proper if
Y is proper over k and smooth if 𝔓 is smooth over V in a neighbourhood of X.

In this situation we have a (continuous) specialisation map

sp : 𝔓𝐾 → 𝔓

where 𝔓𝐾 is the generic fibre of 𝔓, considered as an (adic) analytic variety over K. We define the tube

]𝑌 [𝔓:= sp−1(𝑌 )◦

of Y to be the topological interior of the inverse image under sp. As an open subset of 𝔓𝐾 , the tube
]𝑌 [𝔓 naturally admits the structure of an analytic variety over K. There is, moreover, an induced map
sp𝑌 :]𝑌 [𝔓→ 𝑌 and we define the tube

]𝑋 [𝔓:= sp−1
𝑌 (𝑋)

of X to be the topological closure of the inverse image under sp𝑌 . Note that, in general, ]𝑋 [𝔓 is not
necessarily an adic space but simply a closed subset of one. We let 𝑗 :]𝑋 [𝔓→]𝑌 [𝔓 denote the natural
inclusion, and for any sheaf F on ]𝑌 [𝔓 we define

𝑗†𝑋F := 𝑗∗ 𝑗
−1F.

We let MIC( 𝑗†𝑋O]𝑌 [𝔓) denote the category of coherent 𝑗†𝑋O]𝑌 [𝔓-modules with integrable connection.
If (𝑋,𝑌,𝔓) is a smooth and proper frame, then by definition

Isoc†(𝑋/𝐾) ⊂ MIC( 𝑗†𝑋O]𝑌 [𝔓)

is the full subcategory consisting of those objects which satisfy a suitable convergence condition on
their Taylor isomorphisms. We will not describe this condition explicitly here, but it can be found, for
example, in [LS07, Theorem 4.3.9]. We can summarise the main properties of Isoc†(𝑋/𝐾) as follows
(again, proofs of all of these claims can be found in either of [Ber96a, LS07]).

Theorem. The category Isoc†(𝑋/𝐾) does not depend on the choice of smooth and proper frame
(𝑋,𝑌,𝔓), is functorial in X and K and glues over a Zariski open cover of X (it is therefore defined for
varieties which do not necessarily admit such a frame).

Then Isoc†(𝑋/𝐾) is the category of local systems for the theory of rigid cohomology. When X is
geometrically connected, it is Tannakian over K by [Cre92, Lemma 1.8]. Moreover, if 𝑥 ∈ 𝑋 (𝑘) is a
rational point, then Isoc†(𝑋/𝐾) is neutral Tannakian over K and

𝑥∗ : Isoc†(𝑋/𝐾) → Vec𝐾

provides a fibre functor.

Definition 8.2. We define the overconvergent fundamental group 𝜋†1 (𝑋, 𝑥) of X with base point x to be
the Tannaka dual of Isoc†(𝑋/𝐾) with respect to 𝑥∗. It is an affine group scheme over K.

For brevity, we have not included K in the notation for the overconvergent fundamental group; this
should not present to much of a problem. Suppose now that we are given a morphism 𝑓 : 𝑋 → 𝑆 of
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geometrically connected k-varieties and 𝑥 ∈ 𝑋 (𝑘). Write 𝑠 = 𝑓 (𝑥). If the fibre 𝑋𝑠 is also geometrically
connected, then we call the sequence

𝜋†1 (𝑋𝑠 , 𝑥) → 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑠) → 1

the homotopy sequence associated to the pair ( 𝑓 , 𝑥). The positive characteristic analogue of Theorem
2.5 is then the following.

Theorem 8.3. Let 𝑓 : 𝑋 → 𝑆 be a smooth and projective morphism of smooth k-varieties, with
geometrically connected fibres and base, and let 𝑥 ∈ 𝑋 (𝑘). Then the homotopy sequence of the pair
( 𝑓 , 𝑥) is exact.

The basic idea of the proof will be to reduce to the situation when X is a family of smooth projective
curves. In this case we may lift the whole family to characteristic 0, and then standard results in rigid
cohomology will enable us to deduce the exactness we require from Theorem 2.5. Let us note now
that formation of 𝜋†1 commutes with taking finite extension of K (and hence of k), and exactness of a
sequence of affine group schemes can be checked after such a finite extension. We will make use of this
to freely take finite extensions of k throughout the proof.

Our first task in the proof of Theorem 8.3 will be to show the overconvergent analogue of Lemma
3.5; that is, that the homotopy sequence of a smooth projective morphism is always weakly exact. While
conceptually simple, the proof will require the existence of pushforwards for overconvergent isocrystals,
and showing this will require some rather daunting heavy machinery from the theory of arithmetic
D†-modules.

Proposition 8.4. Let 𝑓 : 𝑋 → 𝑆 be a smooth and projective morphism of smooth k-varieties, of constant
relative dimension d. Then there exists a functor

𝑓∗ : Isoc†(𝑋/𝐾) → Isoc†(𝑆/𝐾),

right adjoint to

𝑓 ∗ : Isoc†(𝑆/𝐾) → Isoc†(𝑋/𝐾),

such that for any 𝑠 ∈ 𝑆(𝑘) we have 𝑠∗ 𝑓∗𝐸 � 𝐻0
rig(𝑋𝑠/𝐾, 𝐸 |𝑋𝑠 ).

The proof will be postponed until Section 9, and for now we will deduce several important conse-
quences.

Corollary 8.5. Let 𝑓 : 𝑋 → 𝑆, 𝑥 ∈ 𝑋 (𝑘), 𝑠 = 𝑓 (𝑥) be as in Theorem 8.3. Then the sequence

𝜋†1 (𝑋𝑠 , 𝑥) → 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑠) → 1

of affine group schemes is weakly exact.

Proof. We will apply Theorem 3.4. Given Proposition 8.4, the proof is identical to Lemma 3.5. �

This will enable us to make some rather major simplifying assumptions in the proof of Theorem 8.3,
in particular by combining it with the following elementary lemma.

Lemma 8.6. Let

𝐾0 ��

����

𝐺0 ��

����

𝐻0 ��

����

1

𝐾1 �� 𝐺1 �� 𝐻1 �� 1
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be a commutative diagram of sequences of affine group schemes, with surjective vertical maps. Assume
that the top sequence is exact and that the bottom sequence is weakly exact. Then the bottom sequence
is in fact exact.

Proof. Follows from the fact that the image of a normal subgroup under a surjective group homomor-
phism is again a normal subgroup. �

Another corollary of weak exactness that will play an important role is the following very weak
version of the Lefschetz hyperplane theorem for overconvergent fundamental groups.

Theorem 8.7. Let 𝑋 ⊂ P𝑛𝑘 be smooth, projective and geometrically connected. Assume that dim 𝑋 ≥ 2
and let𝑌 = 𝐻∩𝑋 be a smooth hyperplane section. Let 𝑦 ∈ 𝑌 (𝑘). Then the normal closure of the image of

𝜋†1 (𝑌, 𝑦) → 𝜋†1 (𝑋, 𝑦)

is the whole of 𝜋†1 (𝑋, 𝑦).

