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Dilations of Markovian semigroups
of measurable Schur multipliers
Cédric Arhancet
Abstract. Using probabilistic tools, we prove that any weak* continuous semigroup (Tt)t⩾0 of self-
adjoint unital completely positive measurable Schur multipliers acting on the space B(L2(X)) of
bounded operators on the Hilbert space L2(X), where X is a suitable measure space, can be dilated
by a weak* continuous group of Markov ∗-automorphisms on a bigger von Neumann algebra.
We also construct a Markov dilation of these semigroups. Our results imply the boundedness of
the McIntosh’s H∞ functional calculus of the generators of these semigroups on the associated
Schatten spaces and some interpolation results connected to BMO-spaces. We also give an answer
to a question of Steen, Todorov, and Turowska on completely positive continuous Schur multipliers.

1 Introduction

The study of dilations of operators is of central importance in operator theory and
has a long tradition in functional analysis. Indeed, dilations are powerful tools which
allow to reduce general studies of operators to more tractable ones.

Suppose 1 < p < ∞. In the spirit of Sz.-Nagy’s dilation theorem for contractions on
Hilbert spaces, Fendler [Fen97] proved a dilation result for any strongly continuous
semigroup (Tt)t⩾0 of positive contractions on an Lp-space Lp(Ω). More precisely,
this theorem says that there exist a measure space Ω′, two positive contractions
J∶Lp(Ω) → Lp(Ω′) and P∶Lp(Ω′) → Lp(Ω), and a strongly continuous group of
positive invertible isometries (Ut)t∈R on Lp(Ω′) such that

Tt = PUt J ,(1.1)

for any t ⩾ 0 (see also [Fen98]). Note that, in this situation, the map J∶Lp(Ω) →
Lp(Ω′) is an isometric embedding, whereas the map JP∶Lp(Ω′) → Lp(Ω′) is a
contractive projection.

In the noncommutative setting, measure spaces and Lp-spaces are replaced by von
Neumann algebras and noncommutative Lp-spaces and positive maps by completely
positive maps. In their remarkable paper [JLM07], Junge and Le Merdy essentially1

Received by the editors August 12, 2022; revised February 18, 2023; accepted March 28, 2023.
Published online on Cambridge Core April 5, 2023.
The author acknowledges support by the grant ANR-18-CE40-0021 (project HASCON) of the French

National Research Agency ANR.
AMS subject classification: 47A20, 47D03, 46L51, 46M35.
Keywords: Semigroups, dilations, Schatten spaces, positive-definite kernels, functional calculus,

Schur multipliers, BMO-spaces, completely positive maps.
1The authors prove that there exists no “reasonable” analog of a variant of Fendler’s result for a

discrete semigroup (T k)k⩾0 of completely positive contractions.

https://doi.org/10.4153/S0008414X23000214 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X23000214
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X23000214&domain=pdf
https://doi.org/10.4153/S0008414X23000214


Dilations of Markovian semigroups of measurable Schur multipliers 775

showed that there is no hope to have a “reasonable” analog of Fendler’s theorem for
semigroups of completely positive contractions acting on noncommutative Lp-spaces.
It is a striking difference with the world of classical (=commutative) Lp-spaces of
measure spaces.

Let X be a σ-finite measure space. In this paper, our first main result (The-
orem 5.2) gives a dilation on weak* continuous semigroups of self-adjoint uni-
tal completely positive measurable Schur multipliers acting on B(L2(X)) in the
spirit of (1.1) but at the level p = ∞. Our construction heavily relies on the use
of Gaussian processes. Our dilation induces an isometric dilation similar to the
one of Fendler’s theorem for the strongly continuous semigroup induced by the
semigroup (Tt)t⩾0 on the Schatten space S p

X
def= S p(L2(X)) for any 1 ⩽ p < ∞. Finally,

note that, in this paper, the weak* continuity of the semigroup means that the
map R

+ → C, t ↦ ⟨Tt(x), y⟩B(L2(X)),S 1
X

is continuous for any x ∈ B(L2(X)) and any
y ∈ S1

X .
Moreover, this result is analogous to the result of [Arh20], which provides a dilation

of weak* continuous semigroups of self-adjoint unital completely positive Fourier
multipliers acting on the group von Neumann algebra VN(G) of a locally compact
group G. Note also that in the case where X is a finite set equipped with the counting
measure, it is possible to use the considerably more complicated approach of [Arh19]
(relying on the use of ultrafilters) whose assumptions are satisfied by the results of
[Arh13a] and [Ric08] for obtaining a dilation. But even in this case, our new and
more general approach gives an explicit and a more useful dilation since the von
Neumann algebra where the group (Ut)t∈R acts is injective. This point is important
for applications in vector-valued noncommutative Lp-spaces since we need injective
von Neumann algebras in this context (see [Pis98]). We refer to the papers [AFM17,
ALM14, Arh13b, HaM11] for related things. Finally, note that Schur multipliers are
crucial operators in noncommutative analysis and are connected to a considerable
number of topics as harmonic analysis, double operator integrals, perturbation theory,
and Grothendieck’s theorem. More recently, the semigroups of Schur multipliers
considered in this paper were connected to noncommutative geometry in the memoir
[ArK22a].

One of the important consequences of Fendler’s theorem is the boundedness, for
the generator of a strongly continuous semigroup (Tt)t⩾0 of positive contractions, of
a bounded H∞ functional calculus which is a fundamental tool in various areas: har-
monic analysis of semigroups, multiplier theory, Kato’s square root problem, maximal
regularity in parabolic equations, and control theory. For detailed information, we
refer the reader to [Haa06, JMX06, KuW04], to the survey [LeM07], and to the recent
book [HvNVW18] and the references therein. Our results also give a similar result on
H∞ functional calculus in the noncommutative context in the case of semigroups of
measurable Schur multipliers.

Recall that a locally integrable function f ∶Rn → C is said to have bounded mean
oscillation if

∥ f ∥BMO
def= sup

Q∈Q

1
∣Q∣ ∫Q

∣ f (y) − fQ ∣ 2 dy < ∞,
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776 C. Arhancet

where fQ
def= 1
∣Q ∣ ∫Q f is the average of f over Q, ∣Q∣ is the volume of Q, and Q is the set

of all cubes in R
n . The quotient space of bounded mean oscillation functions modulo

the space of constant functions with the previous seminorm is a Banach space. The
importance of the BMO-norm and the BMO-space lies in the fact that they arise as
end-point spaces for estimating the bounds of linear maps on function spaces on R

n .
This includes many Calderón–Zygmund operators. By interpolation, BMO-spaces are
an effective tool to obtain Lp-bounds of Fourier multipliers. In this sense, the BMO-
space is a natural substitute of the space L∞(Rn).

Spaces of functions with bounded means oscillation can also be studied through
semigroups. If T = (Tt)t⩾0 is a Markov semigroup on an L∞-space L∞(Ω) of a (finite)
measure space Ω, then we can define a BMO-seminorm by

∥ f ∥BMOT

def= sup
t⩾0
∥Tt (∣ f − Tt( f )∣2) ∥

1
2
∞.

More generally, Junge and Mei introduced in [JM12] several noncommutative semi-
group BMO-spaces starting from a Markov semigroup on a semifinite von Neumann
algebra (i.e., a noncommutative L∞-space). Relations between these spaces are stud-
ied, and interpolation results are obtained. A crucial ingredient of their approach is
Markov dilations of semigroups that allow one to use martingale theory and derive
results from this probabilistic setting. See also [FMS19, JiW17, JM10, JuZ15] for other
applications of Markov dilations.

The second main result of this paper is Theorem 6.1, which gives the construction
of a Markov dilation of each weak* continuous semigroup of self-adjoint unital
completely positive measurable Schur multipliers acting on B(L2(X)). Again, our
construction relies on probabilistic tools. From this result, we obtain interpolation
results with BMO-spaces as end-point for these semigroups (see Theorem 7.2 and
Remark 7.3). Probably, our results will be useful for estimating norms of Schur
multipliers on Schatten spaces. Finally, we equally refer to [Cas19, CJSZ20] for strongly
related papers.

1.1 Structure of the paper

The paper is organized as follows. Section 2 gives background. In Section 3, we
give useful observations on measurable positive-definite kernels and negative-definite
kernels. In Section 4, we give complements on measurable Schur multipliers. We
answer a question of Steen, Todorov, and Turowska in Remark 4.9. We also give a
precise description of weak* continuous semigroups of unital self-adjoint completely
positive measurable Schur multipliers on some suitable measure spaces. Section 5
gives a proof of our main result of dilation of these semigroups. Next, in Section 6,
we also construct a Markov dilation for these semigroups. In Section 7, we describe
some applications of our results to functional calculus and interpolation.

