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Abstract
We prove discrete-to-continuum convergence for dynamical optimal transport on Z

d-periodic graphs with cost
functional having linear growth at infinity. This result provides an answer to a problem left open by Gladbach,
Kopfer, Maas, and Portinale (Calc Var Partial Differential Equations 62(5), 2023), where the convergence behaviour
of discrete boundary-value dynamical transport problems is proved under the stronger assumption of superlinear
growth. Our result extends the known literature to some important classes of examples, such as scaling limits of
1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the geometry of the graph plays
a crucial role in the structure of the limit cost function, as we discuss in the final part of this work, which includes
some visual representations.

1. Introduction

In the Euclidean setting, the Benamou–Brenier [5] formulation of the distance on the space P2(Rd)
known as 2-Wasserstein or Kantorovich–Rubinstein distance is given by the minimisation problem

W2(μ0,μ1)2 = inf

{∫ 1

0

∫
Rd

|νt|2

μt

dx dt : ∂tμt + ∇ · νt = 0, μt=0 =μ0, μt=1 =μ1

}
, (1.1)

for every μ0,μ1 ∈ P2(Rd). The Partial Differential Equation (PDE) constraint is called continuity equa-
tion (we write (μ, ν) ∈ CE when (μ, ν) is a solution). Over the years, the Benamou–Brenier formula
(1.1) has revealed significant connections between the theory of optimal transport and different fields
of mathematics, including partial differential equations [29], functional inequalities [35], and the novel
notion of Lott–Sturm–Villani’s synthetic Ricci curvature bounds for metric measure spaces [30, 31, 36,
37]. Inspired by the dynamical formulation (1.1), in independent works, Maas [32] (in the setting of
Markov chains) and Mielke [33] (in the context of reaction-diffusion systems) introduced a notion of
optimal transport in discrete settings structured as a dynamical formulation à la Benamou–Brenier as
in (1.1). One of the features of this discretisation procedure is the replacement of the continuity equa-
tion with a discrete counterpart: when working on a (finite) graph (X , E) (resp. vertices and edges), the
discrete continuity equation reads

∂tmt(x) +
∑
y∼x

Jt(x, y) = 0, ∀x ∈X ,
(
we write (m, J) ∈ CEX

)
where (mt, Jt) corresponds to discrete masses and fluxes (s.t. Jt(x, y) = −Jt(y, x)). Maas’ proposed
distance W [32] is obtained by minimising, under the above constraint, a discrete analogue of the
Benamou–Brenier action functional with reference measure π ∈ P(X ) and weight function ω ∈R

E
+,
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2 L. Portinale and F. Quattrocchi

of the form∫ 1

0

1

2

∑
(x,y)∈E

|Jt(x, y)|2

r̂t(x, y)
ω(x, y) dt, where r̂t(x, y) := θlog(rt(x), rt(y)), rt(x) := mt(x)

π (x)
,

and where θlog(a, b) := ∫ 1

0
asb1−s ds denotes the 1-homogeneous, positive mean called logarithmic mean.

With this particular choice of the mean, it was proved [32], [33] (see also [6]) that the discrete heat flow
coincides with the gradient flow of the relative entropy with respect to the discrete distanceW . In discrete
settings, the equivalence between static and dynamical optimal transport breaks down, and the latter
stands out in applications to evolution equations, discrete Ricci curvature and functional inequalities
[9, 15, 34, 16, 11, 18, 14]. Subsequently, several contributions have been devoted to the study of the
scaling behaviour of discrete transport problems, in the setting of discrete-to-continuum approximation
problems. The first convergence results were obtained in [21] for symmetric grids on a d-dimensional
torus, and by [20] in a stochastic setting. In both cases, the authors obtained convergence of the discrete
distances towards W2 in the limit of the discretisation getting finer and finer.

Nonetheless, it turned out that the geometry of the graph plays a crucial role in the game. A general
result was obtained in [24], where it is proved that the convergence of discrete distances associated with
finite-volume partitions with vanishing size to the 2-Wasserstein space is substantially equivalent to
an asymptotic isotropy condition on the mesh. The first complete characterisation of limits of transport
costs on periodic graphs (Figure 1) in arbitrary dimension for general action functionals (not necessarily
quadratic) was established in [22, 23]: in this setting, the limit action functional (more precisely, the
energy density) can be explicitly characterised in terms of a cell formula, which is a finite-dimensional
constrained minimisation problem depending on the initial graph and the cost function at the discrete
level. The action functionals considered in [23] are of the form

(μ, ν) ∈ CE �→ A(μ, ν) :=
∫

(0,1)×Td

f
(
ρ, j
)

dL d+1 +
∫

(0,1)×Td

f ∞(ρ⊥, j⊥
)

dσ , (1.2)

where we used the Lebesgue decomposition

μ = ρL d+1 + μ⊥, ν = jL d+1 + ν⊥, and μ⊥ = ρ⊥σ , ν⊥ = j⊥σ ,
(
σ ⊥ L d+1

)
and where the energy density f :R+ ×R

d →R∪ {+∞} is some given convex, lower semicontinuous
function with at least linear growth, i.e. satisfying

f (ρ, j) ≥ c|j| − C(ρ + 1), ∀ρ ∈R+ and j ∈R
d, (1.3)

whereas f ∞ denotes its recession function (see (2.2) for the precise definition). The choice f (ρ, j) :=
|j|2/ρ corresponds to the W2 distance. At the discrete level, on a locally finite connected graph (X , E)
embedded in R

d, the natural counterpart is represented by action functionals of the form

(m, J) ∈ CEX �→ A(m, J) :=
∫ 1

0

F(m, J) dt, (1.4)

for a given lower semicontinuous, convex, and local cost function F, which also has at least linear growth
with respect to the second variable (see (2.8) for the precise definition).

The main result in [23] is the �-convergence for constrained functionals as in (1.4), after a suitable
rescaling of the graph Xε := εX , Eε := εE , and of the cost Fε (and associated action Aε), in the frame-
work of Zd-periodic graphs. In particular, the limit action is of the form (1.2), where the energy density
f = fhom is given in terms of a cell formula, explicitly reading

fhom(ρ, j) := inf {F(m, J) : (m, J) ∈ Rep(ρ, j)} , ρ ∈R+, j ∈R
d,

where Rep(ρ, j) denotes the set of discrete representatives of ρ and j, given by all Zd-periodic functions
m:X →R+ with ∑

x∈X∩[0,1)d

m(x) = ρ
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Figure 1. Example of Zd-periodic graph embedded in R
d.

and all Zd-periodic anti-symmetric discrete vector fields J:E →R with zero discrete divergence and
with effective flux equal to j, i.e.,

div J(x) :=
∑
y∼x

J(x, y) = 0 ∀x ∈X and Eff(J) := 1

2

∑
(x,y)∈E
x∈[0,1)d

J(x, y)(y − x) = j. (1.5)

The result covers several examples, both for what concerns the geometric properties of the graph (such
as isotropic meshes of Td, or the simple nearest-neighbour interaction on the symmetric grid) as well
as the choice of the cost functionals (including discretisation of p-Wasserstein distances in arbitrary
dimension and flow-based models, i.e. when F – or f – does not depend on the first variable).

As a consequence of this �-convergence (in time-space) and a compactness result for curves of mea-
sures with bounded action [[23], Theorem 5.9], one obtains as a corollary [[23], Theorem 5.10] that,
under the stronger assumption of superlinear growth on F, also the corresponding discrete boundary-
value problems (i.e. the associated squared distances, in the case of the quadratic Wasserstein problems)
�-converge to the corresponding continuous one, namely MAε

�→MAhom (with respect to the weak
topology), where

MAε(m0, m1) := inf
{Aε(m, J) : (m, J) ∈ CEXε

and mt=0 = m0, mt=1 = m1

}
,

MAhom(μ0,μ1) := inf
{
Ahom(μ, ν) : (μ, ν) ∈ CE and μt=0 =μ0, μt=1 =μ1

}
are the minimal discrete and homogenised action functionals, respectively. The superlinear growth con-
dition, at the continuous level, is a reinforcement of the condition (1.3) and assumes the existence of a
function θ :[0, ∞) → [0, ∞) with limt→∞

θ(t)
t

= ∞ and a constant C ∈R such that

f (ρ, j) ≥ (ρ + 1)θ

( |j|
ρ + 1

)
− C(ρ + 1), ∀ρ ∈R+, j ∈R

d.

In particular, this forces every (μ, ν) ∈ CE with finite action to satisfy ν � μ + L d+1 [[23], Remark
6.1], and it ensures compactness in CKR

(
[0, 1]; M+(Td)

)
[[23], Theorem 5.9], i.e. with respect to the
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4 L. Portinale and F. Quattrocchi

time-uniform convergence in the Kantorovich–Rubinstein norm (recall that the KR norm metrises weak
convergence on M+(Td), see [[23], Appendix A]). This compactness property makes the proof of the
convergence MAε

�→MAhom an easy corollary of the convergence of the time-space energies.
Without the assumption of superlinear growth the situation is much more subtle: in particular, the

lower semicontinuity of MA obtained minimising the functional A associated to a function f satisfying
only (1.3) is not trivial. This is due to the fact that, in this framework, being a solution to CE with bounded
action only ensures bounds for μ ∈ BVKR

(
(0, 1);M+(Td)

)
, which does not suffice to pass to the limit in

the constraint given by the boundary conditions: jumps may occur at t ∈ {0, 1} in the limit. Therefore,
when the cost F grows linearly (linear bounds from both below and above), the scaling behaviour of
the discrete boundary-value problems MAε, as well as the lower semicontinuity of MA, cannot be
understood with the techniques utilised in [23]. The main goal of this work is, thus, to provide discrete-
to-continuum results for MAε for cost functionals with linear growth, as well as for every flow-based
type of cost, i.e. F(m, J) = F(J). With similar arguments, we can also show the lower semicontinuity of
MA for a general energy density f under the same assumptions, see Section 3.3.