Proof. After possibly extending k we may assume (by Bertini’s hyperplane section theorem) that there
exists a hyperplane 𝐻 ′ ⊂ P𝑛𝑘 distinct from H such that 𝑦 ∈ 𝑌 ∩ 𝐻 ′ and 𝑍 = 𝑌 ∩ 𝐻 ′ is smooth. Let
𝑔 : 𝑋 → 𝑋 be the blow-up of X along Z and 𝑌 ⊂ 𝑋 the strict transform of Y. Thus, 𝑌 � 𝑌 and, in
particular, we may lift y canonically to a point 𝑦̃ of 𝑌 .

Claim. The induced map 𝑔∗ : 𝜋†1 (𝑋, 𝑦̃) → 𝜋†1 (𝑋, 𝑦) is an isomorphism.

Proof of claim. We want to show that the functor Isoc†(𝑋/𝐾) → Isoc†(𝑋/𝐾) is an equivalence of
categories. According to [Ked07, Proposition 5.3.6], the functor is essentially surjective. It is automat-
ically faithful; hence, we must demonstrate that it is full. So let 𝑔∗𝐸 → 𝑔∗𝐹 be a morphism. Since
𝑔 : 𝑋 \𝑔−1(𝑍) → 𝑋 \𝑍 is an isomorphism, this induces a morphism 𝐸 |𝑋\𝑍 → 𝐹 |𝑋\𝑍 which by [Ked07,
Theorem 5.2.1] must come from a morphism 𝐸 → 𝐹. �

Clearly, the claim also holds for 𝑌 → 𝑌 ; hence, it suffices to show that the normal closure of the
image of

𝜋†1 (𝑌, 𝑦̃) → 𝜋†1 (𝑋, 𝑦̃)

is the whole of 𝜋†1 (𝑋, 𝑦̃). The pencil of hyperplane sections spanned by𝑌 = 𝑋 ∩𝐻 and 𝑋 ∩𝐻 ′ furnishes
a projective map 𝑎 : 𝑋 → P1

𝑘 whose generic fibre is smooth, and the pre-image of y with respect to g is
a closed subscheme of 𝑋 mapped isomorphically onto P1

𝑘 by a. Thus, we obtain a section 𝜎 of a, and it
is easy to check that 𝜎(𝑎( 𝑦̃)) = 𝑦̃.

Let 𝑏 : 𝑋𝑈 → 𝑈 be the smooth locus of a and note that 𝑌 ⊂ 𝑋𝑈 is a fibre of b. Since b has
geometrically connected fibres, Corollary 8.5 implies that the induced sequence of group schemes

𝜋†1 (𝑌, 𝑦̃) → 𝜋†1 (𝑋𝑈 , 𝑦̃) → 𝜋†1 (𝑈, 𝑎( 𝑦̃)) → 1

is weakly exact. We also have a commutative diagram of affine group schemes

𝜋†1 (𝑌, 𝑦̃)
�� 𝜋†1 (𝑋𝑈 , 𝑦̃) ��

����

𝜋†1 (𝑈, 𝑎( 𝑦̃)) ��

��

𝜎∗

��

1

𝜋†1 (𝑌, 𝑦̃)
�� 𝜋†1 (𝑋, 𝑦̃)

�� 𝜋†1 (P
1
𝑘 , 𝑎( 𝑦̃))

��

𝜎∗

��

1

such that the middle vertical arrow arrow is surjective by [Ked07, Theorem 5.2.1, Proposition 5.3.1].
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Note that 𝜋†1 (P
1
𝑘 , 𝑎( 𝑦̃)) = {1} by Lemma 8.8. Hence, applying Theorem 3.4 with 𝐴 = {1} we must

show that

1. an object 𝑉 ∈ Rep𝐾 (𝜋
†
1 (𝑋, 𝑦̃)) is trivial if and only if it is trivial in Rep𝐾 (𝜋

†
1 (𝑌, 𝑦̃));

2. for any object 𝑉 ∈ Rep𝐾 (𝜋
†
1 (𝑋, 𝑦̃)), 𝑉

𝜋†1 (𝑌 ,𝑦̃) is stable under 𝜋†1 (𝑋, 𝑦̃).

Note that the ‘only if’ part of (1) is trivial, and in the situation of (2) it follows from weak exactness of

𝜋†1 (𝑌, 𝑦̃) → 𝜋†1 (𝑋𝑈 , 𝑦̃) → 𝜋†1 (𝑈, 𝑎( 𝑦̃)) → 1

that 𝑉 𝜋†1 (𝑌 ,𝑦̃) is stable under 𝜋†1 (𝑋𝑈 , 𝑦̃). By surjectivity of 𝜋†1 (𝑋𝑈 , 𝑦̃) → 𝜋†1 (𝑋, 𝑦̃) it is therefore stable
under 𝜋†1 (𝑋, 𝑦̃).

It remains to show the ‘if’ part of (1); therefore, let us assume that we have some𝑉 ∈ Rep𝐾 (𝜋
†
1 (𝑋, 𝑦̃))

on which 𝜋†1 (𝑌, 𝑦̃) acts trivially. Let H be the normal closure of the image of

𝜋†1 (𝑌, 𝑦̃) → 𝜋†1 (𝑋𝑈 , 𝑦̃).

We therefore know that

◦ 𝜋†1 (𝑋𝑈 , 𝑦̃) = 𝐻 · 𝜎∗(𝜋
†
1 (𝑈, 𝑎( 𝑦̃)));

◦ H acts trivially on V.

Since 𝜎∗(𝜋
†
1 (𝑈, 𝑎( 𝑦̃))) has trivial image in 𝜋†1 (𝑋, 𝑦̃), it follows that 𝐻 → 𝜋†1 (𝑋, 𝑦̃) is surjective; hence,

𝜋†1 (𝑋, 𝑦̃) acts trivially on V as required. �

Lemma 8.8. Let 𝑓 : 𝑌 → 𝑍 be a map which Zariski-locally on Z is a product of projective bundles.
Then the induced map

𝑓 ∗ : Isoc†(𝑍/𝐾) → Isoc†(𝑌/𝐾)

is an equivalence of categories.