2 Preliminaries

In this paper, we suppose that the considered measure spaces are complete (i.e., every
subset of every null set is measurable).
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2.1 Isonormal processes

Let H be a real Hilbert space. An H-isonormal process on a probability space (Ω, μ)
([Nua06, Definition 1.1.1], [Neer07, Definition 6.5]) is a linear mapping W∶H →
L0(Ω) from H into the space L0(Ω) of measurable functions on Ω with the following
properties:

For any h ∈ H, the random variable W(h) is a centered real Gaussian.(2.1)

For any h1 , h2 ∈ H, we have E(W(h1)W(h2)) = ⟨h1 , h2⟩H .(2.2)

The linear span of the products W(h1)W(h2) ⋅ ⋅ ⋅W(hm), with m ⩾ 0 and h1 , . . . , hm

(2.3)

in H, is dense in the real Hilbert space L2
R
(Ω).

Here, we make the convention that the empty product, corresponding to m = 0 in
(2.3), is the constant function 1. Moreover, E is used to denote the expected value.

If (e i)i∈I is an orthonormal basis of H and if (γ i)i∈I is a family of independent
standard Gaussian random variables on a probability space Ω, then for any h ∈ H, the
family (γ i⟨h, e i⟩H)i∈I is summable in L2(Ω) and

W(h) def= ∑
i∈I

γ i⟨h, e i⟩H , h ∈ H,(2.4)

defines an H-isonormal process.
Recall that the span of elements eiW(h) is weak* dense in L∞(Ω) by [Jan97, Remark

2.15]. Using [HvNVW18, Proposition E.2.2] with t instead of ξ and by observing by
(2.2) that the variance E(W(h)2) of the Gaussian variable W(h) is equal to ∥h∥2

H , we
see that

E(eitW(h)) = e−
t2
2 ∥h∥

2
H , t ∈ R, h ∈ H.(2.5)

If u∶H → H is a contraction, we denote by Γ∞(u)∶L∞(Ω) → L∞(Ω) the (symmet-
ric) second quantization of u acting on the complex Banach space L∞(Ω). Recall that
the map Γ∞(u)∶L∞(Ω) → L∞(Ω) preserves the integral.2 If u is a surjective isometry,
we have

Γ∞(u)(eiW(h)) = eiW(u(h)) , h ∈ H,(2.6)

and Γ∞(u)∶L∞(Ω) → L∞(Ω) is a ∗-automorphism of the von Neumann algebra
L∞(Ω).

Furthermore, the second quantization functor Γ satisfies the following elementary
result [Arh20, Lemma 2.1]. In the part 1, we suppose that the construction3 is given by
the concrete representation (2.4).

Lemma 2.1 (1) If L∞(Ω) is equipped with the weak* topology, then the map H →
L∞(Ω), h ↦ eiW(h) is continuous.

2That means that for any f ∈ L∞(Ω), we have ∫Ω Γ∞(u) f dμ = ∫Ω f dμ.
3The existence of a proof of Lemma 2.1 without (2.4) is unclear.
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(2) If (Ut)t∈R is a strongly continuous group of orthogonal operators acting on the
Hilbert space H, then (Γ∞(Ut))t∈R is a weak* continuous group of operators acting
on the Banach space L∞(Ω).

Let H be a real Hilbert space. Following [NVW15, Definition 2.2] and [Neer07,
Definition 6.11], we say that an L2

R
(R+ , H)-isonormal process W is an H-cylindrical

Brownian motion. In this case, for any t ⩾ 0 and any h ∈ H, we let

Wt(h) def= W(1[0,t] ⊗ h).(2.7)

We introduce the filtration (Ft)t⩾0 defined by

Ft
def= σ(Wr(h) ∶ r ∈ [0, t], h ∈ H),(2.8)

that is, the σ-algebra generated by the random variables Wr(h) for r ∈ [0, t] and h ∈ H.
By [Neer07, p. 77], for any fixed h ∈ H, the family (Wt(h))t⩾0 is a Brownian

motion. This means that [Neer07, Definition 6.2]

W0(h) = 0 almost surely,(2.9)

Wt(h) −Ws(h) is Gaussian with variance (t − s)∥h∥2
H for any 0 ⩽ s ⩽ t,(2.10)

Wt(h) −Ws(h) is independent of {Wr(h) ∶ r ∈ [0, s]} for any 0 ⩽ s ⩽ t.(2.11)

Indeed, by [Neer07, p. 163],

the increment Wt(h) −Ws(h) is independent of the σ-algebra Fs .(2.12)

Moreover, by [Neer07, p. 163], the family (Wt(h))t⩾0 is a martingale with respect to
(Ft)t⩾0. In particular, the random variable Wt(h) is Ft-measurable. If 0 ⩽ s ⩽ t, note
that

∥1]s ,t] ⊗ h∥2
L2
R
(R+ ,H) = ∥1]s ,t]∥

2
L2
R
(R+)∥h∥

2
H = (t − s)∥h∥2

H .

Using (2.5) together with the previous computation, we obtain

E(eiW(1]s ,t]⊗h)) = e−
t−s

2 ∥h∥
2
H , 0 ⩽ s ⩽ t, h ∈ H.(2.13)

2.2 Probabilities

Let Ω be a probability space, and let X be a Banach space. If f ∈ L1(Ω, X) is indepen-
dent of the sub-σ-algebra F , then, by [HvNVW16, Proposition 2.6.35], its conditional
expectation E( f ∣F ) with respect to F is given by the constant function:

E( f ∣F ) = E( f ).(2.14)

2.3 Hilbert–Schmidt operators

Let X be a σ-finite measure space. We will use the space S∞X
def= S∞(L2(X)) of

compact operators, its dual S1
X , and the space B(L2(X)) of bounded operators on the

Hilbert space L2(X). If f ∈ L2(X × X), we denote the associated Hilbert–Schmidt
operator by
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K f ∶ L2(X) �→ L2(X)
ξ �→ ∫X f (⋅, y)ξ(y)dy .(2.15)

We will also use the notation K((x , y) ↦ f (x , y)) for K f . With the notation
f̌ (x , y) def= f (y, x), we have

(K f )∗ = K
f̌
.(2.16)

The operator K f is self-adjoint if and only if f (x , y) = f (y, x) almost everywhere.
For any f , g ∈ L2(X × X), we have K f Kg = Kh where h ∈ L2(X × X) is defined by

h(x , y) = ∫
X

f (x , z)g(z, y)dz(2.17)

with ∥h∥2 ⩽ ∥ f ∥2∥g∥2.

2.4 Kernels

Let X be a set. A function φ∶X × X → C is called Hermitian if φ(y, x) = φ(x , y) for
any x , y ∈ X. A function φ∶X × X → C is a positive-definite kernel if for any integer
n ⩾ 1, any c1 , . . . , cn ∈ C, and any x1 , . . . , xn ∈ X, we have

n
∑

i , j=1
c i c jφ(x i , x j) ⩾ 0.(2.18)

In this definition, it is enough to consider mutually different elements x1 , . . . , xn of X.
By [BCR84, Section 1.5, p. 68], any positive-definite kernel is Hermitian.

Example 2.2 If X is a finite set, then the function φ∶X × X → C is a positive-definite
kernel if and only if the matrix [φ(x i , x j)] is positive-definite.

Example 2.3 Let H be a Hilbert space, and let α∶X → H be a map. By [Boz87, p. 9],
the function φ∶X × X → C defined by

φ(x , y) = ⟨αx , αy⟩H , x , y ∈ X ,(2.19)

is a positive-definite kernel.

Conversely, by [BCR84, p. 82], every positive-definite kernel φ is of this form for
some suitable Hilbert space H and some map α∶X → H. Moreover, if φ is real-valued,
we can take a real Hilbert space.

We say that φ∶X × X → C is a negative-definite kernel if φ is Hermitian and if for
any integer n ⩾ 1, any c1 , . . . , cn ∈ C with c1 + ⋅ ⋅ ⋅ + cn = 0, and any x1 , . . . , xn ∈ X, we
have

n
∑

i , j=1
c i c jφ(x i , x j) ⩽ 0.