Theorem 1.1 (Main result). Assume that either F satisfies the linear growth condition, i.e.

F(m, J) ≤ C

(
1 +

∑
(x,y)∈E
|x|≤R

|J(x, y)| +
∑
x∈X|x|≤R

m(x)

)

for some constant C<∞ and some R> 0, or that F does not depend on the m-variable (flow-based
type). Then, as ε→ 0, the discrete functionals MAε �-converge to the continuous functional MAhom

with respect to weak convergence.

The contribution of this paper is twofold. On one side, thanks to our main result, we can now include
important examples, such as the W1 distance and related approximations, see in particular Section 4 for
some explicit computations of the cell formula, including the equivalence between static and dynamical
formulations (4.3), as well as some simulations. As typical in this discrete-to-continuum framework,
also for W1-type problems, the geometry of the graph plays an important role in the homogenised norm
obtained in the limit, giving rise to a whole class of crystalline norms, see Proposition 4.4 as well as
Figure 2. On the other hand, this work provides ideas and techniques on how to handle the presence of
singularities/jumps in the framework of curves of measures which are only of bounded variation, which
is of independent interest.
Related literature. In their seminal work [29], Jordan, Kinderlehrer, and Otto showed that the heat flow
in R

d can be seen as the gradient flow of the relative entropy with respect to the 2-Wasserstein distance.
In the same spirit, a discrete counterpart was proved in [32] and [33], independently, for the discrete
heat flow and discrete relative entropy on Markov chains. In [19], the authors proved the evolutionary
�-convergence of the discrete gradient-flow structures associated with finite-volume partitions and dis-
crete Fokker–Planck equations, generalising a previous result obtained in [8] in the setting of isotropic,
one-dimensional meshes. Similar results were later obtained in [26], [27] for the study of the limiting
behaviour of random walks on tessellations in the diffusive limit. Generalised gradient-flow structures
associated to jump processes and approximation results of nonlocal- and local-interaction equations
have been studied in a series of works [12], [13], [10]. Recently, [17] considered the more general setting
where the graph also depends on time.

2. General framework: continuous and discrete transport problems

In this section, we first introduce the general class of problems at the continuous level we are interested
in, discussing main properties and known results. We then move to the discrete, periodic framework in
the spirit of [23], summarise the known convergence results and discuss the open problems we want
to treat in this work. In contrast with [23], for the sake of the exposition we restrict our analysis to the
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time interval I := (0, 1). Nonetheless, our main results easily extend to a general bounded, open interval
I ⊂R.

2.1. The continuous setting: transport problems on the torus

We start by recalling the definition of solutions to the continuity equation on T
d.

Definition 2.1 (Continuity equation). A pair of measures (μ, ν) ∈M+
(
(0, 1) ×T

d
)×Md

(
(0, 1) ×T

d
)

is said to be a solution to the continuity equation

∂tμ + ∇ · ν = 0

if, for all functions ϕ ∈ C1
c

(
(0, 1) ×T

d
)
, the identity∫

(0,1)×Td

∂tϕ dμ +
∫

(0,1)×Td

∇ϕ · dν = 0

holds. We use the notation (μ, ν) ∈ CE.

Throughout the whole paper, we consider energy densities f with the following properties.

Assumption 2.2. Let f :R+ ×R
d →R∪ {+∞} be a lower semicontinuous and convex function, whose

domain D(f ) has nonempty interior. We assume that there exist constants c> 0 and C<∞ such that
the (at least) linear growth condition

f (ρ, j) ≥ c|j| − C(ρ + 1) (2.1)

holds for all ρ ∈R+ and j ∈R
d.

The corresponding recession function f ∞:R+ ×R
d →R∪ {+∞} is defined by

f ∞(ρ, j) := lim
t→+∞

f (ρ0 + tρ, j0 + tj)

t
, (2.2)

for every (ρ0, j0) ∈ D(f ). It is well established that the function f ∞ is lower semicontinuous, convex, and
it satisfies the inequality

f ∞(ρ, j) ≥ c|j| − Cρ, ρ ∈R+, j ∈R
d, (2.3)

see [1, Section 2.6].
Let L d+1 denote the Lebesgue measure on (0, 1) ×T

d. For μ ∈M+
(
(0, 1) ×T

d
)

and ν ∈
Md
(
(0, 1) ×T

d
)
, we write their Lebesgue decompositions as

μ = ρL d+1 + μ⊥, ν = jL d+1 + ν⊥,

for some ρ ∈ L1
+
(
(0, 1) ×T

d
)

and j ∈ L1
(
(0, 1) ×T

d;Rd
)
. Given these decompositions, there always

exists a measure σ ∈M+
(
(0, 1) ×T

d
)

such that

μ⊥ = ρ⊥σ , ν⊥ = j⊥σ ,

for some ρ⊥ ∈ L1
+(σ ) and j⊥ ∈ L1(σ ;Rd) (take for example σ := |μ⊥| + |ν⊥|).

Definition 2.3 (Action functionals). We define the action functionals by

A:M+
(
(0, 1) ×T

d
)×Md

(
(0, 1) ×T

d
)→R∪ {+∞},

A(μ, ν) :=
∫

(0,1)×Td

f
(
ρ, j
)

dL d+1 +
∫

(0,1)×Td

f ∞(ρ⊥, j⊥
)

dσ ,

A(μ) := inf
ν

{
A(μ, ν) : (μ, ν) ∈ CE

}
.

Remark 2.4. This definition does not depend on the choice of σ , due to the 1-homogeneity of f ∞. As
f (ρ, j) ≥ −C(1 + ρ) and f ∞(ρ, j) ≥ −Cρ from (2.1) and (2.3), the fact that μ

(
(0, 1) ×T

d
)
<∞ ensures

that A(μ, ν) is well defined in R∪ {+∞}.
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6 L. Portinale and F. Quattrocchi

The natural setting to work in is the space BVKR
(
(0, 1);M+(Td)

)
of the curves of measures μ:(0, 1) →

M+(Td) such that the BV-seminorm ‖μ‖ = ‖μ‖
BVKR

(
(0,1);M+(Td )

) defined by

‖μ‖ := sup

{∫
(0,1)

∫
Td

∂tϕt dμt dt : ϕ ∈ C1
c

(
(0, 1);C1(Td)

)
, max

t∈(0,1)
‖ϕt‖C1(Td ) ≤ 1

}
is finite. Note that, by the trace theorem in BV, curves of measures in BVKR

(
(0, 1);M+(Td)

)
have a

well-defined trace at t = 0 and t = 1. As shown in [[23], Lemma 3.13], any solution (μ, ν) ∈ CE can be
disintegrated as dμ(t, x) = dμt(x) dt for some measurable curve t �→μt ∈M+(Td) with finite constant
mass. If A(μ)<∞, then this curve belongs to BVKR

(
(0, 1);M+(Td)

)
and

‖μ‖
BVKR

(
(0,1);M+(Td )

) ≤ |ν|((0, 1) ×T
d
)
.

2.2. Boundary conditions and lower semicontinuity

Define the minimal homogenised action for μ0,μ1 ∈M+(Td) with μ0(Td) =μ1(Td) as

MA(μ0,μ1) := inf
μ∈BVKR

(
(0,1);M+(Td )

) {A(μ) : μt=0 =μ0, μt=1 =μ1} . (2.4)

Note that, in general, MA may be infinite (although the measures have equal masses). Despite the lower
semicontinuity property of A (cfr. [[23], Lemma 3.14]), the lower semicontinuity of MA with respect
to the natural weak topology of M+(Td) ×M+(Td) is, in general, nontrivial. More precisely, it is a
challenging question to prove (or disprove) that for any two sequences μn

0, μn
1 ∈M+(Td), such that

μn
i →μi weakly in M+(Td) as n → ∞ for i = 0, 1, the inequality

lim inf
n→∞

MA(μn
0,μ

n
1) ≥MA(μ0,μ1) (2.5)

holds. In this work, we provide a positive answer in the case when f has linear growth or it is flow-based
(i.e. it does not depend on the first variable), see Remark 3.14 and Proposition 3.15 below. First, we
discuss the main challenges and the setup where the lower semicontinuity is already known to hold.

Remark 2.5 (Lack of compatible compactness). We know from [[23], Lemma 3.14] that (μ, ν) �→
A(μ, ν) and μ �→A(μ) are lower semicontinuous w.r.t. the weak topology. Moreover, if μn is a sequence
with

sup
n

A(μn)<∞ and sup
n

μn
(
(0, 1) ×T

d
)
<∞

then μn is weakly compact and any limit μ belongs to BVKR
(
(0, 1);M+(Td)

)
. This can be proved as in

[[23], Theorem 5.4]. Nonetheless, this property does not ensure the lower semicontinuity ofMA because
weak convergence does not preserve the boundary conditions (at time t = 0 and t = 1). For similar issues
in the setting of functionals of Rd-valued curves with bounded variations and their minimisation, see
e.g. [2].

