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Abstract. Regularity and chaos of “quasi-stable” (i.e. appearing stable during a finite interval
of time) planetary orbits around one component of binary stars is investigated for different
values of the binary’s mass ratio and orbital eccentricity e. The behavior of fictitious planetary
orbits around 16 Cyg B-like stars is presented. Among the quasi-stable orbits we found that
there exists a (“stability zone”) for every values of e, but that the existence of nearly-circular
planetary orbits is restricted to values of e less than 0.8. However, not all the quasi-stable orbits
are regular: emergence of chaos when e increases is shown in two sets of quasi-stable orbits (each
set has fixed initial conditions for the planet, but varying values for e from 0 to 0.99). In the
first set, which lies in the “heart” of the stability zone, chaos appears only when e approaches 1.
The second one is near the border of the stability zone, and chaos appears as soon as e reaches
0.7. The influence of the binary’s orbital eccentricity on the limit between regularity and chaos
is therefore stronger in the latter case (wider planetary orbits) than for the former one (closer
planetary orbits).

Keywords. Celestial mechanics, methods: n-body simulations, stars: binaries: individual (16
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1. Introduction

Cosmogonical theories as well as recent observations allow us to expect the actual
existence of numerous exo-planets, including in binaries (for example around 16 Cyg B
and in the 16 Cyg system; see Gorshanov et al. 2005). Then arises the dynamical problem
of stability for planetary orbits in double star systems. Modern computations (Dvorak
et al. 1989, 2004; Hale 1994; Holman & Wiegert 1999; Lohinger et al. 1993; Udry et al.
2004) have shown that many such stable orbits do exist, among which we consider orbits
around one component of the binary (called S-type orbits; see Pilat-Lohinger & Dvorak
2002; Pilat-Lohinger 2005).

The model is the planar restricted three-body problem, where the parameters reduce
to e, the orbital eccentricity of the binary, and u, the reduced mass of the primary of
the planet, and where the initial conditions of the massless body may be reduced to two:
X, > 0 and V,. The equations of motion are written in a rotating-pulsating frame, and
are integrated using a classical 4th order Runge-Kutta scheme with improved coefficients
and with variable time step. We call an orbit stable — or, more rigorously, “quasi-stable”
(but hereafter called nevertheless “stable” for simplification) — if there has been neither
collision with a star nor escape during a given time, as stated in previous papers (see,
e.g., Benest 1988a, which contains a large list of references).

Within this framework, the phase space of initial conditions for fictitious S-type plan-
etary orbits in given binaries is systematically explored. The subset of stable initial
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conditions — the “stability zone” — is established, and easily visualised on the plane
(X, > 0,V,).

2. Stable planetary orbits in binaries

In previous papers (Benest 2003, and references therein), one of us showed that stable
planetary orbits, around either the lightest (B) or the heaviest (A) component of Sirius
and of 4 nearby binary systems for which p = 0.45 and 0.55, exist up to distances from
their primary of the order of more than half the binary’s periastron separation. The
results obtained in the circular case (e = 0) were then confirmed in the more realistic
elliptic case. Among these stable orbits, nearly-circular ones exist for the binaries having
a not too high orbital eccentricity.

Besides, we use Lyapunov indicators as indicators of chaos, computed with a Bulirsch
& Stoer integrator with variable time step, and we study the stochasticity of some such
stable planetary orbits. Then, we have found an example of a chaotic orbit which, nev-
ertheless, lasted during 100 years in a quasi-stable state: a longer integration would be
needed to determine its actual nature, bounded chaos (i.e. the motion is chaotic but stays
inside a finite volume for an infinite time; see, e.g., Laskar 1990) or sticky orbit (i.e. the
motion looks like a bounded chaos during a long, sometimes very long, time — which may
be called “confined chaos” — but finally escapes out to infinity; see Dvorak et al. 1998).

3. Orbiting 16 Cygni B-like stars

More recently, we have extended this study to planetary orbits around 16 Cygni B-like
stars, i.e. around the lightest component of binaries having same value of p that the
actual 16 Cygni B (u = 0.485) but varying e: the orbital eccentricity of the double star
16 Cyg is not well known, its value being generally evaluated between 0.54 and 0.96, and
we have extended this interval to [0,1] for our study.

