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FUNCTIONAL MEANS AND HARMONIC FUNCTIONAL MEANS
SOON-YEONG CHUNG
For a continuous function f(¢) on (0,00) which is strictly monotone and a proba-

bility measure p on [0,1] we introduce the functional mean 9 (z,y; 1) and the
harmonic functional mean $(z,y;p) of £ > 0 and y > 0 with respect to p by

M, (5, 11) = £ [ / O + (1= ) du(/\)] ,
0

-1
Dz, y;pm) = [mf (%%}u)] ,

which gives a unified approach to various famous means.
Moreover, functional means and harmonic means in n variables are also given
and applied to get many interesting properties, such as

n
D@1, T25 - Tnip) - My (21,20, 205 ) = sz
j=1

I~— .
where 5 = || z;i.
i#£j

0. INTRODUCTION
The purpose of this paper is to give a unified approach to various familiar means.
Let f(t) be a continuous function on (0,00) which is strictly monotone and let p
be a probability measure on the interval on [0,1]. Then we define a functional mean
My (z,y; ) of positive numbers = and y ith respect to u by

Iy, = 17 [ 100+ 1= A)dutn)].

Then it will be shown that various means (arithmetic mean, geometric mean, power
mean, logarithmic mean, identric mean, et cetera) can be expressed as My (z,y; p) for
appropriate functions f.
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A harmonic functional mean $¢(z,y, &) is introduced by

im0
F\T, Y 1) = ’i x:yaﬂ' ’
so that
H5(x,y; 1) - My (z,v; 1) = {VZT)

if f(t) satisfies some homogeneity condition .
The functional mean and the harmonic functional mean in n variables will be
introduced and many interesting results will be derived. In particular,

n
ﬁf(zl,xZ)‘-' ,xn;ﬂ) mf(mllvx’m ax:p”’) = ij
i=1

where z} = [] =;.
i#j

1. FuncTiONAL MEANS

Let f:(0,00) — R be a continuous function which is strictly monotone. By the
mean value theorem for each z > 0 and y > 0 we can find a unique z between z and
y such that

/x ' (et = £(2)(@ - y)

Here, f(z) can be understood as an average value of f(£) when ¢ varies between x and
y, so that z gives in a certain sense, a mean value of z and y which is expected to be
related strongly to f(t). Thus we define a functional mean as follows:

DEFINTION: Let f(t) be a continuous function on (0,00) which is strictly mono-
tonic, and let 1 be a probability measure supported by the interval [0,1]. For £ > 0
and y > 0 we define a functional mean 9M;(z,y; ) with respect to the probability
measure p by

M (z,y; ) = £ [ /0 Fz+ (1= Nw)du(V)] .

By the mean value theorem it can be easily seen that the mean value M (z,y; p)
is uniquely determined. It is true that My (z, z; p) = z for every z > 0 and My (z, y; 1)
lies between z and y when z # y. On the other hand, Ms(z, y; 1) is usually symmetric
in the sense that
My (z,y; p) # Ms(y, z; 1)

unless p is equally distributed on [0, 1].
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[3] Functional means 209

When 4 is the Lebesgue measure we simply write 9 (z,y) instead of Ms(z, y; p).
In what follows, when we refer to 9¢(z,y; 1) we always understand that f is a continu-
ous function on (0, 00) which is strictly monotone, p is a probability measure supported
by [0,1], and z,y > 0.

EXAMPLE. (i) 9M(z,y) = (z + y)/2 is the arithmetic mean A(z,y).
(i) My(z,y) = (z —y)/(logz — logy) is the logarithmic mean L(z,y).
(iii) 9M,/p2(z,y) = /Ty is the geometric mean G(z,y).
(iv) DMoge(z,y) = (1/e) (22 /y¥)Y@¥) is the identric mean I(z,y).
V) My vlze) = (Va+vE) /2)°.
(vi) Myya(z,y) =3/25%%/(z +v).

(vii) Met(z,y) = log ((e” — e¥)/(z - y)).
(viii) Let p be the measure concentrated on {0,1} defined by

1
P
p({A}) = 1
q

for 1/p+1/g=1, p>0, ¢ > 0. Then for any f

+___

Ms(z,y;0) = f71 [ﬂpi) ffly)] .

In particular, if f(t) =t" (r # 0) then

r

T yr 1/r
Myr (z,y; 1) = (— + —)
P q

is the weighted r-th power mean.

The next few theorems parallel classical results in {4, Chapter 3]. The first theorem
characterises functions which produce a common functional mean:

THEOREM 1.1. In order that
My (z,y; 1) = My(z, y; 1)

for all z,y > 0 and all probability measures p on [0,1] it is necessary and sufficient
that
f(z)=og(z)+B, z€(0,00)
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for some constants a (a # 0) and .