Proof. Applying Proposition 8.4 we get unit and counit maps

𝑓 ∗ 𝑓∗𝐸 → 𝐸, 𝐸 ∈ Isoc†(𝑌/𝐾)
𝐹 → 𝑓∗ 𝑓

∗𝐹, 𝐹 ∈ Isoc†(𝑍/𝐾);

we must prove that these are isomorphisms. But this can be checked fibre by fibre, and we are therefore
reduced to the case of the structure map P𝑛1

𝑘 ×𝑘 . . . ×𝑘 P
𝑛𝑟
𝑘 → Spec (𝑘). Hence, using GAGA we may

reduce to the statement that over a field K of characteristic 0, every vector bundle with integrable
connection on P𝑛1

𝐾 ×𝐾 . . . ×𝐾 P
𝑛𝑟
𝐾 is trivial. �

9. Pushforward of overconvergent isocrystals

The purpose of this section is to prove Proposition 8.4, stating that if 𝑓 : 𝑋 → 𝑆 is a smooth and proper
morphism of k-varieties, then 𝑓 ∗ : Isoc†(𝑆/𝐾) → Isoc†(𝑋/𝐾) has a right adjoint 𝑓∗ : Isoc†(𝑋/𝐾) →
Isoc†(𝑆/𝐾), which commutes with base change and on fibres recovers the zeroeth cohomology group
𝐻0

rig with coefficients. This will require some heavy machinery from the theory of arithmeticD-modules,
as developed by Berthelot and Caro, and while the result we require is essentially contained in work
of Caro, it will take a little care to extract it in the form that we need. This section is rather technical,
and the casual reader will gain little from going through it in detail; they are advised to simply take
Proposition 8.4 on trust.

With these warnings out of the way, let us begin. To start with, by uniqueness of adjoints, the
question is local on the base S, which we may therefore assume to be affine. Hence, we may assume
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that there exists a smooth and proper formal scheme 𝔔 over W, a divisor 𝐻 ⊂ 𝔔 ×V 𝑘 and a locally
closed immersion 𝑆 ↩→ 𝔔 such that 𝑆 = 𝑆 \ 𝐻. In other words, (𝔔, 𝐻, 𝑆) is a ‘triplet lisse en dehors
du diviseur’ in the sense of [Car11, Définition 3.1.6]. By choosing a projective embedding of X over
S, we may construct another smooth and proper formal scheme 𝔓 over W together with a commutative
diagram of embeddings

𝑋 ��

𝑓

��

𝔓

𝑔

��

𝑆 �� 𝔔

such that 𝔓→ 𝔔 is smooth, and 𝑋 = 𝑋 \ 𝑔−1 (𝐻). Set 𝑇 = 𝑔−1(𝐻), so that again (𝔓, 𝑇, 𝑋) is a ‘triplet
lisse en dehors du diviseur’.

We will let 𝐷𝑏
surcoh (𝔓, 𝑇, 𝑋/𝐾) denote the category of bounded complexes of overcoherent D†-

modules on the triple (𝔓, 𝑇, 𝑋) in the sense of [Car15, Notations 1.2.3], in other words overcoherent com-
plexes of D†𝔓,Q

(†𝑇)-modules E such that RΓ†
𝑋
(E) � E. We will similarly denote by 𝐷𝑏

surcoh (𝔔, 𝐻, 𝑆/𝐾)

the category of bounded complexes of overcoherent D†-modules on the triple (𝔔, 𝐻, 𝑆). Following
[Car15, Définition 1.2.5], we have full subcategories

Isoc††(𝔓, 𝑇, 𝑋/𝐾) ⊂ Surcoh(𝔓, 𝑇, 𝑋/𝐾)

Isoc††(𝔔, 𝐻, 𝑆/𝐾) ⊂ Surcoh(𝔔, 𝐻, 𝑆/𝐾)

consisting of ‘overcoherent isocrystals’ and by [Car11, Corollaire 3.5.10, Théorème 4.2.2] canonical
equivalences of categories

sp𝑋↩→𝔓,𝑇 ,+ : Isoc†(𝑋/𝐾) ∼→ Isoc††(𝔓, 𝑇, 𝑋/𝐾)

sp𝑆↩→𝔔,𝐻 ,+ : Isoc†(𝑆/𝐾) ∼→ Isoc††(𝔔, 𝐻, 𝑆/𝐾),

we will denote inverse functors by sp−1
− . There are full subcategories

𝐷𝑏
isoc (𝔓, 𝑇, 𝑋/𝐾) ⊂ 𝐷𝑏

surcoh (𝔓, 𝑇, 𝑋/𝐾)

𝐷𝑏
isoc (𝔔, 𝐻, 𝑆/𝐾) ⊂ 𝐷𝑏

surcoh (𝔔, 𝐻, 𝑆/𝐾)

consisting of objects whose cohomology sheaves are overcoherent isocrystals.
Let d denote the relative dimension of f, D𝑇 (respectively D𝐻 ) the D†𝔓,Q

(†𝑇)-linear (respectively
D†𝔔,Q

(†𝐻)-linear) dual functor and 𝑔+, 𝑔
! the direct and inverse image functors between D†𝔓,Q

(†𝑇)

and D†𝔔,Q
(†𝐻)-modules. Applying [Car11, Proposition 3.1.7, Corollaire 3.5.10] and [Car15, Théorème

3.3.1] we have factorisations

𝑓 ! := RΓ†
𝑋
◦ 𝑔! : 𝐷𝑏

isoc (𝔔, 𝐻, 𝑆/𝐾) → 𝐷𝑏
isoc (𝔓, 𝑇, 𝑋/𝐾)

𝑓+ := 𝑔+ : 𝐷𝑏
isoc(𝔓, 𝑇, 𝑋/𝐾) → 𝐷𝑏

isoc (𝔔, 𝐻, 𝑆/𝐾)

D := D𝑇 : 𝐷𝑏
isoc(𝔓, 𝑇, 𝑋/𝐾) → 𝐷𝑏

isoc (𝔓, 𝑇, 𝑋/𝐾)

D := D𝐻 : 𝐷𝑏
isoc (𝔔, 𝐻, 𝑆/𝐾) → 𝐷𝑏

isoc (𝔔, 𝐻, 𝑆/𝐾).
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Set 𝑓 + := D ◦ 𝑓 ! ◦ D. By [Car11, Proposition 4.2.4] the diagram

Isoc†(𝑆/𝐾)
sp𝑆↩→𝔔,𝐻,+

��

𝑓 ∗

��

𝐷𝑏
isoc (𝔔, 𝐻, 𝑆/𝐾)

𝑓 + [𝑑 ]

��

Isoc†(𝑋/𝐾)
sp𝑋↩→𝔓,𝐷,+

�� 𝐷𝑏
isoc (𝔓, 𝐷, 𝑋/𝐾)

is 2-commutative, and by combining [Car06, Théorèmes 1.2.7, 1.2.9] we can see that 𝑓+ and 𝑓 + are
adjoint functors. Putting this all together, we obtain a natural isomorphism

HomIsoc† (𝑋/𝐾 ) ( 𝑓
∗𝐹, 𝐸) � Hom𝐷𝑏isoc (𝔔,𝐻 ,𝑆/𝐾 ) (sp𝑆↩→𝔔,𝐻 ,+𝐹, 𝑓+sp𝑋↩→𝔓,𝑇 ,+𝐸 [−𝑑])

for any 𝐸 ∈ Isoc†(𝑋/𝐾) and 𝐹 ∈ Isoc†(𝑆/𝐾). To complete the proof of Proposition 8.4, it suffices to
show that

1. 𝑓+sp𝑋↩→𝔓,𝐷,+𝐸 [−𝑑] is concentrated in degrees ≥ 0;
2. we have

𝑠∗sp−1
𝑆↩→𝔔,𝐻

H−𝑑 ( 𝑓+sp𝑋↩→𝔓,𝐷,+𝐸) � 𝐻0
rig(𝑋𝑠/𝐾, 𝐸 |𝑋𝑠 ).