The first results (Benest & Goncezi 2004) have confirmed the existence of stable (during
100 revolutions of the binary) nearly-circular S-type planetary orbits (very abundant for
low values of e, see Figure 1; fairly abundant for e = 0.7, see Figure 2), excluding the
case of very high eccentricity of the binary (Figure 3, e = 0.95). Moreover, investigating
the chaotic behaviour of two sets of stable planetary orbits (one of close orbits in the
very “heart” of the stability zone, and the other of wide ones just inside its border),
we have shown that the stability of the first set is not destroyed when the binary’s
eccentricity increases even to very high values: for e = 0.95, the planetary orbit of this
first set is chaotic but stays confined up to 1 billion years. On the contrary, the stability
of the second set is destroyed as soon as the eccentricity e reaches the value 0.8, and the
planetary orbit of this second set for e = 0.7 stays in confined chaos up to 1 billion years
as well.

In the next section, we put the light on these two chaotic orbits which lie very near
the limit between regularity and chaos, on the chaotic side. Both stay confined during
the computation time span cited above, but determining the kind of confinment (bound
or stickiness) would need more computation.

4. Bounded or sticky?

Figures 4 and 5 show, for the two orbits mentioned above, the evolution with time
of the greatest Lyapunov indicator (top) together with the two main planetary orbital
elements — eccentricity e and semi-major axis a in a.u. — (bottom). The time span of the
computation
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Figure 1. The subset of initial conditions in the (Xo,Vp) plane (dimensionless coordinates in
the rotating-pulsating frame) for stable planetary orbits (stability zone) around a 16 Cyg B-like
star when e = 10™%: the pointed (resp. crossed, x-ed, asterisked and filled) squares indicate
planetary orbits whose eccentricity es stays under the respective values given in the graph.
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Figure 2. The stability zone for planetary orbits around a 16 Cyg B-like star when e = 0.7;
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Figure 3. The stability zone for planetary orbits around a 16 Cyg B-like star when e = 0.95;

same notations as in Fig. 1.
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Figure 4. Evolution vs. time of the greatest Lyapunov indicator (top) and of two orbital

elements — eccentricity e and semi-major axis a — (bottom) for a fictitious planet widely orbiting
a 16 Cyg B-like star when e = 0.7 (initial conditions given in the text).

is 100 billion years for orbit 1 (figure 4, e = 0.7, wide planetary orbit, X, = 0.325 and
V, = -1.45 — see fig. 2), and only 25 billion years for orbit 2 (figure 5, e = 0.95, close
planetary orbit, X, = 0.075 and V,, = -2.0 — see fig. 3), the latter value being shorter due
to the integration variable time step which is much more little for a close orbit than for
a much wider one.

https://doi.org/10.1017/5174392130400852X Published online by Cambridge University Press


https://doi.org/10.1017/S174392130400852X

Planetary orbits in double stars 83

ben95—inv

10* 10° 10° 107 10%® 10° 10%° 10

Time (yrs)

0.15

4.6 - -

4.4 - -

4.2 B

4 L L L L L
0 5x10°

L L L L L L L L
10%° 1.5x10'° 2x10%° 2.5%x10'°

Time (yrs)

Figure 5. Greatest Lyapunov indicator, e and a for a fictitious planet closely orbiting a 16
Cyg B-like star when e = 0.95 (initial conditions given in the text).

For the two orbits, the greatest Lyapunov indicator, after having decreased regularly
during almost 1 (Fig. 5) to 10 (Fig. 4) millions years, begins to deviate and even in-
crease — and further decrease again for orbit 1 —, which is clearly an indicator of chaos;
nevertheless, the planetary orbital elements keep a regular behaviour: e oscillates with a
relative large amplitude but without any dangerous jump; besides, the amplitude of a is
low — very low for orbit 2, which shows moreover a slow drift. Therefore, the chaos should
be fairly weak and seems to stay confined during the integration time span. However, the
question: do we have bounded chaos or stickiness? is still open dynamically speaking. But
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practically, after the death of the star, and its passage through the red giant stage, no
interesting planet could probably survive (although the detection of exoplanets around
pulsars could incline us to be cautious about such an assertion).

5. Conclusion

Our main result is that the influence of the binary’s orbital eccentricity on the limit
between regularity and chaos is therefore stronger in the latter case (wider planetary
orbits) than for the first one (closer planetary orbits). Of course, the existence of stable
orbits does not mean that there are actual planets on these trajectories, for this is the
problem of formation of planets in a young binary’s environment (see, e.g., Santos et al.
2004).

Let us conclude by two remarks. Firstly, our model is a planar one, but it has been
shown since the seventies and by modern calculations (Pilat-Lohinger et al. 2003) that
instability arises only for high values of the inclination. Finally, the existence of the
gravitational field of other celestial bodies, such as stars or giant interstellar clouds, as
well as galactic tides, may disturb this stability (regularity or confined chaos). But the
present study is made within the frame of the three-body dynamical model and any
more-body problem is, as Kipling said, another story.
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