Remark 2.6 (Superlinear growth). Under the strengthened assumption of superlinear growth on f (with
respect to the momentum variable), it is possible to prove the lower semicontinuity property (2.5), in
the same way as in the proof of the discrete-to-continuum �-convergence of boundary-value problems
of [[23], Theorem 5.10]. More precisely, we say that f is of superlinear growth if there exists a function
θ :[0, ∞) → [0, ∞) with limt→∞

θ(t)
t

= ∞ and a constant C ∈R such that

f (ρ, j) ≥ (ρ + 1)θ

( |j|
ρ + 1

)
− C(ρ + 1), ∀ρ ∈R+, j ∈R

d.

Arguing as in [[23], Remark 5.6], one shows that any function of superlinear growth must satisfy the
growth condition given by Assumption 2.2. Moreover, in this case, the recession function satisfies
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f ∞(0, j) = +∞, for every j �= 0. See [[23], Examples 5.7 & 5.8] for some examples belonging to this
class. By arguing similarly as in the proof of [[23], Theorem 5.9], assuming superlinear growth one
can show that if μn is a sequence with bounded action A(μn) and bounded total mass μn

(
(0, 1) ×T

d
)
,

then, up to a (non-relabelled) subsequence, we have μn → μ in M+((0, 1) ×T
d) and μn

t →μt in KR
norm uniformly in t ∈ (0, 1), with limit curve μ ∈ W1,1

KR((0, 1);M+(Td)). Using this fact, it is clear that the
problem of “jumps” in the limit explained in Remark 2.5 does not occur, and the lower semicontinuity
(2.5) directly follows from the lower semicontinuity of A.

Remark 2.7. (Nonnegativity) Without loss of generality, we can assume that f ≥ 0. Indeed, thanks to
the linear growth assumption 2.2, we can define a new function

f̃ (ρ, j) := f (ρ, j) + C(ρ + 1) ≥ c|j| ≥ 0 (2.6)

which is now nonnegative and with (at least) linear growth. Furthermore, we can compute the recess f̃ ∞

and from the definition we see that

f̃ ∞(ρ, j) = f ∞(ρ, j) + Cρ. (2.7)

Denote by Ã the action functional obtained by replacing f with f̃ . Thanks to (2.6), (2.7), we have that

Ã(μ) := inf
ν

{
Ã(μ, ν) : (μ, ν) ∈ CE

}
= inf

ν

{
A(μ, ν) : (μ, ν) ∈ CE

}+ C(μ
(
(0, 1) ×T

d
)+ 1).

It follows that the corresponding boundary value problems are given by

M̃A(μ0,μ1) =MA(μ0,μ1) + C(μ0(Td) + 1), if μ0(Td) =μ1(Td).

Therefore, the (weak) lower semicontinuity for M̃A is equivalent to that of MA.

2.3. The discrete framework: transport problems on periodic graphs

We recall the framework of [23]: let (X , E) be a locally finite and Z
d-periodic connected graph of

bounded degree. We encode the set of vertices as X =Z
d × V , where V is a finite set, and we use

coordinates x = (xz, xv) ∈X . The set of edges E ⊆X ×X is symmetric and Z
d-periodic, and we use

the notation x ∼ y whenever (x, y) ∈ E . Let R0 := max(x,y)∈E |xz − yz|∞ be the maximal edge length in the
supremum norm | · |∞ onRd. We use the notationX Q := {x ∈X : xz = 0} and EQ := {

(x, y) ∈ E : xz = 0
}
.

For a discussion concerning abstract and embedded graphs, see [[23], Remark 2.2].
In what follows, we denote by R

X
+ the set of functions m : X →R+ and by R

E
a the set of anti-

symmetric functions J : E →R, that is, such that J(x, y) = −J(y, x). The elements of RE
a will often be

called (discrete) vector fields.

Assumption 2.8 (Admissible cost function). The function F:RX
+ ×R

E
a →R∪ {+∞} is assumed to have

the following properties:

(a) F is convex and lower semicontinuous.
(b) F is local, meaning that, for some number R1 <∞, we have F(m, J) = F(m′, J′) whenever m, m′ ∈

R
X
+ and J, J′ ∈R

E
a agree within a ball of radius R1, i.e.

m(x) = m′(x) for all x ∈X with |xz|∞ ≤ R1, and

J(x, y) = J′(x, y) for all (x, y) ∈ E with |xz|∞, |yz|∞ ≤ R1.

(c) F is of at least linear growth, i.e. there exist c> 0 and C<∞ such that

F(m, J) ≥ c
∑

(x,y)∈EQ

|J(x, y)| − C

(
1 +

∑
x∈X|xz|∞≤Rmax

m(x)

)
(2.8)
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for any m ∈R
X
+ and J ∈R

E
a . Here, Rmax := max{R0, R1}.

(d) There exist a Z
d-periodic function m◦ ∈R

X
+ and a Z

d-periodic and divergence-free vector field
J◦ ∈R

E
a such that

(m◦, J◦) ∈ D(F)◦.

Remark 2.9. Important examples that satisfy the growth condition (2.8) are of the form

F(m, J) = 1

2

∑
(x,y)∈EQ

|J(x, y)|p

�
(
qxym(x), qyxm(y)

)p−1 ,

where 1 ≤ p<∞, the constants qxy, qyx > 0 are fixed parameters defined for (x, y) ∈ EQ, and � is a
suitable mean. Functions of this type naturally appear in discretisations of Wasserstein gradient-flow
structures [32], [33], [6], see also [[23], Remark 2.6].

The rescaled graph. Let Td
ε
= (εZ/Z)d be the discrete torus of mesh size ε ∈ 1/N. We denote by [εz]

for z ∈Z
d the corresponding equivalence classes. Equivalently, Td

ε
= εZd

ε
where Z

d
ε
= (Z/ 1

ε
Z
)d. The

rescaled graph (Xε, Eε) is defined as

Xε := T
d
ε
× V and Eε := {(

T0
ε
(x), T0

ε
(y)
)

: (x, y) ∈ E}
where for z̄ ∈Z

d
ε
,

Tz̄
ε
:X →Xε, (z, v) �→ (

[ε(z̄ + z)], v
)
.

For x = ([εz], v
) ∈Xε, we write

xz := z ∈Z
d
ε
, xv := v ∈ V .

The equivalence relation ∼ on X is equivalently defined on Xε by means of Eε. Hereafter, we always
assume that εR0 <

1
2
.

The rescaled energies. Let F:RX
+ ×R

E
a →R∪ {+∞} be a cost function satisfying Assumption 2.8. For

ε > 0 satisfying the conditions above, we can define a corresponding energy functionalFε in the rescaled
periodic setting: following [23], for z̄ ∈Z

d
ε
, each function ψ :Xε →R induces a 1

ε
Z

d-periodic function

τ z̄
ε
ψ :X →R,

(
τ z̄
ε
ψ
)
(x) := ψ

(
Tz̄
ε
(x)
)

for x ∈X .

Similarly, each function J:Eε →R induces a 1
ε
Z

d-periodic function

τ z̄
ε
J:E →R,

(
τ z̄
ε
J
)
(x, y) := J

(
Tz̄
ε
(x), Tz̄

ε
(y)
)

for (x, y) ∈ E .

Definition 2.10 (Discrete energy functional). The rescaled energy is defined by

Fε:R
Xε

+ ×R
Eε
a →R∪ {+∞}, (m, J)

Fε�−→
∑
z∈Zd

ε

εdF

(
τ z
ε
m

εd
,
τ z
ε
J

εd−1

)
.

Remark 2.11. As observed in [[23], Remark 2.8], the value Fε(m, J) is well defined as an element in
R∪ {+∞}. Indeed, the condition (2.8) yields

Fε(m, J) =
∑
z∈Zd

ε

εdF

(
τ z
ε
m

εd
,
τ z
ε
J

εd−1

)
≥ −C

∑
z∈Zd

ε

εd

(
1 +

∑
x∈X|xz|∞≤Rmax

τ z
ε
m(x)

εd

)

≥ −C

(
1 + (2Rmax + 1)d

∑
x∈Xε

m(x)

)
>−∞.

Definition 2.12 (Discrete continuity equation). A pair (m, J) is said to be a solution to the discrete
continuity equation if m:(0, 1) →R

Xε+ is continuous, J:(0, 1) →R
Eε
a is Borel measurable, and

∂tmt(x) +
∑
y∼x

Jt(x, y) = 0 (2.9)
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holds for all x ∈Xε in the sense of distributions. We use the notation

(m, J) ∈ CE ε.
Remark 2.13. We may write (2.9) as ∂tmt + divJt = 0 using the discrete divergence operator, given by

divJ ∈R
Xε , divJ(x) :=

∑
y∼x

J(x, y), ∀J ∈R
Eε
a .

The proof of the following lemma can be found in [23].

Lemma 2.14 (Mass preservation). Let (m, J) ∈ CE ε. Then we have ms(Xε) = mt(Xε) for all s, t ∈ (0, 1).

We are now ready to define one of the main objects in this paper.

Definition 2.15 (Discrete action functional). For any continuous function m:(0, 1) →R
Xε+ such that

t �→∑
x∈Xε

mt(x) ∈ L1
(
(0, 1)

)
and any Borel measurable function J:(0, 1) →R

Eε
a , we define

Aε(m, J) :=
∫ 1

0

Fε(mt, Jt) dt ∈R∪ {+∞}.

Furthermore, we set

Aε(m) := inf
J

{
Aε(m, J) : (m, J) ∈ CE ε

}
.

Arguing as in Remark 2.11, one can show [[23], Remark 2.13] thatAε(m, J) is well defined as an element
in R∪ {+∞}, as a consequence of the growth condition (2.8).

Definition 2.16 (Minimal discrete action functional). For any pair of boundary data m0, m1 ∈R
Xε+ , we

define the associated discrete boundary value problem as

MAε(m0, m1) := inf
{Aε(m) : m:(0, 1) →R

Xε

+ , mt=0 = m0 and mt=1 = m1

}
.