Indeed, this will imply that

Hom𝐷𝑏isoc (𝔔,𝐻 ,𝑆) (sp𝑆↩→𝔔,𝐻 ,+𝐹, 𝑓+sp𝑋↩→𝔓,𝐷,+𝐸 [−𝑑])

= HomIsoc† (𝑆/𝐾 ) (𝐹, sp−1
𝑆↩→𝔔,𝐻

H−𝑑 ( 𝑓+sp𝑋↩→𝔔,𝐷,+𝐸)),

and therefore taking

𝑓∗𝐸 = sp−1
𝑆↩→𝔔,𝐻

H−𝑑 ( 𝑓+sp𝑋↩→𝔓,𝐷,+𝐸)

will do the trick. To prove these, we note that by combining [Car11, Proposition 4.2.4, Théorème 5.2.5]
and [Car15, Théorème 4.4.2], we have an isomorphism

𝑠∗sp−1
𝑆↩→𝔔,𝐻

H𝑖−𝑑 ( 𝑓+sp𝑋↩→𝔓,𝐷,+𝐸) � 𝐻𝑖−𝑑 ( 𝑓𝑠,+sp𝑋𝑠↩→𝔓𝑠̃ ,+𝐸 |𝑋𝑠 ),

where 𝑠 denotes some lift of s to a V-point of 𝔔 and 𝔓𝑠 the fibre of g over 𝑠. We may therefore reduce
to Lemma 9.1.

Lemma 9.1. Let 𝑋 ↩→ 𝔓 be a closed embedding of a smooth d-dimensional k-variety into a smooth
formal V-scheme, and let 𝑓 : 𝔓 → Spf (V) denote the structure morphism. Let E be a convergent
isocrystal on X. Then for all 𝑖 ∈ Z we have

𝐻𝑖−𝑑 ( 𝑓+sp𝑋↩→𝔓,+𝐸) �

{
𝐻0

conv(𝑋/𝐾, 𝐸) 𝑖 = 0
0 𝑖 < 0.

Proof. By considering suitable spectral sequences arising from an open cover of 𝔓, the question is local
on 𝔓, so we may reduce to the corresponding question for both 𝔓 and X affine, and we may therefore
assume that 𝑋 ↩→ 𝔓 lifts to a closed embedding of smooth formal V-schemes 𝑖 : 𝔛 ↩→ 𝔓.

In this case, we can describe Caro’s functor sp𝑋↩→𝔓,+, constructed in [Car09, §2.5], very explicitly.
Indeed, what Caro does is take an open cover of 𝔓 by affines 𝔓𝛼 and chooses a lift of each inclusion
𝑋 ∩𝔓𝛼 ↩→ 𝔓𝛼 to a closed immersion of smooth formal schemes 𝑖𝛼 : 𝔛𝛼 → 𝔓𝛼. The restriction of E
to each 𝑋 ∩𝔓𝛼 is then realised on 𝔛𝛼𝐾 as a module with convergent integrable connection 𝐸𝔛𝛼 . Thus,
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sp∗𝐸𝔛𝛼 is a coherent 𝒟†𝔛𝛼Q-module by [Ber96b, Proposition 4.1.4], and Caro shows that the modules
𝑖𝛼+sp∗𝐸𝔛𝛼 glue together to give a coherent 𝒟†𝔓Q-module sp𝑋↩→𝔓,+𝐸 . (Note that in our situation,
the ‘divisor at∞’, denoted by T in [Car09], is empty.)

Since we are already in the affine case, the whole construction simplifies to give sp𝑋↩→𝔓,+𝐸 �
𝑖+sp∗𝐸𝔛 , where 𝐸𝔛 denotes the realisation of E on 𝔛𝐾 . If we therefore let 𝑔 : 𝔛 → Spf (V) denote
the structure morphism of 𝔛, we obtain 𝑓+sp𝑋↩→𝔓,+𝐸 � 𝑔+sp∗𝐸𝔛 by [Ber02, (4.3.6.1)]. Finally, the
overconvergent Spencer resolution [Ber02, (4.2.1.1)] shows that

𝑔+sp∗𝐸𝔛 � RΓ(𝔛, sp∗𝐸𝔛 ⊗O𝔛 Ω•𝔛) [𝑑] � RΓ(𝔛𝐾 , 𝐸𝔛 ⊗O𝔛𝐾
Ω•𝔛𝐾 ) [𝑑] = RΓconv(𝑋/𝐾, 𝐸) [𝑑]

as required. �

10. Exactness for liftable morphisms

In this and the following sections, we will build up to the proof of Theorem 8.3 in stages, starting from
very particular situations and then reducing the general case to these. The first situation in which we
will prove Theorem 8.3 is under some very strong liftability assumptions on the morphism f.

So suppose that we have some smooth affine variety 𝑆 = Spec (𝐴0) over k. Then by [Elk73, Théorème
6] we know that S lifts to a smooth and affine V-scheme S = Spec (𝐴). Choosing a presentation of A
gives us embeddings

S ↩→ A𝑛
V ↩→ P𝑛V

and we let 𝔖 denote the completion of the closure of S inside P𝑁V . Let 𝑆 denote the closure of S inside
𝔖 ×V 𝑘 , so we have a smooth and proper frame (𝑆, 𝑆,𝔖) over V, in the sense of Definition 8.1.

Definition 10.1. We will call any frame of the form (𝑆, 𝑆,𝔖), as just constructed, a Monsky–Washnitzer
frame.

The main result of this section is then the following.

Theorem 10.2. Let 𝑓 : 𝑋 → 𝑆, 𝑥 ∈ 𝑋 (𝑘) and 𝑠 = 𝑓 (𝑥) be as in Theorem 8.3. Assume that S is affine
and that there exists a morphism of frames

𝑋 ��

𝑓

��

𝑋 ��

��

𝔛

𝑔

��

𝑆 �� 𝑆 �� 𝔖

extending f such that

1. (𝑆, 𝑆,𝔖) is a Monsky–Washnitzer frame;
2. both squares in the above diagram are Cartesian;
3. 𝔛 →𝔖 is projective and smooth in a neighbourhood of X.

Then the homotopy sequence for ( 𝑓 , 𝑥) is exact.