Example 2.4 Let H be a real Hilbert space, and let α∶X → H be a map. The map
ψ∶X × X → R defined by ψ(x , y) = ∥αx − αy∥2

H is a negative-definite kernel.
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By [BCR84, Proposition 3.2, p. 82], every real-valued negative-definite kernel ψ
which vanishes on the diagonal {(x , x) ∶ x ∈ X} is of this form for a real Hilbert
space H.

The following is the famous Schoenberg’s theorem [BCR84, Theorem 2.2, p. 74],
which relates negative-definite kernels and positive-definite kernels.

Theorem 2.5 Let X be a set, and let ψ∶X × X → C be a map. Then ψ is a negative-
definite kernel if and only if for any t > 0 the map e−tψ ∶X × X → C is a positive-definite
kernel.

3 Complements on measurable kernels

The following lemma is folklore. For the sake of completeness, we give an argument
following Cartier [Car81, Lemme, p. 287].

Lemma 3.1 Let H be a Hilbert space. Suppose that X is a set equipped with a σ-algebra
A. Let α∶X → H be a function. For any x , y ∈ X, we define φ∶X × X → C by (2.19). If
φ is measurable with respect to A⊗A, then the map α is weak measurable, i.e., for any
h ∈ H, the map X → C, x ↦ ⟨αx , h⟩H is measurable.

Proof We denote by H1 the set of vectors h of H such that the function X → C,
x ↦ ⟨αx , h⟩H is measurable. It is obvious that H1 is a closed subspace of H. It is clear
that any vector of H which is orthogonal to the range of α belongs to H1, i.e., α(X)⊥ ⊂
H1. We infer that span α(X)

⊥
⊂ H1. Since the partial functions of φ are measurable, for

any y ∈ X, the map X → C, x ↦ ⟨αx , αy⟩H is measurable. So we also have the inclusion
α(X) ⊂ H1, hence span α(X) ⊂ H1. We conclude that H ⊂ H1. ∎

Lemma 3.2 Suppose that X is a set equipped with a σ-algebraA. Let ψ∶X × X → R be a
measurable real-valued negative-definite kernel which vanishes on the diagonal {(x , x) ∶
x ∈ X}. Then there exist a real Hilbert space H and a weak measurable map α∶X → H
such that

ψ(x , y) = ∥αx − αy∥2
H , x , y ∈ X .

Proof Fix x0 ∈ X. Recall that by [BCR84, Lemma 2.1, p. 74], the function
φ∶X × X → R defined by

φ(x , y) = 1
2
[ψ(x , x0) + ψ(x0 , y) − ψ(x , y)], x , y ∈ X ,(3.1)

is a positive-definite kernel. Since ψ is measurable, this kernel is measurable. So there
exist a real Hilbert space H and a function α∶X → H satisfying (2.19), which is weak
measurable by Lemma 3.1. Now, for any x , y ∈ X, we have

∥αx − αy∥2
H = ∥αx∥2

H + ∥αy∥2
H − 2⟨αx , αy⟩H

(2.19)= φ(x , x) + φ(y, y) − 2φ(x , y)
(3.1)= 1

2
(ψ(x , x0) + ψ(x0 , x) − ψ(x , x)) + 1

2
(ψ(y, x0) + ψ(x0 , y) − ψ(y, y))

− (ψ(x , x0) + ψ(x0 , y) − ψ(x , y)) = ψ(x , y). ∎

We introduce the following definition in the spirit of [Mer21, p. 25].
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Definition 3.1 Let X be a measure space. We say that a measurable map φ∶X × X →
C is an integrally positive-definite kernel if for any ξ ∈ L1(X) the function (x , y) ↦
φ(x , y)ξ(x)ξ(y) is integrable on X × X and

∬
X×X

φ(x , y)ξ(x)ξ(y)dx dy ⩾ 0.(3.2)

Let φ∶X × X → C be a measurable positive-definite kernel on a σ-finite measure
space X. Cartier showed in [Car81, p. 302] that (3.2) is satisfied for any measurable
function ξ∶X → C if the previous integral is absolutely convergent. Moreover, Cartier
proved the following result [Car81, Corollaire, p. 301].

Proposition 3.3 Suppose that X is a σ-finite measure space. Let φ∶X × X → C be a
measurable and bounded function. Then φ is equal almost everywhere to a bounded
and measurable positive-definite kernel on X × X if and only if φ is an integrally positive-
definite kernel.

Remark 3.4 The author naively thought that he proved the “if ” part of an L2(X)-
variant of this result in a previous version of this paper relying on the version
of Mercer’s theorem for finite measure spaces stated in [Kon86, Theorem 3.a.1, p.
145]. Unfortunately, the proof of [Kon86, Theorem 3.a.1, p. 145] has a large gap.4
In particular, the estimate supn ∥ fn∥∞ < ∞ is not proved and seems doubtful, and
consequently the arguments of convergence of [Kon86] are inexact.

Remark 3.5 It would be interesting to study variants of Definition 3.1 by replacing the
space L1(X) by another space of functions in the spirit of [HuW75] and the references
therein.

The following is [Car81, Théorème, p. 283]5 and would be used in the next section.

Proposition 3.6 Let X be a locally compact space equipped with a Radon measure with
support X, and let φ∶X × X → C be a continuous function. Then φ is a positive-definite
kernel if and only if for any continuous function ξ∶X → C with compact support, we
have (3.2).

4 A description of Markov semigroups of measurable Schur
multipliers

Let X be a σ-finite measure space. We say that a function φ ∈ L∞(X × X) induces
a measurable Schur multiplier on B(L2(X)) if the map S2

X ↦ B(L2(X)), K f ↦ Kφ f
induces a bounded operator from S∞X into B(L2(X)). In this case, the operator
S∞X ↦ B(L2(X)), K f ↦ Kφ f admits by [BLM04, Lemma A.2.2, p. 360] a unique
weak* extension Mφ ∶B(L2(X)) → B(L2(X)) called the measurable Schur multiplier
associated with φ. It is known that in this case

∥φ∥L∞(X×X) ⩽ ∥Mφ∥B(L2(X))→B(L2(X)) .(4.1)

We refer to the surveys [Tod15, ToT10] for more information. See also [Spr04].

4It was confirmed by email by the author of the book.
5The “only if ” part is true without the assumption “with support X.”
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Example 4.1 If the set X = {1, . . . , n} is equipped with the counting measure, we
can identify the space B(L2(X)) with the matrix algebra Mn . Then each operator K f
identifies to the matrix [ f (i , j)]. A Schur multiplier is given by a map Mφ ∶Mn →Mn ,
[ f (i , j)] ↦ [φ(i , j) f (i , j)].

We say that a measurable Schur multiplier Mφ ∶B(L2(X)) → B(L2(X)) is self-
adjoint if its restriction S2

X ↦ S2
X , K f ↦ Kφ f on the Hilbert space S2

X is self-adjoint.
See [JMX06, Section 5] for more information on a related notion for operators acting
on von Neumann algebras.

Proposition 4.2 Suppose that X is a σ-finite measure space. A measurable Schur
multiplier Mφ ∶B(L2(X)) → B(L2(X)) is self-adjoint if and only if the function φ is
real-valued almost everywhere.

Proof The self-adjointness property is equivalent to

Tr (Mφ(K f )K∗g ) = Tr (K f (Mφ(Kg))∗), i.e., Tr (Kφ f K∗g ) = Tr (K f (Kφg)∗)

for any f , g ∈ L2(X × X). Since L2(X × X) → S2
X , f ↦ K f is an isometry from the

Hilbert space L2(X × X) onto the Hilbert space S2
X of Hilbert–Schmidt operators on

L2(X), that means that

∬
X×X

φ(x , y) f (x , y)g(x , y)dx dy =∬
X×X

f (x , y)φ(x , y)g(x , y)dx dy.

Note that f g belongs to L1(X × X) and that each function of L1(X × X) has this form.
By duality, we deduce that φ = φ almost everywhere. ∎

We will show that a measurable Schur multiplier Mφ ∶B(L2(X)) → B(L2(X)) is
unital if and only if its restriction on S1

X is trace-preserving. We need some information
on Arens products to prove some preliminary result. Let A be a Banach algebra. Recall
that we can equip its bidual A∗∗ with two natural products, the left and right Arens
products defined in [BLM04, pp. 78–79] on A∗∗. We say A is Arens regular if these
products coincide on A∗∗. Note that the algebra S∞X of compact operators is Arens
regular by [Pal01, Theorem 9.1.39, p. 838].