The aim of this work is to study the asymptotic behaviour of the energies MAε as ε→ 0 under the
Assumption 2.8.

3. Statement and proof of the main result

In this paper, we extend the �-convergence result for the functionals MAε towards MAhom, proved in
[23] for superlinear cost functionals, to two cases: under the assumption of linear growth (bound both
from below and above) and when the function F does not depend on ρ.

Assumption 3.1 (Linear growth). We say that a function F:RX
+ ×R

E
a →R∪ {+∞} has linear growth

if it satisfies

F(m, J) ≤ C

(
1 +

∑
(x,y)∈E
|xz|∞≤R

|J(x, y)| +
∑
x∈X|xz|∞≤R

m(x)

)

for some constant C<∞ and some R> 0.

Assumption 3.2 (Flow-based). We say that a function F:RX
+ ×R

E
a →R∪ {+∞} is of flow-based type

if it depends only on the the second variable, i.e. (with a slight abuse of notation) F(m, J) = F(J), for
some F:RE

a →R∪ {+∞}.
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Similarly, we say that f :R+ ×R
d →R is of flow-based type if it does not depend on the ρ variable, i.e.

f (ρ, j) = f (j). In this case, the problem simplifies significantly, and the dynamical variational problem
described in (2.4) admits an equivalent, static formulation (see (3.23)).

Remark 3.3 (Linear growth vs Lipschitz). While working with convex functions, to assume a linear
growth condition (from above) is essentially equivalent to require Lipschitz continuity with respect to
the second variable.

Lemma 3.4 (Lipschitz continuity). Let f :R+ ×R
d →R be a function, convex in the second variable.

Let C> 0. Then the following are equivalent:

1. For every ρ ∈R+ and j ∈R
d the inequality f (ρ, j) ≤ C(1 + ρ + |j|) holds.

2. For every ρ ∈R+, the function f (ρ, ·):Rd →R+ is Lipschitz continuous (uniformly in ρ) with constant
C, and the inequality f (ρ, 0) ≤ C(1 + ρ) holds.

In the very same spirit, one can show the analogous result at the discrete level.

Lemma 3.5 (Lipschitz continuity II). Let F:RX
+ ×R

E
a →R∪ {+∞} be convex in the second variable.

Let C, R> 0. Then the following are equivalent:

1. F is of linear growth, in the sense of Assumption 3.1, with the same constants C and R.
2. For every m ∈R

X
+ , we have that

F(m, 0) ≤ C

(
1 +

∑
x∈X|xz|∞≤R

m(x)

)
,

as well as that F is Lipschitz continuous with constant C in the second variable, in the sense that

|F(m, J1) − F(m, J2)| ≤ C
∑

(x,y)∈E
|xz|∞≤R

|J1(x, y) − J2(x, y)|, (3.1)

for every J1, J2 ∈R
E
a .

Proof of Lemma 3.4. Let us assume the first condition and fix ρ ∈R+ as well as j1, j2 ∈R
d. It follows

from the convexity in the second variable that the function
R � t �→ f (ρ, j1 + t(j2 − j1))

is convex. In particular, the inequalities

f (ρ, j2) − f (ρ, j1) ≤ f (ρ, j1 + t(j2 − j1)) − f (ρ, j1)

t
≤ C

(
1 + ρ + ∣∣j1 + t(j2 − j1)

∣∣)− f (ρ, j1)

t
hold for every t ≥ 1. Letting t → ∞, we thus find

f (ρ, j2) − f (ρ, j1) ≤ C|j2 − j1|
and, by arbitrariness of the arguments, the claimed Lipschitz continuity. The fact that f (ρ, 0) ≤ C(1 + ρ)
trivially follows from the first condition.

Conversely, if the second condition holds, we necessarily have
f (ρ, j) ≤ C|j| + f (ρ, 0) ≤ C(1 + ρ + |j|),

for every ρ ∈R+ and j ∈R
d, which is precisely the first condition in the statement.

Let us recall the homogenised energy density fhom, which describes the limit energy and is given by a
cell formula. For given ρ ≥ 0 and j ∈R

d, fhom(ρ, j) is obtained by minimising over the unit cube the cost
among functions m and vector fields J representing ρ and j. More precisely, the function fhom:R+ ×R

d →
R+ is given by

fhom(ρ, j) := inf
m,J

{
F(m, J) : (m, J) ∈ Rep(ρ, j)

}
,
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where the set of representatives Rep(ρ, j) consists of all Zd-periodic functions m:X →R+ and all Zd-
periodic anti-symmetric discrete vector fields J:E →R satisfying∑

x∈XQ

m(x) = ρ, divJ = 0, and Eff(J) := 1

2

∑
(x,y)∈EQ

J(x, y)(yz − xz) = j. (3.2)

The set of representatives is nonempty for every choice of ρ and j by [[23], Lemma 4.5 (iv)]. In the case
of embedded graphs, the definition of effective flux coincides with the one provided in the introduction
(cfr. (3.2)), see [[23], Proposition 9.1].

Remark 3.6. It is not hard to show that if F is of linear growth, then fhom is also of linear growth (and
therefore, in view of Lemma 3.4, it is Lipschitz in the second variable uniformly w.r.t. the first one), see
e.g. [25].

We denote by Ahom and MAhom the action functionals corresponding to the choice f = fhom. In
order to talk about �-convergence, we need to specificy which type of discrete-to-continuum topol-
ogy/convergence we adopt (in the same spirit of [23]).

Definition 3.7 (Embedding). For ε > 0 and z ∈R
d, let Qz

ε
:= εz + [0, ε)d ⊆T

d denote the projection of
the cube with side length ε based at εz to the quotient Td =R

d/Zd. For m ∈R
Xε+ and J ∈R

Eε
a , we define

ιεm ∈M+(Td) and ιεJ ∈Md(Td) by

ιεm := ε−d
∑
x∈Xε

m(x)Ld|Qxz
ε

,

ιεJ := ε−d+1
∑

(x,y)∈Eε

J(x, y)

2

( ∫ 1

0

Ld|Q(1−s)xz+syz
ε

ds

)
(yz − xz).

With a slight abuse of notation, given m:(0, 1) →R
Xε+ we also write ιεm ∈M+

(
(0, 1) ×T

d
)

for the con-
tinuous space-time measure with time disintegration given by t �→ ιεmt. Moreover, for a given sequence
of nonnegative discrete measures mε ∈R

Xε+ , we write

mε →μ ∈M+(Td) weakly iff ιεm
ε →μ weakly in M+(Td).

Similarly, for mε:(0, 1) →R
Xε+ we write mε → μ ∈M+

(
(0, 1) ×T

d
)

with an analogous meaning.
Similar notation is used for (Borel, possibly discontinuous) curves of fluxes J:(0, 1) →R

Eε
a and

convergent sequences of (curves of) fluxes.

Remark 3.8 (Preservation of the continuity equation). The definition of this embedding for masses and
fluxes ensures that solutions to the discrete continuity equation are mapped to solutions of CE, cfr.
[[23], Lemma 4.9].

We are ready to state our main result.

Theorem 3.9 (Main result). Let (X , E , F) be as described in Section 2.2 and Assumption 2.8. Assume
that F is either of flow-based type (Assumption 3.2) or with linear growth (Assumption 3.1). Then, in
either case, the functionals MAε �-convergence to MAhom as ε→ 0 with respect to the weak topology
of M+(Td) ×M+(Td). More precisely, we have

(1) Liminf inequality: For any sequences mε
0, mε

1 ∈M+(Xε) such that mε
i →μi weakly in M+(Td) for

i = 0, 1, we have that

lim inf
ε→0

MAε(m
ε

0, mε

1) ≥MAhom(μ0,μ1).

(2) Limsup inequality: For any μ0,μ1 ∈M+(Td), there exist sequences mε
0, mε

1 ∈M+(Xε) such that
mε

i →μi weakly in M+(Td) for i = 0, 1, and

lim sup
ε→0

MAε(m
ε

0, mε

1) ≤MAhom(μ0,μ1).
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Remark 3.10 (Convergence of the actions and superlinear regime). The �-convergence of the energies
Aε towards Ahom under Assumption 2.8 is the main result of [[23], Theorem 5.1]. Related to it, similarly
as discussed in Remark 2.6, the superlinear case [[23], Assumption 5.5], not included in the statement,
has already been proved in [23], and it follows directly from the aforementioned convergenceAε

�−→Ahom

and a strong compactness result which holds in such a framework, see in particular [[23], Theorems
5.9 & 5.10]. Without the superlinear growth assumption, the proof is much more involved and requires
extra work and new ideas, which are the main contribution of this paper.

Remark 3.11 (Compactness under linear growth from below). Just assuming Assumption 2.8, the fol-
lowing compactness result for sequences of bounded action was proved in [[23], Theorem 5.4]: if
mε:(0, 1) →R

Xε+ is such that

sup
ε>0

Aε(mε)<∞ and sup
ε>0

mε
(
(0, 1) ×Xε

)
<∞,

then there exists a curve μ =μt( dx) dt ∈ BVKR
(
(0, 1);M+(Td)

)
such that, up to a (non-relabelled)

subsequence, we have

mε → μ weakly in M+
(
(0, 1) ×T

d
)

and mε

t →μt weakly in M+(Td),

for a.e. t ∈ (0, 1). This is going to be an important tool in the proof of our main result.

3.1. Proof of the limsup inequality

In this section, we prove the limsup inequality in Theorem 3.9. This proof does not require Assumption
3.1 or Assumption 3.2, but rather a weaker hypothesis, which is satisfied under either of the two
assumptions.