Remark 10.3. Note that by GFGA [Gro61, §5.1] together with the Monsky–Washnitzer assumption on
(𝑆, 𝑆,𝔖), the morphism 𝑔 : 𝔛 →𝔖 in the statement of the theorem arises as the formal completion of
a morphism of projective V-schemes.
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In the situation of Theorem 10.2 we may choose a cofinal system of neighbourhoods𝑉𝜆 of ]𝑆[𝔖 inside
𝔖𝐾 , for 𝜆→ 1−, such that each 𝑉𝜆 is smooth and geometrically connected over K. Since the diagram

𝑋 ��

��

𝔛

��

𝑆 �� 𝔖

is Cartesian, it follows that 𝑊𝜆 := 𝑔−1(𝑉𝜆) form a cofinal system of neighbourhoods of ]𝑋 [𝔛 inside 𝔛𝐾 .
Again, by choosing 𝜆 close enough to 1 we can assume that all of the induced maps

𝑔 : 𝑊𝜆 → 𝑉𝜆

are smooth and projective. Let

MIC(𝑆,𝔖/𝐾) := MIC( 𝑗†𝑆O𝔖𝐾 ) � 2-colim𝜆MIC(𝑉𝜆/𝐾)

MIC(𝑋,𝔛/𝐾) := MIC( 𝑗†𝑋O𝔛𝐾 ) � 2-colim𝜆MIC(𝑊𝜆/𝐾)

denote the category of coherent 𝑗†𝑆O𝔖𝐾 -modules (respectively 𝑗†𝑋O𝔛𝐾 -modules) with integrable con-
nection (for the claimed equivalences with the 2-colimit categories, see [LS07, Proposition 6.1.15]).

Proposition 10.4. Choose a lift 𝑥 ∈]𝑋 [𝔛 (𝐾) of 𝑥 ∈ 𝑋 (𝑘), and let 𝑠 = 𝑔(𝑥). Then the categories
MIC(𝑋,𝔛/𝐾) and MIC(𝑆,𝔖/𝐾) are neutral Tannakian over K, with fibre functors provided by 𝑥∗ and
𝑠∗, respectively.

Proof. By 2.1 we know that the coherent 𝑗†𝑋O𝔛𝐾 -module underlying any object in MIC(𝑋,𝔛/𝐾) is
locally free, and similarly for MIC(𝑆,𝔖/𝐾). The rest of the proof is word for word the same as the proof
of Proposition 2.1. �

We will let 𝜋colim
1 (]𝑋 [𝔛 , 𝑥) and 𝜋colim

1 (]𝑆[𝔖, 𝑠) denote the corresponding Tannaka duals.

Proposition 10.5. The sequence of affine group schemes

𝜋dR
1 (𝔛𝐾,𝑠 , 𝑥) → 𝜋colim

1 (]𝑋 [𝔛 , 𝑥) → 𝜋colim
1 (]𝑆[𝔖, 𝑠) → 1

is exact.

Proof. By combining the pushforward functors 𝑔dR∗ : MIC(𝑊𝜆/𝐾) → MIC(𝑉𝜆/𝐾) considered in the
proof of Lemma 3.5, it is entirely straightforward to construct a pushforward functor

𝑔dR∗ : MIC(𝑋,𝔛/𝐾) → MIC(𝑆,𝔖/𝐾)

which is adjoint to 𝑔∗ and which on fibres recovers 𝐻0
dR. Now arguing exactly as in the proof of

Lemma 3.5 we can see that the claimed sequence is weakly exact. Let 𝐾colim denote the kernel of

𝜋colim
1 (]𝑋 [𝔛 , 𝑥) → 𝜋colim

1 (]𝑆[𝔖, 𝑠).

By Theorem 3.1 it therefore suffices to show that for any 𝐸 ∈ MIC(𝑋,𝔛/𝐾), with associated monodromy
representation

𝜋colim
1 (]𝑋 [𝔛 , 𝑥) → GL(𝐸 𝑥̃),

the inclusion

P(𝐸 𝑥̃)
𝐾colim (𝐾) ⊂ P(𝐸 𝑥̃)

𝜋dR
1 (𝔛𝐾,𝑠̃ , 𝑥̃) (𝐾)
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is in fact an equality. Note that any such object is pulled back from some 𝑊𝜆 via the map ]𝑋 [𝔛→ 𝑊𝜆

and let 𝐾𝜆 the kernel of 𝜋dR
1 (𝑊𝜆, 𝑥) → 𝜋dR

1 (𝑉𝜆, 𝑠). We therefore have a natural map 𝐾colim → 𝐾𝜆.
Applying Theorem 2.5, the sequence

𝜋dR
1 (𝔛𝐾,𝑠 , 𝑥) → 𝜋dR

1 (𝑊𝜆, 𝑥) → 𝜋dR
1 (𝑉𝜆, 𝑠) → 1

is exact and hence, again applying Theorem 3.1, we can deduce that

P(𝐸 𝑥̃)
𝜋dR

1 (𝔛𝐾,𝑠̃ , 𝑥̃) (𝐾) = P(𝐸 𝑥̃)
𝐾𝜆 (𝐾).

But since we have 𝐾colim → 𝐾𝜆, it follows that

P(𝐸 𝑥̃)
𝜋dR

1 (𝔛𝐾,𝑠̃ , 𝑥̃) (𝐾) = P(𝐸 𝑥̃)
𝐾𝜆 (𝐾) ⊂ P(𝐸 𝑥̃)

𝐾colim (𝐾)

and the proof is complete. �

Proof of Theorem 10.2. It follows from [Ber96a, Proposition 2.2.7] that the functors

Isoc†(𝑋/𝐾) → MIC(𝑋,𝔛/𝐾)
Isoc†(𝑆/𝐾) → MIC(𝑆,𝔖/𝐾)

Isoc†(𝑋𝑠/𝐾) → MIC(𝔛𝑠/𝐾)

are all fully faithful with image stable by subquotients. In particular, in the commutative diagram

𝜋dR
1 (𝔛𝐾,𝑠 , 𝑥) ��

����

𝜋colim
1 (]𝑋 [𝔛 , 𝑥) ��

����

𝜋colim
1 (]𝑆[𝔖, 𝑠) ��

����

1

𝜋†1 (𝑋𝑠 , 𝑥) �� 𝜋†1 (𝑋, 𝑥)
�� 𝜋†1 (𝑆, 𝑠)

�� 1

all of the vertical maps are surjective. Since the top sequence is exact and the bottom sequence is weakly
exact, we may apply Lemma 8.6. �

11. The case of a smooth family of curves

While the liftability condition in Theorem 10.2 is extremely strong, it will always hold for a family of
curves over a smooth affine base. That this is true is the key result of this section; we will then use this
to deduce Theorem 8.3 in relative dimension 1. In order to do so, we will need to show Theorem 8.3
‘localises on the base’, which is the content of the following lemma. Throughout, let 𝑓 : 𝑋 → 𝑆,
𝑥 ∈ 𝑋 (𝑘) and 𝑠 = 𝑓 (𝑥) be as in the statement of Theorem 8.3.

Lemma 11.1. Let 𝑈 ⊂ 𝑆 be an open subset containing s and 𝑓𝑈 : 𝑋𝑈 → 𝑈 the base change. If the
homotopy sequence for ( 𝑓𝑈 , 𝑥) is exact, then so is the homotopy sequence for ( 𝑓 , 𝑥).