Proposition 4.3 Let X be a σ-finite measure space. The map S2
X → S2

X , K f ↦ K f̌
extends to an involutive normal ∗-antiautomorphism R∶B(L2(X)) → B(L2(X)).

Proof For any f ∈ L2(X × X), we let R(K f ) def= K f̌ . On the one hand, for any f , g ∈
L2(X × X), the Hilbert–Schmidt operator K f Kg ∶L2(X) → L2(X) is associated with
the function h defined by (2.17), and for almost all (x , y) ∈ X × X, we have

ȟ(x , y) = ∫
X

f (y, z)g(z, x)dz.

On the other hand, by (2.17), the Hilbert–Schmidt operator K ǧ K f̌ ∶L2(X) → L2(X) is
associated with the function

(x , y) ↦ ∫
X

ǧ(x , z) f̌ (z, y)dz = ∫
X

f (y, z)g(z, x)dz.
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We obtain that R(K f Kg) = R(Kg)R(K f ). Moreover, we have

(R(K f ))∗ = (K f̌ )
∗ (2.16)= K f = R(K

f̌
) (2.16)= R((K f )∗).

We conclude that the map S2
X → S2

X , K f ↦ K f̌ is an involutive ∗-antiautomorphism.
From the formula (K f )∗ = K

f̌
, it is not difficult to see that the Banach adjoint

of K f is K f̌ . Hence, ∥K f ∥B(L2(X)) = ∥K f̌ ∥B(L2(X)). We deduce an involutive ∗-
antiautomorphism R∶ S∞X → S∞X . By [BLM04, Lemma A.2.2, p. 360], we deduce a
unique weak* continuous extension R∶ (S∞X )∗∗ → B(L2(X)). Moreover, by [BLM04,
Section 2.5.5, p. 79], this map is a ∗-antiautomorphism where the double dual (S∞X )∗∗
is equipped with the Arens product. Finally, note that by [Pal01, Theorem 9.1.39, p.
838], the algebra (S∞X )∗∗ identifies with the algebra B(L2(X)). ∎

We introduce the following duality bracket:

⟨z, y⟩B(L2(X)),S 1
X

def= Tr(R(z)y), z ∈ B(L2(X)), y ∈ S1
X .(4.2)

Proposition 4.4 Let X be a σ-finite measure space. The preadjoint (Mφ)∗∶ S1
X → S1

X of
a measurable Schur multiplier Mφ ∶B(L2(X)) → B(L2(X)) coincides with its restriction
on S1

X , i.e., for any z ∈ B(L2(X)) and y ∈ S1
X , we have

⟨Mφ(z), y⟩B(L2(X)),S 1
X
= ⟨z, Mφ(y)⟩B(L2(X)),S 1

X
.(4.3)

Proof Recall that the map L2(X × X) → S2
X , f ↦ K f is an isometry from the Hilbert

space L2(X × X) onto the Hilbert space S2
X of Hilbert–Schmidt operators on L2(X).

For any K f , Kg ∈ S1
X , we deduce that

⟨Mφ(K f ), Kg⟩B(L2(X)),S 1
X
= ⟨Kφ f , Kg⟩B(L2(X)),S 1

X

(4.2)= Tr(R(Kφ f )Kg)

= Tr(Kφ̌ f̌ Kg) = ∬
X×X

φ(y, x) f (y, x)g(y, x)dx dy.

Moreover, we have

⟨K f , Kφg⟩B(L2(X)),S 1
X

(4.2)= Tr(R(K f )Kφg) = Tr(K f̌ Kφg)

= ∬
X×X

f (y, x)φ(y, x)g(y, x)dx dy.

We conclude by density. ∎

Now, we prove the following equivalence by a standard argument.

Proposition 4.5 Suppose that X is a σ-finite measure space. A measurable Schur
multiplier Mφ ∶B(L2(X)) → B(L2(X)) is unital if and only if it is trace-preserving when
restricted to the space S1

X .

Proof It is elementary to check that a ∗-antiautomorphism is necessarily unital.
If the measurable Schur multiplier Mφ ∶B(L2(X)) → B(L2(X)) is unital, then for
any y ∈ S1

X , we have ⟨Mφ(1), y⟩B(L2(X)),S 1
X

(4.3)= ⟨1, Mφ(y)⟩B(L2(X)),S 1
X

, that is, Tr y =
Tr Mφ(y). We conclude that Mφ is trace-preserving.
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If the measurable Schur multiplier Mφ ∶B(L2(X)) → B(L2(X)) is trace-preserving,
then for any x ∈ S1

X , we have

Tr(R(Mφ(1))x)
(4.2)= ⟨Mφ(1), x⟩B(L2(X)),S 1

X

(4.3)= ⟨1, Mφ(x)⟩B(L2(X)),S 1
X

(4.2)= Tr(R(1)Mφ(x)) = Tr(R(1)x).
We conclude by duality that Mφ(1) = 1. ∎

It is proved in [Duq22, Theorem 3.5] that a measurable Schur multiplier
Mφ ∶B(L2(X)) → B(L2(X)) is unital if and only if φ(x , x) = 1 almost everywhere on
X. We deduce the following result.
Corollary 4.6 Suppose that X is a σ-finite measure space. Let Mφ ∶B(L2(X)) →
B(L2(X)) be a measurable Schur multiplier. The following conditions are equivalent.
(1) Mφ is trace-preserving when restricted to the space S1

X .
(2) Mφ is unital.
(3) φ(x , x) = 1 almost everywhere on X.

In the following statement, we say that φ induces a (completely) positive measur-
able Schur multiplier if the linear map Mφ ∶B(L2(X)) → B(L2(X)) is (completely)
positive.
Proposition 4.7 Let X be a σ-finite measure space. Let φ ∈ L∞(X × X). Consider the
following properties.
(1) φ induces a completely positive measurable Schur multiplier.
(2) φ induces a positive measurable Schur multiplier.
(3) The function φ is an integrally positive-definite kernel.

We have 1 ⇐⇒ 2⇒ 3.
Proof 1.⇒ 2. It is obvious.

2.⇒ 1. That is essentially a standard application of [STT14, Lemma 4.3]. See also
[Tod14, Exercise 4.15].

2. ⇒ 3. Let ξ ∈ L1(X). We can write ξ = ξ1 ξ2 for some functions ξ1 , ξ2 ∈ L2(X).
Note that the operator Kξ1⊗ξ1

∶L2(X) → L2(X) is positive. Indeed, for any η ∈ L2(X),
we have

⟨Kξ1⊗ξ1
(η), η⟩L2(X)

(2.15)= (∫
X

ξ1η)⟨ξ1 , η⟩L2(X)

= ⟨ξ1 , η⟩L2(X)⟨ξ1 , η⟩L2(X) = ∣⟨ξ1 , η⟩L2(X)∣
2 ⩾ 0.

We deduce that ⟨Mφ(Kξ1⊗ξ1
)ξ2 , ξ2⟩L2(X) ⩾ 0. Finally, it suffices to observe that

⟨Mφ(Kξ1⊗ξ1
)ξ2 , ξ2⟩L2(X) = ⟨Kφ(ξ1⊗ξ1)ξ2 , ξ2⟩

L2(X)
= ∫

X
(Kφ(ξ1⊗ξ1)ξ2)(x)ξ2(x)dx

(2.15)= ∫
X
(∫

X
φ(x , y)ξ1(x)ξ1(y)ξ2(y)dy)ξ2(x)dx

=∬
X×X

φ(x , y)ξ1(x)ξ1(y)ξ2(y)ξ2(x)dx dy =∬
X×X

φ(x , y)ξ(x)ξ(y)dx dy.

So (3.2) is satisfied. ∎
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Remark 4.8 Let X be a locally compact space equipped with a Radon measure with
full support. Let φ ∈ L∞(X × X) be a function which induces a measurable Schur
multiplier Mφ ∶B(L2(X)) → B(L2(X)). The statement “3” implies 2” is true. Suppose
that φ is an integrally positive-definite kernel. By Proposition 3.3, we can suppose
that φ is equal to a bounded and measurable positive-definite kernel on X × X. Let
K f ∶L2(X) → L2(X) be a positive Hilbert–Schmidt operator with a continuous symbol
f ∶X × X → C. Then the inequality

∬
X×X

f (x , y)ξ(x)ξ(y)dx dy ⩾ 0

is clearly satisfied for any ξ ∈ L2(X), in particular for any function ξ ∈ Cc(X). By
Proposition 3.6, we deduce that f is the class of a positive-definite kernel. Using
the stability under pointwise product of the set of definite-positive kernels [BCR84,
Theorem 1.12, p. 69], we see that the function φ f of L2(X × X) is also the class of a
positive-definite kernel. By the observation following Definition 3.1, we deduce that
for any ξ ∈ L2(X), we have

∬
X×X

φ(x , y) f (x , y)ξ(x)ξ(y)dx dy ⩾ 0.