PROOF: The sufficiency is easy. We prove the necessity. By the assumption we
may put

z=f"" [/01 faz+(1- /\)y)du(/\)] =g! [/0

for all z,y and any probability measure ;. Take £ = a and y = b (a < b) arbitrarily
on (0,00) and a probability measure yu; concentrated on {0,1} with

g(Az + (1 - /\)y)du(/\)]

t—a

b—a’ A=0,

m{) =4 ¢
, A=1.

b—a

for each parameter ¢ with a <t < b. Then it follows that

(1) £e) = 3= fla) + =2 5(0)
and
(12) 9(2) = 2tg(a) + T 290)

for a <t < b. Of course, this is still true for ¢t = a and t = b and as t varies from a
to b, z assumes all values in [a,b]. From (1.2) we have

(b— a)g(2) + ag(b) — bg(a)
9(b) - g(a) '

If we substitute this for ¢ in (1.1) we obtain

t =

fz) = g(b) —g(Z)f(a) 4 9(2) —g(a)f(b)

~ g(®) — g(a) g(b) — g(a)
_ 0= @), aB)fa) - o@)f®)
=90 @@ =g

which implies that
f(2) = ag(z) + B on [a, ]

where a and B are constants, possibly depending on the choice of a and b. But in fact
these constants do not depend on the choice of a and b. To see this, let a; and b, be
such that a < a; < b < b;. Then as in the argument above there are constants a; and
B1 such that

f(z) = a1g(2) + B on [ay, by].
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[5] Functional means 211

But they must coincide on the interval [aq, b], say,

(a —a1)g(z) = Br — B on [a1,d],

This implies that g(z) must be constant on [a;,b], which is impossible, since g is
strictly monotone. This completes the proof. 0

Write f ~ g if the functions, f and g produce the same functional mean. In view
of the above theorem

f ~gifand only if f(z) = ag(z) + B, =z € (0,00)

for some a # 0 and 3. Moreover, we may assume that the function f which is
concerned with 9tf(-,-; ), is always strictly increasing.
Most of the standard examples of means have a property of homogeneity

My (kx, ky; p) = kMg (z,y;1), k>0

for all z,y and p. So it is quite natural to ask what kind of functions give a homogeneous
functional mean.

THEOREM 1.2. In order that
My (kz, ky; p) = kMs(z, y; 1)

for every z,y,k > 0 and every probability measure p on [0,1], it is necessary and
sufficient that either f(t) ~ t" for some r # 0 or f(t) ~ logt.

PROOF: We prove only the necessity here. By Theorem 1.1 we may assume that
f(1) = 0. If we put g(z) = f(kz) then the relation

My (kz, ky; 1) = kD (z, y; 1)

implies that
1
oM, (z,y; ) = k=1 f [ [ 1Bk + 1= ] du(/‘\)]

=g! [/01 g(rz+(1- /\)y)dp()\)]
= My(z, y; p)-

Thus in view of Theorem 1.1 we may write

9(z) = f(kz) = a(k)f(z) + B(k)
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for some a(k) # 0 and B(k). We obtain from this that

9(1) = f(k) = B(k).

Substituting y for & we find that for all z,y > 0

flzy) = a(y) f(z) + f(y)

or, equivalently,

f(zy) = a(z) f(y) + f(z).

These give
a(z) -1 _ aly)—1
f(z) f(v)
when f(z) # 0 and f(y) # 0. But since f is strictly monotone and continuous the

final conclusion in the last part of this proof must be true on (0,00). Each of these
functions must reduce to a constant K, so that a(y) =1+ K f(y). Then we obtain

flzy) = Kf(2)f(y) + f(=) + f(y)-

Here if K = 0 then this functional equation reduces to the famous equation

f(zy) = f(z) + f(v)-

It is well known that the only continuous solution of this functional equation for z > 0
is f(x) = Clogz where C is an arbitrary constant.
Secondly, if K # 0 we put K f(z) +1 = F(z). Then the equation becomes

F(zy) = F(z)F(y)

whose general solution is F'(z) = z", where r is a constant. In both cases the constants
C and r must be nonzero in order that f should be strictly monotonic. This completes
the proof. |

We shall now discuss the comparability of two functional means with respect to
the same probability measure. Many results about comparability have been developed
(see [1, 2,4, 6,7, 8,9, 10]). Many of those can be restated by the following theorem:

THEOREM 1.3. Let f and g be continuous and strictly increasing on (0,00).
Then a necessary and sufficient condition in order that

My (z, y; 1) < DMy(z, y; 1)
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[7] Functional means 213

for all z,y and u, is that go f~! is convex.

PRrROOF: In view of Jensen’s inequality it follows that

1 1
(gof™1) UO faz+ (1 - /\)y)du(/\)] </0 g(Az + (1 - N)y)du(r).