Proof. We consider the diagram

𝜋†1 (𝑋𝑠 , 𝑥) �� 𝜋†1 (𝑋𝑈 , 𝑥) ��

����

𝜋†1 (𝑈, 𝑠) ��

����

1

𝜋†1 (𝑋𝑠 , 𝑥) �� 𝜋†1 (𝑋, 𝑥)
�� 𝜋†1 (𝑆, 𝑠)

�� 1

where the vertical arrows are surjective by [Ked07, Theorem 5.2.1, Proposition 5.3.1]. Since the bottom
sequence is always weakly exact, we may apply Lemma 8.6 to conclude. �
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This enables us to prove exactness of the homotopy sequence for curves.

Theorem 11.2. Theorem 8.3 is true if 𝑓 : 𝑋 → 𝑆 has relative dimension 1.

Proof. Let g denote the genus of f. If 𝑔 = 0, then we are done by the proof of Lemma 8.8. To make the
argument work, we only need a rational point on the fibre over s, which we have by assumption. We will
treat the case 𝑔 ≥ 2 in detail and then point out where the argument needs to be modified to work for
𝑔 = 1.

By Proposition 11.1 we are free to replace S by any open subscheme containing s; in particular, we
may assume that 𝑆 = Spec (𝐴0) is affine, and 𝑓 : 𝑋 → 𝑆 can be tri-canonically embedded in P5𝑔−6

𝑆 . If
we let 𝐻0

𝑔 denote the moduli scheme (over Z) of such tri-canonically embedded curves and 𝑍0
𝑔 → 𝐻0

𝑔

the universal curve, then we obtain a Cartesian diagram of schemes

𝑋 ��

��

𝑍0
𝑔

��

𝑆 �� 𝐻0
𝑔 .

After possibly shrinking S further, we may assume that there exists an open affine subscheme 𝑉 ⊂ 𝐻0
𝑔

through which 𝑆 → 𝐻0
𝑔 factors.

Now by [Elk73, Théorème 6] we may lift 𝐴0 to a smooth V-algebra A, let 𝐴ℎ denote the 𝜛-adic
Henselisation of A. Since V is smooth and affine over Z [DM69, Corollary 1.7] we may apply [Ray72,
Théorème 2] to deduce that the given morphism 𝑆 → 𝑉 lifts to a morphism

Spec
(
𝐴ℎ

)
→ 𝑉.

Since V is of finite type over Z, it follows that after possibly passing to some étale A-algebra with the
same special fibre, we may assume that the family of curves 𝑋 → 𝑆 lifts to a family X→ S = Spec (𝐴)
over A, which is, moreover, a closed subscheme of P5𝑔−6

S . Now choose a projective embedding

S ↩→ A𝑁
V ↩→ P𝑁V ,

let S be the closure of S inside P𝑁V and let X be the closure of X inside P5𝑔−6
S

. Setting 𝔛 = X̂ and𝔖 = Ŝ
we find ourselves in the situation of Theorem 10.2.

When 𝑔 = 1 we can argue as follows. First of all, we consider the base change 𝑋 ×𝑆 𝑋 → 𝑋 of f by
itself, equipped with the rational point (𝑥, 𝑥). Then we have a commutative diagram

𝜋†1 (𝑋𝑠 , 𝑥) �� 𝜋†1 (𝑋 ×𝑆 𝑋, (𝑥, 𝑥)) ��

����

𝜋†1 (𝑋, 𝑥)

����

�� 1

𝜋†1 (𝑋𝑠 , 𝑥) �� 𝜋†1 (𝑋, 𝑥)
�� 𝜋†1 (𝑆, 𝑠)

�� 1

where the surjectivity of the vertical arrows follows from Corollary 8.5. If the top sequence is exact, then
again the bottom sequence is exact by Lemma 8.6. In particular, after replacing 𝑋 → 𝑆 by 𝑋 ×𝑆 𝑋 → 𝑋 ,
we may assume that 𝑓 : 𝑋 → 𝑆 admits a section; that is, is an elliptic curve.

Hence, after possibly localising on S and again using Lemma 11.1, we may assume that we have a
smooth Weierstrass model 𝑋 ↩→ P2

𝑆 of X. We now replace the scheme 𝐻0
𝑔 in the previous argument with

the smooth moduli scheme over Z parametrising Weierstrass models of elliptic curves. �
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12. Cutting a smooth projective morphism by curves

Using Theorem 8.7, we can now finally complete the proof of Theorem 8.3 by reducing to the case of a
family of smooth projective curves, and hence to Theorem 11.2.

Suppose that we are in the situation of Theorem 8.3. Let d be the relative dimension of 𝑋/𝑆 and
assume that 𝑑 ≥ 2. Assume, moreover, that S is quasi-projective over k. There therefore exists a global
closed immersion 𝑋 ↩→ P𝑛𝑆 . Let 𝑆 denote the dual projective space P̌𝑛𝑆 and define

𝑋 ⊂ 𝑋 ×𝑆 𝑆

to be the subscheme of pairs (𝑥, 𝐻) such that 𝑥 ∈ 𝐻. We therefore have a diagram

𝑋 ��

𝑓
��

𝑋

𝑓

��

𝑆 �� 𝑆

such that 𝑓̃ is projective, with generic fibre smooth, projective and geometrically connected of dimension
𝑑 − 1. Choose an open subscheme 𝑈 ⊂ 𝑆, surjective over S, such that the pullback 𝑓𝑈 : 𝑋𝑈 → 𝑈 is
smooth with geometrically connected fibres. After possibly making a finite extension of k, we may
moreover assume that there exists some k-rational point 𝑢 ∈ 𝑈 lifting 𝑠 ∈ 𝑆(𝑘) and some 𝑥 ∈ 𝑋𝑈 (𝑘)
such that 𝑓𝑈 (𝑥) = 𝑢.

In particular, combining Lemma 8.8 with [Ked07, Theorem 5.2.1, Proposition 5.3.1], we have a
commutative diagram

𝜋†1 (𝑋𝑢 , 𝑥) �� 𝜋†1 (𝑋𝑈 , 𝑥) ��

����

𝜋†1 (𝑈, 𝑢) ��

����

1

𝜋†1 (𝑋𝑢 , 𝑥) ��

��

𝜋†1 (𝑋, 𝑥)
��

�
��

𝜋†1 (𝑆, 𝑢)
��

�
��

1

𝜋†1 (𝑋𝑠 , 𝑥) �� 𝜋†1 (𝑋, 𝑥)
�� 𝜋†1 (𝑆, 𝑠)

�� 1.

Proposition 12.1. If the homotopy sequence of ( 𝑓𝑈 , 𝑥) is exact, then so is that of ( 𝑓 , 𝑥).

Proof. We first claim that under the hypothesis of the proposition, the sequence

𝜋†1 (𝑋𝑢 , 𝑥) → 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑢) → 1

satisfies the conditions of Theorem 3.4 (note that this does not follow from Corollary 8.5). Indeed,
surjectivity of 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑢) follows from that of 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑠), and one half of (1) is
clear.