Consequently Mφ(K f ) = Kφ f is a positive operator on the Hilbert space L2(X).
We conclude with Kaplansky’s theorem using the cone of positive Hilbert–Schmidt
operators with continuous kernels.

Remark 4.9 Let X be a locally compact space equipped with a Radon measure with
full support. Here, we explain how to give an answer to [STT14, Question 4.13(ii)].
Consider a positive continuous Schur multiplier Mφ ∶B(L2(X)) → B(L2(X)), i.e., a
measurable Schur multiplier with a continuous symbol φ∶X × X → C. By Proposi-
tion 4.7, the map φ is an integrally positive-definite kernel. In particular, for any
continuous function ξ∶X → C with compact support, we have (3.2). By Proposition
3.6, we infer that the continuous function φ is a positive-definite kernel. Consequently,
by [BCR84, p. 82], there exist a Hilbert space H and some map α∶X → H satisfying
(2.19). Since the function φ is continuous, we conclude by the (classical) result [Car81,
Lemme, p. 279]6 that the map α∶X → H is necessarily continuous (here the Hilbert
space H is equipped with its usual topology). Since φ ∈ L∞(X × X), the function
x ↦ φ(x , x) = ⟨αx , αx⟩H is bounded. We conclude that α is bounded.

With sharp contrast, we think that the answer to the similar question [STT14, Ques-
tion 4.13(i)] for (not necessarily positive) continuous Schur multipliers is negative.

The following is a generalization of [Arh13a, Proposition 5.4]. Recall that in this
paper, the weak* continuity of a semigroup (Tt)t⩾0 means that the map R

+ → C,
t ↦ ⟨Tt(x), y⟩B(L2(X)),S 1

X
is continuous for any x ∈ B(L2(X)) and any y ∈ S1

X .

Proposition 4.10 (1) Let X be a second countable Radon measure space. If (Tt)t⩾0 is
a weak* continuous semigroup of self-adjoint unital completely positive measurable
Schur multipliers on B(L2(X)) with continuous symbols, then there exist a real
Hilbert space H and a continuous function α∶X → H such that the symbol of Tt is

6If (2.19) is satisfied on a topological space X, then φ is continuous if and only if α is continuous.
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ϕt(x , y) = e−t∥αx−αy∥2
H , for almost all x , y ∈ X .(4.4)

(2) Let X be a (complete) σ-finite measure space such that if (Tt)t⩾0 is a weak*
continuous semigroup of self-adjoint unital completely positive measurable Schur
multipliers on B(L2(X)), then there exist a real Hilbert space H and a weak
measurable function α∶X → H such that the symbol of Tt is given by (4.4).

Proof 1. For any t ⩾ 0, let ϕt ∶X × X → C be the continuous symbol of the Schur
multiplier Tt . Since the map Tt is self-adjoint, the function ϕt is real-valued by
Proposition 4.2. By Corollary 4.6, we have ϕt(x , x) = 1 for any x ∈ X and any t ⩾ 0.
By Proposition 4.7, each ϕt is an integrally positive-definite kernel. We deduce by
Proposition 3.6 that each ϕt is a positive-definite kernel. Finally, we have ϕ0 = 1.

For any t, t′ ⩾ 0 and any f ∈ L2(X × X), the relation Tt Tt′(K f ) = Tt+t′(K f ) gives
the equality Kϕ t ϕ t′ f = Kϕ t+t′ f . We infer that ϕt ϕt′ f = ϕt+t′ f in the space L2(X × X).
It is apparent that (ϕt)t⩾0 defines a semigroup (Multt)t⩾0 of multiplication operators
acting on L2(X × X) defined by

Multt( f ) def= ϕt f , t ⩾ 0, f ∈ L2(X × X).(4.5)

Note that (4.1) implies that (Multt)t⩾0 is a contraction semigroup. We will show the
weak continuity of this semigroup. For any functions f , g ∈ L2(X × X) such that Kg ∈
S1

X , we have using the weak* continuity of the semigroup (Tt)t⩾0

⟨Multt( f ), g⟩L2(X×X)
(4.5)= ⟨ϕt f , g⟩L2(X×X) = ⟨Kϕ t f , Kg⟩S2

X

= ⟨Tt(K f ), Kg⟩B(L2(X)),S 1
X
��→
t→0
⟨K f , Kg⟩B(L2(X)),S 1

X
= ⟨ f , g⟩L2(X×X)

(here, we make a slight abuse of notation for the definition of the brackets). Note
that the set of functions g ∈ L2(X × X) such that Kg ∈ S1

X is dense in L2(X × X) since
S1

X is dense in the space S2
X . Now, with [Meg98, Exercise 2.71(a), p. 234], it is clear

(using the contractivity of the semigroup) that this semigroup is weak continuous. By
[EnN00, Theorem 5.8, p. 40], this semigroup is even strongly continuous. By [EnN00,
Proposition 4.12, p. 32], there exists a measurable function ψ∶X × X → R such that for
almost all x , y ∈ X,

ϕt(x , y) = e−tψ(x , y) , t ⩾ 0.

We deduce that for almost all x , y ∈ X, we have if t > 0,

ψ(x , y) = − 1
t

log ϕt(x , y).

Since ϕt is continuous, we can suppose that ψ is continuous. Moreover, for any x ∈ X,
we have

ψ(x , x) = − 1
t

log ϕt(x , x) = 0.

By Schoenberg’s theorem (Theorem 2.5), the function ψ defines a real-valued negative
definite kernel which vanishes on the diagonal of X × X. Finally, we use the charac-
terization of continuous real-valued negative-definite kernels of [BHV08, Theorem
C.2.3].
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2. For any t ⩾ 0, let ϕt ∶X × X → C be the symbol of Tt . Since the map Tt is
self-adjoint, the function ϕt is real-valued almost everywhere by Proposition 4.2.
Consequently, we can suppose that each function ϕt is real-valued. By Proposition
4.7, each ϕt is an integrally positive-definite kernel. Consequently, we can suppose
by Proposition 3.3 that the function ϕt is a real-valued positive-negative kernel and
bounded (by 1).

By Corollary 4.6, we have ϕt(x , x) = 1 for almost all x ∈ X and any t ⩾ 0. For any
t > 0, let At be the subset of X such that ϕt(x , x) /= 1. The subset {(x , x) ∶ x ∈ At} is
a subset of At × At , hence negligible. By modifying ϕt on At , we can suppose that
ϕt(x , x) = 1 for any x ∈ X. Indeed, it is clear by observing the definition (2.18) that the
property positive-definite is not lost by this change.

The end of the proof is similar to the proof of the first point replacing [BHV08,
Theorem C.2.3] by Lemma 3.2. ∎

Remark 4.11 In the opposite direction, consider a separable real Hilbert space H and
a weak measurable function α∶X → H. Let (en)n⩾1 be an orhonormal basis of H. We
can write

⟨αx , αy⟩H = ∑
n⩾1
⟨αx , en⟩H⟨en , αy⟩H , x , y ∈ X .(4.6)

So the map X × X → C, (x , y) ↦ ⟨αx , αy⟩H is measurable with respect to the σ-
algebra A⊗A. Since we have

∥αx − αy∥2
H = ∥αx∥2

H + ∥αy∥2
H − 2⟨αx , αy⟩H ,

we see that the symbol ϕt defined in (4.4) is measurable.
Note that ϕt converges to the function 1 when t → 0 for the weak* topology of

L∞(X × X). Indeed, for any f ∈ L1(X × X), we have using dominated convergence
theorem

⟨ϕt , f ⟩L∞(X×X),L1(X×X) = ∫
X×X

e−t∥αx−αy∥2
H f (x , y)dx dy ��→

t→0 ∫X×X
f (x , y)dx dy

= ⟨1, f ⟩L∞(X×X),L1(X×X) .

With this convergence, it is left to the reader to show with [ArK22b, Lemma 4.25] that
the symbols (4.4) define a weak* continuous semigroup (Tt)t⩾0.