Proposition 3.12 (�-limsup). Let μ0,μ1 be nonnegative measures on T
d. Assume that there exists a

Z
d-periodic and divergence-free vector field J̄ ∈R

X
a such that

F(m, J̄) ≤ C

(
1 +

∑
x∈X|x|∞≤R

m(x)

)
, m ∈R

X
+ , (3.3)

for some finite constants C and R. Then there exist two sequences (mε
0)ε>0 and (mε

1)ε>0 in R
Xε+ such that

mε
i →μi weakly in M+(Td) for i = 0, 1 and

lim sup
ε→0

MAε(m
ε

0, mε

1) ≤MAhom(μ0,μ1). (3.4)

Proof. We may and will assume that MAhom(μ0,μ1)<∞. We also claim that it suffices to prove the
statement with MA(μ0,μ1) + 1/k in place of the right-hand side of (3.4) for every k ∈N1. Indeed,
assume that we know of the existence of sequences (mε,k

i )ε such that mε,k
i →μi and

lim sup
ε→0

MAε(m
ε,k
0 , mε,k

1 ) ≤MA(μ0,μ1) + 1/k,

for every k ∈N1. Since T
d is compact, the weak convergence is equivalent to convergence in the

Kantorovich–Rubinstein norm. Hence, for every k, we can find εk such that when ε≤ εk,
MAε(m

ε,k
0 , mε,k

1 ) ≤MAhom(μ0,μ1) + 2/k and max
i=0,1

‖ιεmε,k
i −μi‖KR ≤ 1/k.

We can also assume that εk+1 ≤ εk
2
, for every k. It now suffices to set

kε := max{k ∈N1 : εk ≥ ε} and mε

i := mε,kε
i ,

for every ε and i = 0, 1 to get

lim sup
ε→0

MAε(m
ε

0, mε

1) ≤MAhom(μ0,μ1) + lim sup
ε→0

2

kε
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as well as

lim sup
ε→0

max
i=0,1

‖ιεmε

i −μi‖KR ≤ lim sup
ε→0

1

kε
.

The claim is proved, since kε →ε ∞, as can be readily verified.
Thus, let us now choose k and keep it fixed. By definition of MAhom, there exists μ =μt( dx) dt ∈

BVKR
(
(0, 1);M+(Td)

)
with μt=0 =μ0, μt=1 =μ1 and such that

Ahom(μ) ≤MAhom(μ0,μ1) + 1/k.

Recall from Remark 3.10 that Aε

�−→Ahom; in particular, there exists a recovery sequence (mε, Jε) ∈ CE ε
such that mε → μ weakly and

lim sup
ε→0

Aε(mε, Jε) ≤Ahom(μ).

We shall prove that ‖ιεmε
t −μt‖KR(Td ) → 0 in (L1-)measure or, equivalently, that

lim
ε→0

∫ 1

0

min
{‖ιεmε

t −μt‖KR(Td ), 1
}

dt = 0. (3.5)

In order to do this, assume by contradiction that there exists a subsequence such that∫ 1

0

min
{‖ιεn mεn

t −μt‖KR(Td ), 1
}

dt> δ, n ∈N,

for some δ > 0. Up to possibly extracting a further subsequence, it can be easily checked that the hypothe-
ses of [[23], Theorem 5.4] are satisfied (cfr. Remark 3.11); hence, there exists a further (not relabelled)
subsequence such that, for almost every t ∈ (0, 1), mεn

t →μt weakly and thus ‖ιεn mεn
t −μt‖KR(Td ) → 0.

The dominated convergence theorem yields an absurd.
From (3.5) we deduce that for every T ∈ (0, 1/2) there exists a sequence of times (aT

ε
)ε ⊆ (0, T) such

that

lim
ε→0

‖ιεmε

aT
ε
−μaT

ε
‖KR(Td ) = 0.

With a diagonal argument, we find a sequence (aε)ε ⊆ (0, 1/2) such that

lim
ε→0

aε = 0 and lim
ε→0

‖ιεmε

aε
−μaε‖KR(Td ) = lim

ε→0
‖ιεmε

aε
−μ0‖KR(Td ) = 0.

Similarly, we can find another sequence (bε)ε ⊆ (1/2, 1) such that

lim
ε→0

bε = 1 and lim
ε→0

‖ιεmε

bε
−μ1‖KR(Td ) = 0.

We claim the sought recovery sequences is provided by mε
0 := mε

aε
and mε

1 := mε
bε

. In order to show this,
let us define Ĵε:Eε →R via the formula1 (recall the assumption (3.3))

τ z
ε
Ĵε

εd−1
:= J̄, z ∈Z

d
ε
,

so that Ĵε is divergence-free. Now define

m̃ε

t :=

⎧⎪⎨⎪⎩
mε

aε
if t ∈ [0, aε)

mε
t if t ∈ [aε, bε]

mε
bε

if t ∈ (bε, 1]

and J̃εt :=

⎧⎪⎨⎪⎩
Ĵε if t ∈ [0, aε)

Jεt if t ∈ [aε, bε]

Ĵε if t ∈ (bε, 1]

.

1The definition is well-posed because εR0 is assumed to be smaller than 1/2.
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It is readily verified that (m̃ε, J̃ε) solves the continuity equation for every ε. Therefore,

MAε(m
ε

0, mε

1) ≤Aε(m̃ε, J̃ε) =
∫ 1

0

∑
z∈Zd

ε

εdF

(
τ z
ε
m̃ε

t

εd
,
τ z
ε
J̃εt

εd−1

)
dt (3.6)

=
∫ aε

0

∑
z∈Zd

ε

εdF

(
τ z
ε
mε

aε

εd
, J̄

)
dt +

∫ bε

aε

∑
z∈Zd

ε

εdF

(
τ z
ε
mε

t

εd
,
τ z
ε
Jεt

εd−1

)
dt

+
∫ 1

bε

∑
z∈Zd

ε

εdF

(
τ z
ε
mε

bε

εd
, J̄

)
dt

= :I1 + I2 + I3.

The first and last integral can be estimated using the assumption (3.3). Indeed,

I1 + I3 ≤ C
∑
z∈Zd

ε

(
(aε + 1 − bε)ε

d +
∑
x∈X|xz|∞≤R

(
aε(τ

z
ε
mε

aε
)(x) + (1 − bε)(τ

z
ε
mε

bε
)(x)
))

≤ C

(
(aε + 1 − bε) + (2R + 1)d

∑
x∈Xε

(
aεm

ε

aε
(x) + (1 − bε)m

ε

bε
(x)
))

= C
(
(aε + 1 − bε) + (2R + 1)d

(
aειεm

ε

aε
(Td) + (1 − bε)ιεm

ε

bε
(Td)

))
,

and in the limit we find

lim sup
ε→0

I1 + I3 ≤ C
(
0 + (2R + 1)d(0 ·μ0(T

d) + 0 ·μ1(T
d))
)= 0. (3.7)

As for the second integral, thanks to Assumption 2.8(c) we have that

I2 −Aε(mε, Jε) = −
∫

(0,aε )∪(bε ,1)

∑
z∈Zd

ε

εdF

(
τ z
ε
mε

t

εd
,
τ z
ε
Jεt

εd−1

)
dt (3.8)

≤ C′ ((aε + 1 − bε) + (2Rmax + 1)dιεmε
(
((0, aε) ∪ (bε, 1))×T

d
))

.

Since (ιεmε)ε converges weakly, for every a, b ∈ (0, 1), we have that

lim sup
ε→0

ιεmε
(
((0, aε) ∪ (bε, 1))×T

d
)≤ lim sup

ε→0
ιεmε

((
(0, a] ∪ [b, 1)

)×T
d
)

≤ μ
((

(0, a] ∪ [b, 1)
)×T

d
)

.

Using the fact that the previous estimate holds for every a, b ∈ (0, 1), we obtain that

lim sup
ε→0

ιεmε
(
((0, aε) ∪ (bε, 1))×T

d
)= 0.

This, together with the estimate obtained in (3.8), gives us the inequality

lim sup
ε→0

I2 ≤ lim sup
ε→0

Aε(mε, Jε). (3.9)

In conclusion, from (3.6), (3.7), and (3.9), we find

lim sup
ε→0

MAε(m
ε

0, mε

1) ≤ lim sup
ε→0

Aε(mε, Jε) ≤A(μ) ≤MA(μ0,μ1) + 1/k,

which is sought upper bound.
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3.2. Proof of the liminf inequality

In this section, we provide the proof of the liminf inequality in Theorem 3.9. Let mε
0, mε

1 be sequences
of measures weakly converging to μ0, μ1, respectively. We want to show that

lim inf
ε→0

MAε(m
ε

0, mε

1) ≥MAhom(μ0,μ1). (3.10)

Without loss of generality, we will assume that the limit inferior in the latter is a true finite limit, and
that mε

0(Xε) = mε
1(Xε) for every ε > 0.

We split the proof into two parts: first for F with linear growth and then for F of flow-based type,
respectively Assumption 3.1 and Assumption 3.2.

3.2.1. Case 1: F with linear growth
Assume that F satisfies Assumption 3.1. Recall that, as a consequence of Lemma 3.5, F is Lipschitz
continuous as well, in the sense of (3.1).