For the other half of (1), suppose that 𝐸 ∈ Isoc†(𝑋/𝐾) is such that 𝐸 |𝑋𝑢 is trivial. We may assume by
Lemma 8.8 that E comes from an object 𝐸 ′ of Isoc†(𝑋/𝐾). Applying Theorem 8.7 to the map 𝑋𝑢 → 𝑋𝑠

we can see that in fact 𝐸 ′ |𝑋𝑠 is trivial, and so by weak exactness of

𝜋†1 (𝑋𝑠 , 𝑥) → 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑠) → 1

we know that 𝐸 ′ � 𝑓 ∗(𝐹 ′) for some 𝐹 ′ ∈ Isoc†(𝑆/𝐾). Hence, 𝐸 � 𝑓 ∗(𝐹) for some 𝐹 ∈ Isoc†(𝑆/𝐾) as
required. To prove (2) we note that if the top sequence is exact, then the image of

𝜋†1 (𝑋𝑢 , 𝑥) → 𝜋†1 (𝑋, 𝑥)
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is a normal subgroup, and hence for any representation V of 𝜋†1 (𝑋, 𝑥), we know that 𝑉 𝜋†1 (𝑋𝑢 , 𝑥̃) must be
stable under 𝜋†1 (𝑋, 𝑥).

Hence, the top sequence is weakly exact. Since we have already noted that the image of 𝜋†1 (𝑋𝑢 , 𝑥) →

𝜋†1 (𝑋, 𝑥) is a normal subgroup, it is in fact exact. The exactness of

𝜋†1 (𝑋𝑠 , 𝑥) → 𝜋†1 (𝑋, 𝑥) → 𝜋†1 (𝑆, 𝑠) → 1

now follows from a simple diagram chase. �

We can now complete the proof of Theorem 8.3.

Proof of Theorem 8.3. By Lemma 11.1 we may assume that S is quasi-projective; we will induct on the
relative dimension d. The inductive step is taken care of by Proposition 12.1, and the base case of 𝑑 = 1
is Theorem 11.2. �

13. Applications

In this final section we deduce a couple of corollaries of Theorem 8.3.

Theorem 13.1. Let 𝑋 ⊂ P𝑛𝑘 be smooth, projective and geometrically connected. Assume that dim 𝑋 ≥ 2
and let 𝑌 = 𝐻 ∩ 𝑋 be a smooth hyperplane section. Let 𝑦 ∈ 𝑌 (𝑘). Then the map

𝜋†1 (𝑌, 𝑦) → 𝜋†1 (𝑋, 𝑦)

is surjective.

Proof. We simply copy the proof of Theorem 8.7, replacing all instances of Corollary 8.5 with Theo-
rem 8.3. �

We can also show a version of the Kunneth formula, when one of the varieties is projective.

Proposition 13.2. Let 𝑋,𝑌 be smooth and geometrically connected over k, 𝑥 ∈ 𝑋 (𝑘), 𝑦 ∈ 𝑌 (𝑘). If either
X or Y is projective, then the natural map

𝜋†1 (𝑋 ×𝑘 𝑌, (𝑥, 𝑦)) → 𝜋†1 (𝑋, 𝑥) ×𝐾 𝜋†1 (𝑌, 𝑦)

is an isomorphism.

Proof. Assume that Y is projective. Then by Theorem 8.3 the sequence

𝜋†1 (𝑌, 𝑦) → 𝜋†1 (𝑋 ×𝑘 𝑌, (𝑥, 𝑦)) → 𝜋†1 (𝑋, 𝑥) → 1

is exact, and the first map is split by the projection 𝜋†1 (𝑋 ×𝑘 𝑌, (𝑥, 𝑦)) → 𝜋†1 (𝑌, 𝑦). �

We can also use Theorem 8.3 to compare the (over)convergent fundamental group 𝜋†1 (𝑋) with the
étale one 𝜋ét

1 (𝑋).

Assumption. We will assume for the remainder of this section that the ground field k is algebraically
closed.

Let X be a smooth, projective, connected k-variety and 𝑥 ∈ 𝑋 (𝑘). Then there is a functor

Ét(𝑋) → Isoc†(𝑋/𝐾)
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from the category of finite étale covers of X to (over)convergent isocrystals which sends 𝑓 : 𝑌 → 𝑋 to
𝑓∗O†𝑌 /𝐾 ∈ Isoc†(𝑋/𝐾). This gives rise to a homomorphism of pro-algebraic groups

𝜋†1 (𝑋, 𝑥) → 𝜋ét
1 (𝑋, 𝑥)

and hence to a homomorphism of pro-finite groups

𝜋0 (𝜋
†
1 (𝑋, 𝑥)) → 𝜋ét

1 (𝑋, 𝑥)

where the former is the component group of 𝜋†1 (𝑋, 𝑥). The following strengthens a result of Crew
[Cre92, Proposition 4.4].

Theorem 13.3. The map 𝜋0 (𝜋
†
1 (𝑋, 𝑥)) → 𝜋ét

1 (𝑋, 𝑥) is an isomorphism.

We can translate this into Tannakian terms as follows. Let 𝐸 ∈ Isoc†(𝑋/𝐾), and consider the
associated monodromy representation

𝜋†1 (𝑋, 𝑥) → GL(𝐸𝑥).

By definition, the image of this homomorphism is the monodromy group DGal𝑥 (𝐸) of E. Then Theorem
13.3 is equivalent to the following.

Theorem 13.4. If 𝐸 ∈ Isoc†(𝑋/𝐾) has finite monodromy group, then it is trivialised by some finite
étale cover 𝑓 : 𝑌 → 𝑋

Remark 13.5. Note that the condition of having finite monodromy group is independent of the choice
of base point x.

The following lemma will play an important role in the proof of Theorem 13.3.

Lemma 13.6. Let 𝑓 : 𝑌 → 𝑋 be a morphism of connected k-varieties, with Y a smooth curve. Let
𝑦 ∈ 𝑌 (𝑘), and set 𝑥 = 𝑓 (𝑦). Assume that the induced homomorphism

𝜋†1 (𝑌, 𝑦) → 𝜋†1 (𝑋, 𝑥)

is surjective, and let 𝐸 ∈ Isoc†(𝑋/𝐾) be simple. If there exists 𝐸 ′ ∈ 𝐹-Isoc†(𝑌/𝐾) and an injection of
isocrystals 𝑓 ∗𝐸 ↩→ 𝐸 ′, then there exists 𝐸 ′′ ∈ 𝐹-Isoc†(𝑋/𝐾) and an injection of isocrystals 𝐸 ↩→ 𝐸 ′′.