If H is not separable, we can obtain the measurability of the symbols (4.4) if we
make the stronger assertion that α is strongly measurable [HvNVW16, Definition
1.1.14, p. 8], which is equivalent by the Pettis measurability theorem [HvNVW16,
Theorem 1.1.20, p. 10] to say that α is weak measurable and essentially separably valued,
i.e., there exists a negligible subset N of X such that α(X − N) is separable. In this case,
we can find a separable Hilbert space H containing α(X − N). Consequently, with an
orhonormal basis (en)n⩾1 of H (4.6) is true on (X − N) × (X − N). We conclude as
previously (if X is complete).

5 Dilations of semigroups of measurable Schur multipliers

Let X be a σ-finite measure space. If g ∈ L∞(X), we will use the multiplication oper-
ator Multg ∶L2(X) → L2(X), ξ ↦ gξ. Recall that (Multg)∗ =Multg . We will use the
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following elementary result, which describes the composition of a Hilbert–Schmidt
operator K f ∶L2(X) → L2(X) with multiplication operators. Recall that the space of
Hilbert–Schmidt operators is an ideal of the algebra B(L2(X)) of bounded operators
on the Hilbert space L2(X).

Lemma 5.1 For any ξ ∈ L2(X), any g , h ∈ L∞(X), and any f ∈ L2(X × X), we have
for almost all x ∈ X

((Multg K f Multh)(ξ))(x) = ∫
X

g(x)h(y) f (x , y)ξ(x)dy.(5.1)

So the Hilbert–Schmidt operator Multg K f Multh ∶L2(X) → L2(X) is associated with the
function (x , y) ↦ g(x)h(y) f (x , y)ξ(x).

Proof For almost all x ∈ X, we have

((Multg K f Multh)(ξ))(x) = ((Multg K f )(hξ))(x)
(2.15)= (Multg(∫

X
f (⋅, y)h(y)ξ(y)dy))(x)

= (g(⋅)∫
X

f (⋅, y)h(y)ξ(y)dy)(x) = ∫
X

g(x)h(y) f (x , y)ξ(x)dx . ∎

The following is the first main result of this paper.

Theorem 5.2 Let X be a σ-finite measure space. Let H be a real Hilbert space, and
let α∶X → H be a strongly measurable map. Then the symbols (4.4) for t ⩾ 0 define
a weak* continuous semigroup (Tt)t⩾0 of self-adjoint unital completely positive Schur
multipliers on B(L2(X)). Moreover, there exist an injective von Neumann algebra M
equipped with a normal semifinite faithful trace, a weak* continuous group (Ut)t∈R of
trace-preserving ∗-automorphisms of M, and a unital trace-preserving injective normal
∗-homomorphism J∶B(L2(X)) → M such that

Tt = EUt J ,(5.2)

for any t ⩾ 0, where E∶M → B(L2(X)) is the canonical trace-preserving normal faithful
conditional expectation associated with J.

Proof Let W∶L2
R
(R, H) → L0(Ω) be an L2

R
(R, H)-isonormal process on a prob-

ability space (Ω, μ) as in (2.4). We define the von Neumann algebra M def=
L∞(Ω)⊗B(L2(X)). Note that M is an injective von Neumann algebra. We equip
this von Neumann algebra with the normal semifinite faithful trace τM

def= ∫Ω ⋅ ⊗ Tr.
By [Sak71, Theorem 1.22.13], we have a ∗-isomorphism M = L∞(Ω, B(L2(X))). We
define the canonical unital normal injective ∗-homomorphism

J∶ B(L2(X)) �→ L∞(Ω)⊗B(L2(X))
z �→ 1⊗ z .(5.3)

It is clear that the map J preserves the traces. We denote by E∶L∞(Ω)⊗B(L2(X)) →
B(L2(X)) the canonical trace-preserving normal faithful conditional expectation of
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M onto B(L2(X)). Note that E = ∫Ω ⋅ ⊗ IdB(L2(X)). For almost all ω ∈ Ω and any t ⩾ 0,
we introduce with (2.7)

kt ,ω(x) def= e
√

2i(Wt(αx))(ω) , x ∈ X .(5.4)

Let ( f i) be an orthonormal basis of the separable Hilbert space L2
R
(R+). By the Pettis

measurability theorem [HvNVW16, Theorem 1.1.20, p. 10], there exists a negligible
subset N of X such that α(X − N) is subset of a separable closed subspace H0 of
H. Let (e j) be an orthonormal basis of H0. For any t > 0 fixed, we can write almost
everywhere (with [HvNVW18, Corollary 6.4.4, pp. 35–36])

(Wt(αx))(ω)
(2.4)(2.7)= ∑

i , j∈I
γ i , j(ω)⟨1[0,t] ⊗ αx , f i ⊗ e j⟩L2

R
(R+ ,H)

= ∑
i , j∈I

γ i , j(ω)⟨1[0,t] , f i⟩⟨αx , e j⟩H .

We conclude that the function X ×Ω → C, (x , ω) ↦ kt ,ω(x) is measurable.
If t < 0, we define kt ,ω(x) by the same formula but with Wt(αx) def= W(−1[t ,0] ⊗

αx). For any t ∈ R, we can define an element Vt of L∞(Ω, B(L2(X))) by

Vt(ω) def= Multk t ,ω .(5.5)

Indeed, the function Vt is weak* measurable since if we consider a normal linear form
f ∶B(L2(X)) → C, z ↦∑n⩾1⟨z(ξn), ηn⟩L2(X) with∑n⩾1(∥ξn∥L2(X) + ∥ηn∥L2(X)) < ∞
[Li92, Proposition 1.2.2, p. 9], we see that

f (Multk t ,ω) = ∑
n⩾1
⟨Multk t ,ω ξn , ηn⟩L2(X) = ∑

n⩾1
∫

X
kt ,ω ξn ηn

is measurable since each integral defines a measurable function ω → ∫X kt ,ω ξn ηn by
Fubini’s theorem. Note that Vt is an unitary element of L∞(Ω, B(L2(X))). Now, for
any t ∈ R, we define the linear map

Ut ∶ L∞(Ω, B(L2(X))) �→ L∞(Ω, B(L2(X)))
g �→ Vt gV∗t

.(5.6)

It is obvious that each map Ut is a trace-preserving ∗-automorphism of the von Neu-
mann algebra M. Moreover, for any elements ξ, η of the Hilbert space L2(Ω, L2(X)) =
L2(Ω × X), we obtain using7 the first part of Lemma 2.1 since ξη ∈ L1(Ω × X)

⟨Vt(ξ), η⟩L2(Ω,L2(X)) = ∫Ω×X
Vt(ξ)(ω, x)η(ω, x)dμ(ω)dx

(5.5)= ∫
Ω×X

kt ,ω(x)ξ(ω, x)η(ω, x)dμ(ω)dx

(5.4)= ∫
Ω×X

e−
√

2i(Wt(αx))(ω)ξ(ω, x)η(ω, x)dμ(ω)dx

��→
t→0 ∫Ω×X

e−
√

2i(Wt0 (αx))(ω)ξ(ω, x)η(ω, x)dμ(ω)dx = ⟨Vt0(ξ), η⟩L2(Ω,L2(X)) .

7We have 1[0,t] ��→t→t0
1[0,t0] and 1[t ,0] ��→t→t0

1[t0 ,0] in L2
R
(R).
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So (Vt)t∈R is a weak continuous family of unitaries hence a strongly continuous
family since by [Str81, p. 41] the weak operator topology and the strong opera-
tor topology coincide on the unitary group. By composition on bounded subsets,
the map R→ L∞(Ω, B(L2(X))), t ↦ Ut(g) is strong operator continuous for any
g ∈ L∞(Ω, B(L2(X))) and clearly even strong* operator continuous, hence weak*
continuous. We conclude that (Ut)t∈R is a point-weak* continuous family of ∗-
automorphisms. For any f ∈ L2(X × X) and any t ∈ R, we have

Ut(1⊗ K f )
(5.6)= ω ↦ (Vt(1⊗ K f )V∗t )(ω) = ω ↦ Vt(ω)K f Vt(ω)∗

(5.7)

(5.5)= ω ↦Multk t ,ω K f (Multk t ,ω)∗
(5.1)= ω ↦ K((x , y) ↦ kt ,ω(x)kt ,ω(y) f (x , y))

(5.4)= ω ↦ K((x , y) ↦ e
√

2i(Wt(αx−αy))(ω) f (x , y)).