Proof of the liminf inequality (linear growth). With a very similar argument as the one provided by
Remark 2.7 in the continuous setting, we can with no loss of generality assume that F is nonnegative.
Let (mε, Jε) ∈ CE ε be approximate optimal solutions associated to MAε(mε

0, mε
1), i.e. such that

lim
ε→0

(Aε(mε, Jε) −MAε(m
ε

0, mε

1)
)= 0. (3.11)

As usual, we write dmε(t, x) = mε
t ( dx) dt for some measurable curve t �→ mε

t ∈R
Xε+ of constant, finite

mass. By compactness (Remark 3.11), we know that up to a further non-relabelled subsequence, mε → μ

weakly in M+
(
(0, 1) ×T

d
)

with μ ∈ BVKR
(
(0, 1);M+(Td)

)
. Due to the lack of continuity of the trace

operators in BV, a priori we cannot conclude that μt=0 =μ0 and μt=1 =μ1. In other words, there might
be a “jump” in the limit as ε→ 0 at the boundary of (0, 1). In order to take care of this problem, we
rescale our measures mε in time, so as to be able to “see” the jump in the interior of (0, 1).

To this purpose, for δ ∈ (0, 1/2), we define Iδ := (δ, 1 − δ) and mε,δ ∈ BVKR
(
(0, 1);M+(Td)

)
as

mε,δ
t :=

⎧⎪⎨⎪⎩
mε

0 if t ∈ (0, δ]

mε
t−δ

1−2δ
if t ∈ Iδ

mε
1 if t ∈ [1 − δ, 1)

, dmε,δ(t, x) := mε,δ
t ( dx) dt. (3.12)

By construction, the convergence of the boundary data, and the fact that, by assumption, mε → μ weakly,
it is straightforward to see that mε,δ → μ̂δ weakly, where

μ̂δt :=

⎧⎪⎨⎪⎩
μ0 if t ∈ (0, δ]

μ t−δ
1−2δ

if t ∈ Iδ
μ1 if t ∈ [1 − δ, 1)

, dμ̂δ(t, x) := μ̂δt ( dx) dt. (3.13)

Note that the rescaled curve t �→ μ̂δt might have discontinuities at t = δ and t = 1 − δ, which corre-
spond to the possible jumps in the limit as ε→ 0 for mε at {0, 1}. Nevertheless, μ̂δ is a competitor for
MA(μ0,μ1), which, by the �-convergence of Aε towards Ahom (Remark 3.10), ensures that

lim inf
ε→0

Aε(mε,δ) ≥Ahom(μ̂δ) ≥MAhom(μ0,μ1). (3.14)

We are left with estimating from above the left-hand side of the latter displayed equation. To do so, we
seek a suitable curve of discrete vector fields Jε,δ with (mε,δ, Jε,δ) ∈ CE ε and having an actionAε(mε,δ, Jε,δ)
comparable with Aε(mε, Jε) for small δ > 0. We set

Jε,δt :=

⎧⎪⎨⎪⎩
0 if t ∈ (0, δ]

1
1−2δ

Jεt−δ
1−2δ

if t ∈ Iδ
0 if t ∈ [1 − δ, 1)

, dJε,δ(t, x) := Jε,δt ( dx) dt.
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We claim that (mε,δ, Jε,δ) ∈ CE ε and

Aε(mε,δ, Jε,δ) ≤ (1 + C(F)δ
)Aε(mε, Jε) + C(F)δ

(
1 + ιεmε((0, 1) ×T

d)
)

, (3.15)

where C(F) ∈R+ only depends on F (specifically on the constants in Assumption 2.8 and Assumption
3.1). This would suffice to conclude the proof of the sought liminf inequality. Indeed, from (3.11) and
(3.15), we infer

lim inf
ε→0

MAε(m
ε

0, mε

1) = lim inf
ε→0

Aε(mε, Jε)

≥ 1

1 + C(F)δ
lim inf
ε→0

Aε(mε,δ, Jε,δ) − C(F)δ

1 + C(F)δ

(
1 + ιεmε((0, 1) ×T

d)
)

which, combined with (3.14), yields

lim inf
ε→0

MAε(m
ε

0, mε

1) ≥ MAhom(μ0,μ1)

1 + C(F)δ
− C(F)δ

1 + C(F)δ

(
1 +μ0(T

d)
)

for any δ ∈ (0, 1/2). We conclude by letting δ→ 0.
We are left with the proof of (mε,δ, Jε,δ) ∈ CE ε and of the claim (3.15).

Proof of (mε,δ, Jε,δ) ∈ CE ε. Let us fix x ∈Xε and ϕ ∈ C1
c

(
(0, 1)

)
. Set ϕ̃: = ϕ ◦ rδ, with rδ(s) := (1 − 2δ)s +

δ. We have ∫ 1

0

∂tϕmε,δ
t (x) dt =

∫ δ

0

∂tϕ mε

0(x) dt +
∫ 1

1−δ
∂tϕ mε

1(x) dt +
∫
Iδ
∂tϕ mε

r−1
δ (t)

(x) dt (3.16)

= ϕ(δ) mε

0(x) − ϕ(1 − δ) mε

1(x) + (1 − 2δ)
∫ 1

0

(∂tϕ) ◦ rδ mε

s (x) ds

= ϕ̃(0) mε

0(x) − ϕ̃(1) mε

1(x) +
∫ 1

0

∂sϕ̃ mε

s (x) ds

=
∫ 1

0

ϕ̃
∑
y∼x

Jεs (x, y) ds = 1

1 − 2δ

∫
Iδ
ϕ
∑
y∼x

Jε
r−1
δ (t)

(x, y) dt

=
∫ 1

0

ϕ
∑
y∼x

Jε,δt (x, y) dt,

where, in the fourth equality, we used that (mε, Jε) ∈ CE ε.
Proof of the action estimate. Define rδ(s) := (1 − 2δ)s + δ. Note that, by construction, for (t, (x, y)) ∈
Iδ × Eε,

mε,δ
t (x) = mε

r−1
δ (t)

(x), Jε,δt (x, y) = 1

1 − 2δ
Jε

r−1
δ (t)

(x, y).

On the other hand, for (t, (x, y)) ∈ ((0, δ] ∪ [1 − δ, 1)
)× Eε, we have that

mε,δ
t (x) =

{
mε

0(x) if t ∈ (0, δ]

mε
1(x) if t ∈ [1 − δ, 1)

and Jε,δt (x, y) = 0.

It follows that the action of (mε,δ, Jε,δ) is given by

Aε(mε,δ, Jε,δ) =
∫ 1

0

Fε(m
ε,δ
t , Jε,δt ) dt =AIδ

ε
(mε,δ, Jε,δ) + δ

∑
i=0,1

Fε(m
ε

i , 0), (3.17)

where we used the notation

AIδ
ε

(mε,δ, Jε,δ) :=
∫
Iδ
Fε(m

ε,δ
t , Jε,δt ) dt = (1 − 2δ)

∫ 1

0

Fε

(
mε

t ,
1

1 − 2δ
Jεt
)

dt.

Using Assumption 3.1, we see that, for i = 0, 1,
Fε(m

ε

i , 0) ≤ C(mε

i (Xε) + 1) = C
(
ιεmε

(
(0, 1) ×T

d
)+1

)
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and, by the Lipschitz continuity exhibited in Lemma 3.5, we also infer that

AIδ
ε

(mε,δ, Jε,δ) ≤ (1 − 2δ)

⎛⎜⎝Aε(mε, Jε) + C
( 1

1 − 2δ
− 1
)∑

z∈Zd
ε

εd
∑

(x,y)∈E
|xz|∞≤R

∫ 1

0

|τ z
ε
Jεt (x, y)|
εd−1

dt

⎞⎟⎠
≤ (1 − 2δ)Aε(mε, Jε) + 2δC(2R + 1)d

∑
z∈Zd

ε

εd
∑

(x,y)∈EQ

∫ 1

0

|τ z
ε
Jεt (x, y)|
εd−1

dt.

Since we assumed F to be nonnegative, we can estimate

(1 − 2δ)Aε(m
ε, Jε) ≤Aε(m

ε, Jε)

and, using (2.8),∑
z∈Zd

ε

εd
∑

(x,y)∈EQ

∫ 1

0

|τ z
ε
Jεt (x, y)|
εd−1

dt ≤ 1

c
Aε(m

ε, Jε) + C

c

(
1 + (1 + 2Rmax)

d‖ιεmε‖TV
)

.

Combining these estimates with (3.17), we find (3.15).

3.2.2. Case 2: F is flow-based
In this section, we show (3.10) in the case where F (and hence fhom) is of flow-based type, i.e. it satisfies
Assumption 3.2. We start by observing that, in this particular setting, both the discrete and the continuous
formulations of the boundary-value problems admit an equivalent, static formulation.

Let (μ, ν) ∈ CE and consider the Lebesgue decomposition

μ = ρL d+1 + ρ⊥σ , ν = jL d+1 + j⊥σ .