Proof. Write 𝑓 ∗(−) = (−)|𝑌 . For all 𝑛 ≥ 0 we can view the Frobenius pullback (𝐹𝑛)∗𝐸 |𝑌 as lying
inside 𝐸 ′ via the Frobenius 𝜑𝑛 on 𝐸 ′. Let 𝐸 ′0 ⊂ 𝐸 ′ denote the sum of all the (𝐹𝑛)∗𝐸 |𝑌 ; this is therefore
stable by 𝜑, and we can thus view it as an F-isocrystal. Since E is simple, surjectivity of the map

𝜋†1 (𝑌, 𝑦) → 𝜋†1 (𝑋, 𝑥)

implies that 𝐸 |𝑌 is simple. Moreover, since Y is a smooth curve, we know that there exists a good
compactification 𝑌 which lifts to a smooth and proper curve over V. Thus, we may apply [Ber96b,
Théorème 4.4.5] together with [Ber00, Théorème 2.3.6] to deduce that the Frobenius pullback functor

𝐹∗ : Isoc†(𝑌 ) → Isoc†(𝑌 )

is an equivalence of categories. In particular, each (𝐹𝑛)∗𝐸 |𝑌 is simple. Hence, 𝐸 ′0 is semi-simple and,
moreover, we can write

𝐸 ′0 �
⊕

𝑖

(𝐹𝑛𝑖 )∗𝐸 |𝑌 �

(⊕
𝑖

(𝐹𝑛𝑖 )∗𝐸

)
|𝑌
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for some 𝑛𝑖 . Hence, 𝐸 ′0 extends to some 𝐸 ′′ on X, and since

𝜋†1 (𝑌, 𝑦) → 𝜋†1 (𝑋, 𝑥)

is surjective, both the induced Frobenius on 𝐸 ′0 = 𝐸 ′′ |𝑌 and the injection 𝐸 |𝑌 ↩→ 𝐸 ′′ |𝑌 also extend
to X. �

We can now begin the proof of Theorem 13.3 in earnest. Our first step is to show a slightly weaker
version of Theorem 13.4 when X is a curve.

Lemma 13.7. Let C be a smooth, projective, connected curve over k, and let 𝐸 ∈ Isoc†(𝐶/𝐾) be
simple with finite monodromy group. Then there exists a smooth, projective, connected curve D and a
nonconstant, separable morphism 𝑓 : 𝐷 → 𝐶 such that 𝑓 ∗𝐸 is trivial.

Proof. Choose a lift C of C to V, with generic fibre C𝐾 a smooth, projective, geometrically connected
curve over K. Then E corresponds to a module with overconvergent connection on C𝐾 . Choose a point
𝑐 of C𝐾 specialising to some 𝑐 ∈ 𝐶 (𝑘). Combining the defintion of Isoc†(𝐶/𝐾) with GAGA, we can
see that Isoc†(𝐶/𝐾) is a full subcategory of the category MIC(C𝐾 /𝐾) of modules with integrable
connection on the algebraic curve C𝐾 , and this subcategory is stable under taking subquotients. We
therefore get a surjective map 𝜋dR

1 (C𝐾 , 𝑐) → 𝜋†1 (𝐶, 𝑐).
Hence, E also has finite monodromy when considered as a representation of 𝜋dR

1 (C𝐾 , 𝑐). If we now
choose a finitely generated subfield 𝐾0 ⊂ 𝐾 over which C𝐾 , 𝑐 and E are all defined and then embed this
field into C, we have an isomorphism between 𝜋dR

1 (CC, 𝑐) and the C-valued pro-algebraic completion
of the abstract group 𝜋1 (C(C), 𝑐). Thus, 𝐸C has finite monodromy as a representation of 𝜋1 (C(C), 𝑐)
and so is trivialised by a finite étale cover of CC. Descending down to 𝐾0 and then re-ascending to K,
we can see that after possibly replacing K by a finite extension (this does not change the problem) there
exists a finite, étale, geometrically connected cover C′𝐾 → C𝐾 trivialising E as a module with integrable
connection. Let C′ denote the normalisation of C inside the function field extension 𝐾 (C𝐾 ) → 𝐾 (C′𝐾 ).

By de Jong’s theorem on alterations [dJ96, Theorem 8.2] we can find (after possibly further increasing
K) some alteration C′′ → C′ with strictly semistable reduction; let 𝐶 ′′ denote the special fibre. Then
the map from the smooth locus of 𝐶 ′′ to C is dominant, so we may choose some connected component
𝐶 ′′′ of sm(𝐶 ′′) which is nonconstant over C. Then the formal completion Ĉ′′ is smooth over V in a
neighbourhood of 𝐶 ′′′, and so the pullback of isocrystals along 𝐶 ′′′ → 𝐶 can be identified with the
pullback of modules with integrable connection along

]𝐶 ′′′ [Ĉ′′⊂ C′′𝐾
an
→ C′𝐾

an
→ Can

𝐾 .

Thus, E becomes trivial after pulling back by 𝐶 ′′′ → 𝐶. Let 𝐷 ′ denote the smooth compactification
of 𝐶 ′′′; applying [Ked07, Theorem 5.2.1] we therefore know that E becomes trivial after pulling back
by 𝐷 ′ → 𝐶. Finally, factor 𝐷 ′ → 𝐷 → 𝐶 into a totally inseparable morphism 𝐷 ′ → 𝐷 followed
by a separable morphism 𝐷 → 𝐶. Since E is trivial when pulled back to 𝐷 ′, it follows from [Ogu84,
Corollary 4.10] that it is trivial when pulled back to D. �

We can now prove Theorem 13.4, and hence Theorem 13.3.

Proof of Theorem 13.4. Let 𝐸 ∈ Isoc†(𝑋/𝐾) have finite monodromy group. Since finite groups are
reductive, E is therefore semi-simple, and by working one simple factor at a time we may assume that
E is simple. Choose an iterated hyperplane section 𝐶 → 𝑋 which is a smooth, projective, connected
curve over k. By Theorem 13.1 we know that 𝐸 |𝐶 is simple with finite monodromy, and therefore by
Lemma 13.7 we can find some finite separable morphism 𝐷 → 𝐶 such that 𝐸 |𝐷 is trivial.

Let 𝐷𝑈 → 𝑈 be the étale locus of 𝐷 → 𝐶. Then since 𝐸 |𝐷𝑈 is trivial, we know by taking the
pushforward along 𝐷𝑈 → 𝑈 that we can find some 𝐸 ′ ∈ 𝐹-Isoc†(𝑈/𝐾) and an injection of isocrystals
𝐸 |𝑈 ↩→ 𝐸 ′. Using Theorem 13.1 together with [Ked07, Theorem 5.2.1, Proposition 5.3.1] we may
apply Lemma 13.6 above to the map 𝑈 → 𝑋 . We can therefore find some 𝐸 ′′ ∈ 𝐹-Isoc†(𝑋/𝐾) and an

https://doi.org/10.1017/fms.2021.63 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.63


32 Christopher Lazda and Ambrus Pál

injection of isocrystals 𝐸 ↩→ 𝐸 ′′. We can now apply [Cre92, Proposition 4.3] to conclude. (Note the
remark following the proof of this result that you do not need to assume X is a curve for the implication
(iv)⇒(ii), which is the one we are interested in.) �
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