1

Since g~* is also increasing we obtain

1

! [/01 fPz+(1- /\)y)du(f\)} <g7! [/0 g(Az(1 = Ny)du(N)|,

which is the required result.

Now to prove the converse we assume that Ms(z,y; 1) < My(z,y; p) holds for all
z,y and . For 0 <t < 1, let p; be the probability measure concentrated on {0,1}
given by
t, A=0,
1-t, A=1

p{A} = {

If 2; and 2z, belong to the range of f such that f(z1) = z; and f(x2) = 2z where
z1,Z2 > 0 then the hypothesis gives that

FHef () + (1= t)f(z2)] < 97 [tg(z1) + (1 — t)g(z2)].
Then it follows that for all ¢ in (0,1)
(gof Nt + (1 —t)z2] S t{go f ) (z1) + (1A —t)(go f)2e,

which implies the convexity of go f~1. 1]

ExXAMPLE. In view of the above theorem we can easily obtain the well known inequality
G(z,y) < L(z,y) < I(z,y) < Az, y)

by expressing these respectively as functional means.
We now prove the monotonicity and continuity of the functional mean.

THEOREM 1.4. For any function f on (0,00) which is continuous and strictly
monotone the functional mean My (z,y; u) is continuous on (0,00) x (0,00) and in-
creasing in the sense that

if 1y € z2 and y1 < y2 then My (z1, y1; p) < My (T2, y2; 1)
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for any probability measure p on [0,1].

PROOF: In view of Theorem 1.1 we may assume that f is strictly increasing, by
replacing f by —f if necessary. Let (zg,¥0) € (0,00) X (0,00) and let {(x,,,y,,)} be
a sequence in (0,00) x (0,00) converging to (zp,yo). Then since both f and —f are
continuous the convergence theorem for the integral implies ‘

1

Jim Ty = lim 17| [0+ (1= D))
1

=77 [, [ 10 + (1 = Dun)au)

=ft [/01 fQzo+(1- /\)yo)d#(/\)] ,

which gives the continuity of M (z,y; p).
Now let z; € z2 and y; € y2 on (0,00). Then we have

A1+ (1 -Ny1 €Az + (1= Ay, 0<AKL
Since f and f~! are both increasing it follows easily that

My (z1, 915 1) < Mp(x2, y2; 1)

2. FUNCTIONAL HARMONIC MEAN

The harmonic mean H(z,y) of two positive numbers z and y is given by

2zy 1 1\17!
e = 25 = [ (1))
r+y Ty
It is of interest to introduce the functional harmonic mean with respect to a probability
measure.

Let f be a continuous function on (0,00) which is strictly monotonic and let u be
a probability measure supported by [0, 1], as before.
For positive numbers z and y we define the functional harmonic mean $¢(z,y; u)

by »
Hr(z,yip) = [mf (%i )J .

In particular, if p is Lebesgue measure we write simply $¢(z,y) instead of Hy(z,y; p).
We consider some examples here.
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EXAMPLE.

(i)

(i)

(i)

Functional means 215

9u(z,9) = [A(1/2,1/y)) " = 22y/(z +y) = H(z,y). f 4 is the proba-
bility measure concentrated on {0,1} with

1
3
{2 =9 5 ;
3
then My (z,y; pu) = fol [Az + (1 — A)y]du(A) = (2z +y)/3, so that

3zy
z+2y

He(z,y; 1) =

Since M, yp2(z,y) = /Ty = G(z,y) it follows that

1 1\]°! T\""
we= e (3)] = (Vz) =oen

Thus we obtain the interesting conclusion
My ye2 (z,y) = N1/e2 (z,y) = G(z,y)
for all z,y > 0. Moreover, it is true that
H1ye2(z, Y5 1) - My 2,y 1) = Y

for every probability measure u (seen later in Theorem 2.1).
Since My e(2,y) = (z — y)/(logz —logy) (= L(z,y))

1 1\17! __logz ~logy
ﬁl/t(z, y) = [L (;$ 5)] = Ty Ty

= [L(z, y)]_lz:y.

Hence, we obtain also

Nie(z,y) - Myp(z,y) =zy = [G(”ay)]z-

We state a general result concerning the above arguments.
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THEGREM 2.1. If f(t) is a continuous function on (0, 00) which is strictly mono-
tone and is equivalent to a homogeneous function in the sense that

(2.1) fkt) = a(k)f(t)+B(k), t>0,k>0
for some real functions (k) # 0 and B(k), then
(2:2) 91 (@,y; 1) - My (2, y;) = [G(z, )]

for all z,y > 0 and for every probability measure p.

ProOF: The functional relation (2.1) reduces to either f(t) ~ ™ (r #0) or f(t) ~
logt. (In fact, this can be seen by the same method as in the proof of Theorem 1.1.)
In view of the equivalence we may assume that either f(t) =t" or f(t) =logt.