We know that every solution to the continuity equation can be disintegrated in the form μ( dt, dx) =
μt( dx) dt for some measurable curve t �→μt ∈M+(Td) of constant, finite mass. If f is a function as in
Assumption 2.2 that further does not depend on ρ, then Jensen’s inequality yields∫ 1

0

∫
Td

f (jt) dx dt ≥
∫
Td

f

(∫ 1

0

jt dt

)
dx. (3.18)

In order to take care of the singular part, consider the disintegration of σ with respect to the projection
map π :(t, x) �→ x, in the form

σ ( dt, dx) = σ x( dt)(π#σ )( dx),

for some measurable x �→ σ x ∈ P
(
(0, 1)

)
. Due to the convexity of f ∞, by Jensen’s inequality we also

obtain ∫
(0,1)×Td

f ∞(j⊥) dσ ≥
∫
Td

f ∞
(∫

j⊥ dσ x

)
dπ#σ (x). (3.19)

Now, we define the new space-time measures

μ̃ := μ̃t( dx) dt and ν̃ := ĵL d+1 + ĵ⊥ dt ⊗ π#σ , where

μ̃t := μ0 + t(μ1 −μ0), ĵ(x) :=
∫ 1

0

jt(x) dt, and ĵ⊥(x) :=
∫

j⊥ dσ x, (3.20)

and note that (μ̃, ν̃) ∈ CE. By (3.18) and (3.19), we, therefore, have

A(μ, ν) ≥
∫
Td

f (̂j) dx +
∫
Td

f ∞(̂j⊥) dπ#σ (x). (3.21)

We need to be careful here: the decomposition of ν̃ in (3.20) may not be a Lebesgue decomposition,
in the sense that dt ⊗ π#σ can have a nonzero absolutely continuous part. Let σ̃ ∈M+(Td) be singular
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w.r.t. Ld and such that μ0,μ1, π#σ � Ld + σ̃ . We can write the Lebesgue decompositions

μ̃ = ρ̃Ld+1 + ρ̃⊥ dt ⊗ σ̃ , ν̃ = j̃Ld+1 + j̃⊥ dt ⊗ σ̃ .

If we write

π#σ = αLd + βσ̃

for some functions α, β:Td →R+, then

j̃ = ĵ + α̂j⊥ and j̃⊥ = β̂j⊥.

The inequality (3.21) becomes, recalling that f ∞ is 1-homogeneous,

A(μ, ν) ≥
∫
Td

(
f (̂j) + f ∞(α̂j⊥)

)
dx +

∫
Td

f ∞(β̂j⊥) dσ̃ . (3.22)

At this point, we need a lemma.

Lemma 3.13. For every j1, j2 ∈R
d, we have that f (j1 + j2) ≤ f (j1) + f ∞(j2).

Proof. Let g ≤ f be a convex and Lipschitz continuous function. By convexity, for every ε ∈ (0, 1), we
have

g(j1 + j2) = g

(
(1 − ε)

j1

1 − ε
+ ε

j2

ε

)
≤ (1 − ε)g

(
j1

1 − ε

)
+ εg

(
j2

ε

)
.

Let j0 ∈ D(f ). By the Lipschitz continuity of g,

g(j1 + j2) ≤ (1 − ε)

(
g(j1) + (Lipg)

(
1

1 − ε
− 1

)
|j1|
)

+ εg

(
j2

ε
+ j0

)
+ ε(Lipg)|j0|

and, since g ≤ f ,

g(j1 + j2) ≤ (1 − ε)f (j1) + εf

(
j2

ε
+ j0

)
+ ε(Lipg)

(|j0| + |j1|
)
.

As we let ε→ 0, we find

g(j1 + j2) ≤ f (j1) + f ∞(j2).

Since f is convex and lower semicontinuous, we conclude by an approximation argument.

Applying this lemma with j1 = ĵ(x) and j2 = α̂j⊥(x) for every x ∈T
d, (3.22) finally becomes

A(μ, ν) ≥
∫
Td

f (̃j) dx +
∫
Td

f ∞(̃j⊥) dσ̃ =A(μ̃, ν̃).

In other words, we have shown that an optimal curve μ between two given boundary data is always given
by the affine interpolation (and a constant-in-time flux). We conclude that

MA(μ0,μ1) =A(μ̃) (3.23)

= inf
ν

{∫
Td

f (̃j) dx +
∫
Td

f ∞(̃j⊥) dσ̃ : ν = j̃Ld + j̃⊥σ̃ , Ld ⊥ σ̃ and ∇ · ν =μ0 −μ1

}
.

We refer to the latter expression as the static formulation of the boundary value problem described
by MA(μ0,μ1) (in the case when f is of flow-based type).

Remark 3.14. Using this equivalence, the lower semicontinuity of MA directly follows from the
semicontinuity of A given by [[23], Lemma 3.14].

Arguing in a similar way (in fact, via an even simpler argument, due to the lack of singularities), we
obtain a static formulation of the discrete transport problem in terms of a discrete divergence equation,
when F(m, J) = F(J). Precisely, in this case we obtain

MAε(m0, m1) = inf
{Fε(J) : J ∈R

Eε
a , divJ = m0 − m1

}
.

The sought �-liminf inequality easily follows from such static formulations.
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Proof of the liminf inequality (flow-based type). Let mε
0, mε

1 ∈R
Xε+ be sequences of discrete nonnega-

tive measures that converge weakly (via ιε in the usual sense) to μ0, μ1, and such that mε
0(Xε) = mε

1(Xε)
for every ε > 0. Let (mε, Jε) ∈ CE ε be (almost-)optimal solutions associated with MAε(mε

0, mε
1), namely

lim inf
ε→0

MAε(m
ε

0, mε

1) = lim inf
ε→0

Aε(mε) = lim inf
ε→0

Aε(mε, Jε). (3.24)

Consider the discrete equivalent of the measure constructed in (3.20), namely

m̃ε

t := mε

0 + t(mε

1 − mε

0) and J̃εt ≡ J̃ε :=
∫ 1

0

Jεs ds,

which still solves the continuity equation. By applying Jensen’s inequality, the convexity of F ensures
that

Aε(mε, Jε) ≥Aε(m̃ε, J̃ε) =Fε (̃J
ε) and (m̃ε, J̃ε) ∈ CE ε. (3.25)

Thus Aε(mε, Jε) ≥Aε(m̃ε). Note that, by construction, m̃ε → μ̃ weakly, where

μ̃ := μ̃t( dx) dt with μ̃t := μ0 + t(μ1 −μ0).

Hence, from (3.24), (3.25), and the �-convergence of Aε to Ahom (cfr. [[23], Theorem 5.1]), we infer
that

lim inf
ε→0

MAε(m
ε

0, mε

1) ≥Ahom(μ̃) ≥MAhom(μ0,μ1),

which concludes the proof of the liminf inequality.

3.3. About the lower semicontinuity of MA

In view of our main result, whenever F satisfies either Assumption 3.1 or Assumption 3.2, the limit
boundary-value problemMAhom(·, ·) is necessarily jointly lower semicontinuous with respect to the weak
topology on M+(Td) ×M+(Td). This indeed follows from the general fact that any �-limit with respect
to a given topology is always lower semicontinuous with respect to that same topology. Using a very
similar proof to that of the �-liminf inequality, we can actually show that, if f is with linear growth or it
is of flow-based type, then the associated MA is always lower semicontinuous (even if, a priori, f is not
of the form f = fhom), thus providing a positive answer in this framework to the validity of (2.5). In the
flow-based setting, this fact has been observed in Remark 3.14.

Proposition 3.15. Assume that f is with linear growth, namely it satisfies one of the two equivalent
conditions appearing in Lemma 3.4, and assume that (μn

0,μn
1) → (μ0,μ1) ∈M+(Td) ×M+(Td) weakly.

Then:

lim inf
n→∞

MA(μn
0,μn

1) ≥MA(μ0,μ1).

The proof goes along the same line of the proof of the �-liminf inequality for discrete energies F with
linear growth. We sketch it here and add details whenever we encounter nontrivial differences between
the two proofs.

Proof. Let (μn, νn) ∈ CE be (almost-)optimal solutions associated to MA(μn
0,μn

1), i.e.

lim inf
n→∞

MA(μn
0,μ

n
1) = lim inf

n→∞
A(μn, νn). (3.26)

With no loss of generality, we can assume supn A(μn, νn)<∞ and that the limits inferior are true limits.
By the compactness of Remark 2.5, we know that, up to a non-relabelled subsequence, μn → μ weakly in
M+

(
(0, 1) ×T

d
)
. Moreover, we also have dμ(t, x) =μt( dx) dt ∈ BVKR

(
(0, 1);M+(Td)

)
for some mea-

surable curve t �→μt ∈M+(Td) of constant, finite mass. Once again, due to the lack of continuity of the
trace operators in BV, we cannot ensure that μt=0 =μ0 and μt=1 =μ1. To solve this issue, we rescale
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our measures μn in time in the same spirit as in (3.12). For a given δ > 0, we define Iδ := (δ, 1 − δ) and
μn,δ ∈ BVKR

(
(0, 1);M+(Td)

)
as

μn,δ
t :=

⎧⎪⎨⎪⎩
μn

0 if t ∈ (0, δ]

μn
t−δ

1−2δ
if t ∈ Iδ

μn
1 if t ∈ [1 − δ, 1)

, dμn,δ(t, x) := μn,δ
t ( dx) dt.

By construction, it is not hard to see that μn,δ → μ̂δ weakly, where

μ̂δt :=

⎧⎪⎨⎪⎩
μ0 if t ∈ (0, δ]

μ t−δ
1−2δ

if t ∈ Iδ
μ1 if t ∈ [1 − δ, 1)

, dμ̂δ(t, x) := μ̂δt ( dx) dt.

We stress that, as in (3.13), the rescaled curve t �→ μ̂δt could have discontinuities at t = δ and
t = 1 − δ, corresponding to the possible jumps in the limit as n → ∞ for μn at {0, 1}. Nevertheless,
μ̂δ is a competitor for MA(μ0,μ1), which, by lower semicontinuity of A, ensures that

lim inf
n→∞

A(μn,δ) ≥A(μ̂δ) ≥MA(μ0,μ1). (3.27)

In order to estimate the left-hand side of the latter displayed equation, we seek a suitable vector meausure
νn,δ so that (μn,δ, νn,δ) ∈ CE and whose action A(μn,δ, νn,δ) is comparable with A(μn, νn) for small δ > 0.