In particular, for almost all ω ∈ Ω, any ξ ∈ L2(X), and almost all y ∈ X, we have

([(Ut(1⊗ K f ))(ω)](ξ))(y)
(2.15)= ∫

X
e
√

2i(Wt(αx−αy))(ω) f (x , y)ξ(x)dx .(5.8)

For any t ∈ R, we introduce the right shift St ∶L2
R
(R) → L2

R
(R). We consider the oper-

ator St
def= Γ∞(St) ⊗ IdB(L2(X))∶L∞(Ω, B(L2(X))) → L∞(Ω, B(L2(X))). Essentially,

by the second part of Lemma 2.1, (St)t∈R is a weak* continuous semigroup of ∗-
automorphisms. We have

St(eiW(1[s ,s′[⊗h) ⊗ z) (2.6)= eiW(1[s+t ,s′+t[⊗h) ⊗ z, t ∈ R, h ∈ H, z ∈ B(L2(X)), s < s′ .
(5.9)

For any t ∈ R, we define the ∗-automorphism Ut
def= Ut St . We will prove that (Ut)t∈R

is a group of operators. On the one hand, for any t, t′ ∈ R, we have

Ut′Ut(eiW(1[s ,s′]⊗h) ⊗ 1) = Ut′St′Ut St(eiW(1[s ,s′]⊗h) ⊗ 1)
(5.9)= Ut′St′Ut(eiW(1[s+t ,s′+t]⊗h) ⊗ 1)

= Ut′St′(eiW(1[s+t ,s′+t]⊗h) ⊗ 1) (5.9)= Ut′(eiW(1[s+t+t′ ,s′+t+t′]⊗h) ⊗ 1)
= eiW(1[s+t+t′ ,s′+t+t′]⊗h) ⊗ 1 = Ut+t′(eiW(1[s ,s′]⊗h) ⊗ 1).

On the other hand, for any t, t′ ⩾ 0 and any ξ ∈ L2(X), we have
Ut′Ut(1⊗ K f ) = Ut′St′Ut St(1⊗ K f )

(5.9)= Ut′St′Ut(1⊗ K f )
(5.7)= Ut′St′(ω ↦ K((x , y) ↦ e

√
2i(Wt(αx−αy))(ω) f (x , y)))

= Ut′(ω ↦ K((x , y) ↦ e
√

2i(W(1[t′ ,t+t′]⊗(αx−αy)))(ω) f (x , y)))
(5.6)(5.5)= ω ↦Multk t′ ,ω

K((x , y) ↦ e
√

2i(W(1[t′ ,t+t′]⊗(αx−αy)))(ω) f (x , y))
(Multk t′ ,ω

)∗

(5.1)= ω ↦ K((x , y) ↦ kt′ ,ω(x)kt′ ,ω(y)e
√

2i(W(1[t′ ,t+t′]⊗(αx−αy)))(ω) f (x , y))
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(5.4)= ω ↦ K((x , y) ↦ e
√

2i(Wt′(αx−αy))(ω)e
√

2i(W(1[t′ ,t+t′]⊗(αx−αy)))(ω) f (x , y))

= ω ↦ K((x , y) ↦ e
√

2i(Wt+t′(αx−αy))(ω) f (x , y))
(5.8)= Ut+t′(1⊗ K f ) = Ut+t′(1⊗ K f ).

Similarly for any t ⩽ 0 and any t′ ⩾ 0 such that t′ ⩽ −t and any ξ ∈ L2(X), we have

Ut′Ut(1⊗ K f ) = Ut′St′Ut St(1⊗ K f )
(5.9)= Ut′St′Ut(1⊗ K f )

(5.7)= Ut′St′(ω ↦ K((x , y) ↦ e
√

2i(W(−1[t ,0]⊗(αx−αy)))(ω) f (x , y)))

= Ut′(ω ↦ K((x , y) ↦ e
√

2i(W(−1[t′+t ,t′]⊗(αx−αy)))(ω) f (x , y)))
(5.6)(5.5)= ω ↦Multk t′ ,ω

K((x , y) ↦ e
√

2i(W(−1[t′+t ,t′]⊗(αx−αy)))(ω) f (x , y))
(Multk t′ ,ω

)∗

(5.1)= ω ↦ K((x , y) ↦ kt′ ,ω(x)kt′ ,ω(y)e
√

2i(W(−1[t′+t ,t′]⊗(αx−αy)))(ω) f (x , y))
(5.4)= ω ↦ K((x , y) ↦ e

√
2i(W(1[0,t′]⊗(αx−αy)(ω)e

√
2i(W(−1[t′+t ,t′]⊗(αx−αy)))(ω)

f (x , y))

= ω ↦ K((x , y) ↦ e
√

2i(W(−1[t′+t ,0]⊗(αx−αy)(ω) f (x , y)) since t + t′ ⩽ 0 ⩽ t′

(5.8)= Ut+t′(1⊗ K f ) = Ut+t′(1⊗ K f ).
The remaining cases are left to the reader. With these computations, it is easy to
check that (Ut)t∈R is a weak* continuous group of ∗-automorphisms (consider the
preadjoint maps of the Ut ’s and use [EnN00, Lemme, B.15] to prove the weak*
continuity of the group).

For any f ∈ L2(X × X), any ξ ∈ L2(X), all t ⩾ 0, and almost all y of X, we finally
have8

([EUt J(K f )](ξ))(y)
(5.3)= ([EUt(1⊗ K f )](ξ))(y) = ([EUt St(1⊗ K f )](ξ))(y)

= ([EUt(1⊗ K f )](ξ))(y) = ([∫
Ω
(Ut(1⊗ K f ))(ω)dμ(ω)](ξ))(y)

= ∫
Ω
([(Ut(1⊗ K f ))(ω)](ξ))(y)dμ(ω)

(5.8)= ∫
Ω
(∫

X
e
√

2i(Wt(αx−αy))(ω) f (x , y)ξ(x)dx)dμ(ω)

= ∫
X
(∫

Ω
e
√

2i(Wt(αx−αy))(ω) dμ(ω)) f (x , y)ξ(x)dx

(2.13)= ∫
X

e−t∥αx−αy∥2
H f (x , y)ξ(x)dx

(4.4)= ∫
X

ϕt(x , y) f (x , y)ξ(x)dx (2.15)= (Kϕ t f (ξ))(y).

8Note that the function f (⋅, y) belongs to L2(X) for almost all y ∈ X.
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Hence, we have (EUt J(K f ))(ξ) = (Kϕ t f (ξ) and finally EUt J(K f ) = Kϕ t f . By weak*
density, we deduce the existence of Tt and (5.2). For any t, t′ ⩾ 0 and all x , y ∈ X, we
have

e−t∥αx−αy∥2
H e−t′∥αx−αy∥2

H = e−(t+t′)∥αx−αy∥2
H .

We deduce that (Tt)t⩾0 is a semigroup. Furthermore, the function (4.4) is real-
valued. By Proposition 4.2, we conclude that each Tt is self-adjoint. The factorization
(5.2) shows that each Tt is completely positive and unital. The weak* continuity is a
consequence of the one of the group (Ut)t∈R. ∎
Remark 5.3 It would be interesting to give a direct proof of the first part, i.e., without
the factorization (5.2).

6 Markov dilations of semigroups of measurable Schur multipliers

Our second main result is the following theorem, which gives a standard Markov
dilation.