We first assume f(t) =" (r % 0). Then

m (33) - [ (0152 o]
_ [ / Dy LNl (A)]”'

Efmf(z, Y 1)

which implies
Bz, g 1) Myp(z,y; p) = zy = [Glz,y))° .

On the other hand if f(t) = logt then

o () o 2+ 52 ]
= exp [ /0 log[My + (1 = A)z]du(}) — log xy]

= My (z,y; w)/zy.

This completes the proof. 1]

3. FUNCTIONAL MEAN IN n VARIABLES

We have discussed so far the functional mean only in two variables. Now we
establish here the functional mean in several variables and derive its basic properties.
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A motivation comes from [3, 5] as follows: the logarithmic mean L(z,y) of z and

y is given by
1 -1
dA
L) = [/0 Ay +(1- /\)z]

and the logarithmic mean of z;,zs,... ,z, is given by
L(z1,z2,... ,Zn) = / (z-v) " n~-1)dv
A

n-—1

where dv denotes the differential of volume in A,,_;, where A, _; is the simplex

Apq= {(,\1,,\2,... o) [0S A <L, G=1,2,00,m, 3N <1},

Z jAj and A, =1 — A — .-+ — A,_1. Since we have already shown that

]_
My/e(z,y) = L(x,y) for z,y > 0 it is quite natural to define a functional mean as
follows:

DEFINITION: Let f be a continuous function on {0, 00) which is strictly monotone
and let x4 be a probability measure supported by A,_;. Then the functional mean
¢ (x; ) with respect to the probability measure y is defined for z = (z1,z2,... , ),
z; >0,j=12,...,n by

My (z;0) = [/A f(z-v) du(V)] ~

Of course, the mean value theorem guarantees the unique existence of the value
My (z; u). When p is Lebesgue measure it can be written using the iterated integral as

1— Al l1-Aj—-=Apn—2
My (23 ) = [// -f [Faha+ o+ 2aadas

F(1=Ap— - ,\,,_l)z,,)](n —1)'dAny - dAy

As we have done before, when p is Lebesgue measure we write 9ts(z) instead of
My (z; ).
Now we consider some examples.
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n

EXAMPLE. (i) 9 (z) = (Z :1:,-) /n is the arithmetic mean.

Jj=1
n
(i) Myyen(z) = 1 | TI z; is the geometric mean (see [5]).
=1
(iii) Let u be the measure concentrated on the vertices vy,vs,... , v, of the

simplex A,_1, defined by

1
p({v;}) =p—j>0, i=12,...,n

n
with 3" (1/p;) = 1. Then for any f and z = (z1,22,... ,%n)
i=1

My (5 1) = My (21,22, ..., Zn; 1)
4 | flmg
— f 1 Z f( .]) .
=1 Pi
This is shown for example in [4]. For instance if f(t) =¢" (r #0) then

1/r

%

Myr (T; p) = Z
=1

x’
J

3

The functional harmonic mean $(z;u) in n variables is defined by

1 -1
H(z;p) = [W‘f (;,u)]
where 1/z denotes (1/z1,1/x2,...,1/z,) for z = (z1,2Z2,...,2Zs), z; > 0 for j =

1,2,...,n.

Then we can restate all the theorems which hold for two variables. We mention
them without proofs. We denote by R} the set {(IL'l,iL‘z,... y Tn) | z; >0, j =
1,2,..., n} .

THEOREM 1. 1’. In order that

My (z; p) = Mg (z; )

for all z,y € R} and all probability measures pu on A,_; it is necessary and sufficient
that

f@)=ag@) +6, zeR;
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for some constants o # 0 and 3.

THEOREM 1.2'. In order that
My (kz; p) = kMg (z;0), k>0
for all z € R} and all p it is necessary and sufficient that
either f(t) ~ t" for some r # 0 or f(t) ~ logt.

THEOREM 1.3'. Let f and g be strictly increasing continuous functions on
(0,00). Then a necessary and sufficient condition that

My (x; ) < My(z; 1)

for all z,y € R™ with z; <y;, j=1,2,...,n and all y, is that go f~! is convex.

For any z,y € R? we now write z < y if
y Z,Y + y
zjSyjforj=1,2,...,n

THEOREM 1.4'. The functional mean My (x; ) is continuous on R} and is
increasing in the sense that

z <y implies M (z; p) < My (y; p)

for all p.

THEOREM 2.1'. If f(t) is equivalent to a homogeneous function in the sense
that

F(kt) = a(k)f(t) + B(k), t>0, k>0

for some (k) # 0 and B(k) then
95 (z; 1) - Mp(a's ) = [[ =5
it

for all p, where z' = (z1,%5,...,2;,) with 2 = [[ z;, j=1,2,... ,n.
i
This result is a very interesting one.
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