Theorem 6.1 Let X be a σ-finite measure space. Let H be a real Hilbert space, and
let α∶X → H be a strongly measurable map. Consider the weak* continuous semigroup
(Tt)t⩾0 of self-adjoint unital completely positive Schur multipliers on B(L2(X)) defined
in Theorem 5.2 by the symbols (4.4). There exist an injective von Neumann algebra N
equipped with a normal semifinite faithful trace, an increasing filtration (Ns)s⩾0 of N
with associated trace-preserving conditional normal faithful expectations Es ∶N → Ns ,
and trace-preserving unital normal injective ∗-homomorphisms πs ∶B(L2(X)) → Ns
such that

Es πt = πs Tt−s , 0 ⩽ s ⩽ t.(6.1)

Proof Let W∶L2
R
(R+, H) → L0(Ω) be an H-cylindrical Brownian motion on a

probability space (Ω, μ) (see Section 2). As in the proof of Theorem 5.2, for almost
all ω ∈ Ω and any t ⩾ 0, we introduce the element (5.4) and for any t ⩾ 0 the element
Vt of L∞(Ω, B(L2(X))) defined by (5.5). Recall that Vt is a unitary element of the von
Neumann algebra N def= L∞(Ω, B(L2(X))), which is clearly injective. Again with the
∗-homomorphism J defined in (5.3) and the ∗-automorphism Ut defined in (5.6), we
define for any t ⩾ 0 the unital normal injective ∗-homomorphism

πt
def= Ut J∶ B(L2(X)) �→ L∞(Ω, B(L2(X)))

z �→ Vt(1⊗ z)V∗t
.(6.2)

It is obvious that πt is trace-preserving. For any t ⩾ 0, we also define the canon-
ical normal conditional expectations EFt ∶L∞(Ω) → L∞(Ω, Ft) and Et

def= EFt ⊗
IdB(L2(X))∶L∞(Ω, B(L2(X)) → L∞(Ω, Ft , B(L2(X)) where the σ-algebra Ft is
defined in (2.8). We introduce the von Neumann algebra Nt

def= L∞(Ω, Ft , B(L2(X)).
Note that the range of πt is included in Nt .

For almost all ω ∈ Ω, the Hilbert–Schmidt operator

(πt(K f ))(ω)
(6.2)(5.3)= (Ut(1⊗ K f ))(ω)
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is associated by the computation (5.7) with the function

(x , y) ↦ e
√

2i(Wt(αx−αy))(ω) f (x , y).(6.3)

Similarly, for any 0 ⩽ s ⩽ t and almost all ω ∈ Ω, the operator

(πs(Tt−s(K f )))(ω) = (πs(Kϕ t−s f ))(ω)

is Hilbert–Schmidt and associated with the function

(x , y) ↦ e
√

2i(Ws(αx−αy))(ω)e−(t−s)∥αx−αy∥2
H f (x , y).(6.4)

Now, recall that (Wt(h))t⩾0 is a Brownian motion for any fixed h ∈ H. Hence, for any
0 ⩽ s ⩽ t and any x , y ∈ X, the random variable

W(1]s ,t] ⊗ (αx − αy)) =W(1[0,t] ⊗ (αx − αy)) −W(1[0,s] ⊗ (αx − αy))(6.5)
(2.7)= Wt(αx − αy) −Ws(αx − αy)

is independent by (2.12) from the σ-algebra Fs
(2.8)= σ(Wr(h) ∶ r ∈ [0, s], h ∈ H).

Consequently, the random variable e
√

2iW(1]s ,t]⊗(αx−αy)) is also independent from the
σ-algebra Fs . Using [HvNVW16, Proposition 2.6.31] in the fourth equality since each
random variable Ws(αx) is Fs-measurable, we finally obtain, for any 0 ⩽ s ⩽ t and
any f ∈ L2(X × X),

Es πt(K f )
(6.3)= Es(ω ↦ [K((x , y) ↦ e

√
2iWt(αx−αy)(ω) f (x , y))])

(6.5)= Es(ω ↦ [K((x , y) ↦ e
√

2iWs(αx−αy)(ω)e
√

2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y))])
(5.1)= Es(ω ↦Multks ,ω[K((x , y) ↦ e

√
2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y))]Multks ,ω

)

= [ω ↦Multks ,ω]Es(ω ↦ [K((x , y) ↦ e
√

2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y)))
[ω ↦Multks ,ω

]
(2.14)= [ω ↦Multks ,ω]E(ω ↦ [K((x , y) ↦ e

√
2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y))])

[ω ↦Multks ,ω
].

Now, for any ξ ∈ L2(X) and almost all y ∈ Y , we see that

E(ω ↦ [K((x , y) ↦ e
√

2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y))])(ξ)(y)

= (∫
Ω

K((x , y) ↦ e
√

2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y)))dμ(ω))(ξ)(y)

= ∫
X
(∫

Ω
e
√

2iW(1]s ,t]⊗(αx−αy))(ω) dμ(ω)) f (x , y)ξ(x)dx

(2.13)= ∫
X

e−(t−s)∥αx−αy∥2
H f (x , y)ξ(x)dx .

Consequently, the previous expectation is

E(ω ↦ [K((x , y) ↦ e
√

2iW(1]s ,t]⊗(αx−αy))(ω) f (x , y))])
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= K((x , y) ↦ e−(t−s)∥αx−αy∥2
H f (x , y)).

Finally, we obtain

Es πt(K f ) = [ω ↦Multks ,ω]K((x , y) ↦ e−(t−s)∥αx−αy∥2
H f (x , y))[ω ↦Multks ,ω

]
(5.1)= ω ↦ K((x , y) ↦ e

√
2iWs(αx−αy)(ω)e−(t−s)∥αx−αy∥2

H f (x , y))
(6.4)= πs(Tt−s(K f )).

By weak* density, the proof is complete. ∎

Similarly, we can prove the following reversed Markov dilation.

Theorem 6.2 Let X be a σ-finite measure space. Let H be a real Hilbert space, and
let α∶X → H be a strongly measurable map. Consider the weak* continuous semigroup
(Tt)t⩾0 of self-adjoint unital completely positive Schur multipliers on B(L2(X)) defined
in Theorem 5.2 by the symbols (4.4). There exist an injective von Neumann algebra N
equipped with a normal semifinite faithful trace, a decreasing filtration (Ns)s⩾0 of N with
associated trace-preserving normal faithful conditional expectations Es ∶N → Ns , and
trace-preserving unital normal injective ∗-homomorphisms πs ∶B(L2(X)) → Ns such
that

Es πt = πs Ts−t , 0 ⩽ t ⩽ s.(6.6)

7 Applications to functional calculus and interpolation

We refer to [Haa06, HvNVW18, JMX06, KuW04, LeM07] for background on secto-
riality and H∞ functional calculus. In the spirit of the result of [Arh20, Theorem 4.1],
we can prove the following theorem with a similar argument.

Theorem 7.1 Let X be a σ-finite measure space. Let H be a real Hilbert space, and
let α∶X → H be a strongly measurable map. Consider the weak* continuous semigroup
(Tt)t⩾0 of self-adjoint unital completely positive Schur multipliers on B(L2(X)) defined
in Theorem 5.2 by the symbols (4.4). Suppose 1 < p < ∞. We let −Ap be the generator
of the induced strongly continuous semigroup (Tt , p)t⩾0 on the Banach space S p

X . Then,
for any θ > π∣ 1p −

1
2 ∣, the operator Ap has a completely bounded H∞(Σθ) functional

calculus.

Let T = (Tt)t⩾0 be a Markov semigroup on a von Neumann algebra M equipped
with a normal semifinite faithful trace. We set M0

def= {x ∈M ∶ limt→∞ Tt(x) = 0}
where the limit is a weak* limit. For 1 ⩽ p < ∞, we let Lp

0(M)
def= {x ∈ Lp(M) ∶

limt→∞ Tt(x) = 0} where the limit is for the Lp-norm.
Recall that the column-BMO-seminorm is defined by

∥x∥BMOc
T

def= sup
t⩾0
∥Tt (∣x − Tt(x)∣2) ∥

1
2
∞, x ∈ L2

0(M).
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Then we can define the row-BMO-seminorm ∥x∥BMOr
T

def= ∥x∗∥BMOc
T

and finally the
BMO-seminorm

∥x∥BMOT

def= max{∥x∥BMOc
T

, ∥x∥BMOr
T
}.

In this context, we can introduce a Banach space BMOT and we refer to [Mei08,
Section 3] and [Cas19, JM12] for a precise definition. Combining Theorem 6.2 and
[JM12, Theorem 5.12], we obtain the following interpolation formula by observing
that each operator Tt of the semigroup is trace-preserving by the factorization of
Theorem 5.2.

Theorem 7.2 Let X be a σ-finite measure space. Let H be a real Hilbert space, and
let α∶X → H be a strongly measurable map. Consider the weak* continuous semigroup
(Tt)t⩾0 of self-adjoint unital completely positive Schur multipliers on B(L2(X)) defined
in Theorem 5.2 by the symbols (4.4). Suppose 1 ⩽ p < ∞. Then

(BMOT , S1
X ,0) 1

p
≈ S p

X ,0

with equivalence of norms up to a constant ≈ p.

Remark 7.3 We can replace the space BMOT by other BMO-spaces (see [JM12,
Theorem 5.12]).

Finally, we could give applications in ergodic theory in the spirit of the paper
[JiW17].
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