It is useful to introduce the following notation: for δ ∈ (0, 1/2),

rδ:(0, 1) → Iδ, rδ(s) := (1 − 2δ)s + δ,

Rδ:(0, 1) ×T
d → Iδ ×T

d, Rδ(s, x) := (rδ(s), x).

Define ι̂δ:Md(Iδ ×T
d) →Md

(
(0, 1) ×T

d
)

as the natural embedding obtained by extending to 0 any
measure outside Iδ, and set

νn,δ := ι̂δ
[
(Rδ)#ν

n
] ∈Md((0, 1) ×T

d).

The proof that (μn,δ, νn,δ) ∈ CE works as in (3.16). In the same spirit as in (3.15), we claim that

A(μn,δ, νn,δ) ≤ (1 + C(f )δ
)
A(μn, νn) + C(f )δ

(
1 + μn((0, 1) ×T

d)
)

, (3.28)

where C(f ) ∈R+ only depends on f . The combination of (3.26), (3.27) and (3.28), and the arbitrariness
of δ would then suffice to conclude the proof.

We are left with the proof of the claim (3.28), which is a bit more involved, compared to that of (3.15),
due to the presence of the singular part at the continuous level. We need the following.

Lemma 3.16. Let σ ∈M+
(
(0, 1) ×T

d
)

be a singular measure with respect to L d+1. Then, the measure
(Rδ)#σ ∈M+(Iδ ×T

d) is also singular with respect to L d+1. Moreover, for every measure ξ = f L d+1 +
f ⊥σ ∈Mn((0, 1) ×T

d), we have the decomposition

(Rδ)#ξ = f δL d+1 + f δ,⊥(Rδ)#σ ,

where the respective densities are given by the formulas

f δ(t, x) = 1

1 − 2δ
f
(
r−1
δ

(t), x
)

and f δ,⊥(t, x) = f ⊥(r−1
δ

(t), x
)
.

Proof. By assumption, σ is singular with respect to L d+1, which means there exists a set A ⊂ (0, 1) ×T
d

such that L d+1(A) = 0 = σ (Ac). By the very definition of push-forward and the bijectivity of Rδ, we then
have that

(Rδ)#σ
(
(Rδ(A))c

)= σ
(

R−1
δ

(
Rδ(A

c)
))= σ (Ac) = 0,
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whereas, by the scaling properties of the Lebesgue measure, we have that L d+1(Rδ(A)) = (1 −
2δ)L d+1(A) = 0, which shows the claimed singularity. The second part of the lemma follows from
the fact that (Rδ)#L d+1 = (1 − 2δ)−1L d+1 and the following statement: for every ξ ′ = f ′σ ′ with σ ′ ∈
M+((0, 1) ×T

d), we claim that
d(Rδ)#ξ

′

d(Rδ)#σ
′ (t, x) = f ′(R−1

δ
(t, x)), ∀(t, x) ∈ Iδ ×T

d. (3.29)

Indeed, by definition of push-forward, we have for every test function ϕ ∈ Cb∫
ϕ d(Rδ)#ξ

′ =
∫

(ϕ ◦ Rδ) dξ ′ =
∫

(ϕ ◦ Rδ)f ′ dσ ′ =
∫
ϕ · (f ′ ◦ R−1

δ
) d(Rδ)#σ

′,

which indeed shows (3.29).
Let

μn = ρn dL d+1 + ρn,⊥ dσ and νn = jn dL d+1 + jn,⊥ dσ

be Lebesgue decompositions. We apply Lemma 3.16 to both μn and νn and find that, on Iδ ×T
d, we

have
μn,δ = ρn,δ dL d+1 + ρn,δ,⊥ d(Rδ)#σ and νn,δ = jn,δ dL d+1 + jn,δ,⊥ d(Rδ)#σ ,

with (Rδ)#σ singular with respect to L d+1 and
ρn,δ(t, x) = (ρn ◦ R−1

δ

)
(t, x), ρn,δ,⊥(t, x) = (1 − 2δ)

(
ρn,⊥ ◦ R−1

δ

)
(t, x), (3.30)

jn,δ(t, x) = 1

1 − 2δ

(
jn ◦ R−1

δ

)
(t, x), jn,δ,⊥(t, x) = (jn,⊥ ◦ R−1

δ

)
.

Further consider the Lebesgue decompositions
μn

i = ρn
i dLd + ρn,⊥

i dσi, i ∈ {0, 1}
for some σ1, σ2 ∈M+(Td) singular w.r.t. Ld. The action of (μn,δ, νn,δ) is given by2

A(μn,δ, νn,δ) =A
Iδ (μn,δ, νn,δ) +

∑
i=0,1

δ
( ∫

Td

f (ρn
i , 0) dLd +

∫
Td

f ∞(ρn,⊥
i , 0) dσi

)
,

where we used the notation

A
Iδ (μn,δ, νn,δ) :=

∫
Iδ×Td

f (ρn,δ, jn,δ) dLd+1 +
∫
Iδ×Td

f ∞(ρn,δ,⊥, jn,δ,⊥) d(Rδ)#σ .

Making use of the formulas (3.30) and the homogeneity of f ∞, we find

A
Iδ (μn,δ, νn,δ) = (1 − 2δ)

∫
(0,1)×Td

f
(
ρn,

jn

1 − 2δ

)
dL d+1 +

∫
(0,1)×Td

f ∞((1 − 2δ)ρn,⊥, jn,⊥) dσ (3.31)

= (1 − 2δ)

( ∫
(0,1)×Td

f
(
ρn,

jn

1 − 2δ

)
dL d+1 +

∫
(0,1)×Td

f ∞
(
ρn,⊥,

jn,⊥

1 − 2δ

)
dσ

)
.

Furthermore, it follows from the linear growth assumption that, for i = 0, 1,∫
Td

f (ρn
i , 0) dLd +

∫
Td

f ∞(ρn,⊥
i , 0) dσi ≤ C(μn

i (Td) + 1) = C
(
μn((0, 1) ×T

d) + 1
)

as well as, by (3.31), the nonnegativity of f , and Assumption 2.2,

A
Iδ (μn,δ, νn,δ) ≤A(μn, νn) + 2δ(Lipf )

( ∫
(0,1)×Td

|jn| dL d+1 +
∫

(0,1)×Td

|jn,⊥| dσ

)
≤A(μn, νn) + 2δ(Lipf )

c

(
A(μn, νn) + C(1 + ‖μn‖TV)

)
.

We thus conclude (3.28).

2Note that the definition of the action does not depend on the choice of the measure which is singular with respect to L d+1,
therefore we can use (Rδ)#σ instead of σ .
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4. Analysis of the cell problem with examples

This section is devoted to the characterisation and illustration of fhom in the case where the function F is
of the form

F(m, J) = F(J) =
∑

(x,y)∈EQ

αxy|J(x, y)| (4.1)

for some strictly positive function α:EQ � (x, y) �→ αxy > 0. A natural problem of interest is to determine
whether/when the �-limit MAhom can be the W1-distance. The analogous problem for the W2-distance
has been extensively studied in [24] and [23] in the case where the graph stucture is associated with
finite-volume partitions.

4.1. Discrete 1-Wasserstein distance

We start the analysis of this special setting by observing that, in this case, the discrete functional MAε

actually coincides with the W1 distance associated to a natural induced metric structure. In order to
prove this fact, we first define α̃ε:Eε →R+ as the unique function such that

τ z
ε
α̃ε

ε

∣∣∣
EQ

:= α z ∈Z
d
ε
.

It is easy to check that this definition is well-posed and determines the value of α̃xy for every (x, y) ∈ Eε.
Further let

αεxy = α̃εxy + α̃εyx

2
, (x, y) ∈ Eε

be the symmetrisation of α̃ε. Given J ∈R
Eε
a , we can write Fε(J) in terms of αε. Precisely,

Fε(J) =
∑
z∈Zd

ε

εdF

(
τ z
ε
J

εd−1

)
=
∑
z∈Zd

ε

εd
∑

(̂x,̂y)∈EQ

α̂x̂y

|τ z
ε
J(̂x, ŷ)|
εd−1

=
∑
z∈Zd

ε

∑
(̂x,̂y)∈EQ

τ z
ε
α̃ε (̂x, ŷ)|τ z

ε
J(̂x, ŷ)| =

∑
(x,y)∈Eε

α̃εxy|J(x, y)|

=
∑

(x,y)∈Eε
αεxy|J(x, y)|,

where in the last passage we used that |J| is symmetric. We define a distance on Xε given by

dε(x, y) := MAε(δx, δy), ∀x, y ∈Xε.

One can easily show that dε indeed defines a metric on Xε. In fact, dε can be seen as a weighted graph
distance.

Proposition 4.1. For every x, y ∈Xε, we have

dε(x, y) = inf

{
k−1∑
i=0

2αεxixi+1
: x0 = x, xk = y, (xi, xi+1) ∈ Eε ∀i, k ∈N

}
.

Proof. The inequality ≤ directly follows by choosing unit fluxes along admissible paths: let x0 =
x, x1, . . . , xk−1, xk = y be a path, i.e. (xi, xi+1) ∈ Eε for every i = 0, 1, . . . , k, and consider

JP :=
k−1∑
i=0

(
δ(xi ,xi+1) − δ(xi+1,xi)

)
, (4.2)

https://doi.org/10.1017/S0956792524000810 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000810


European Journal of Applied Mathematics 23

which has divergence equal to δx − δy. Then,

dε(x, y) =MAε(δx, δy) = inf
{Fε(J) : divJ = δx − δy

}
= inf

{ ∑
(x,y)∈Eε

αεxy|J(x, y)| : divJ = δx − δy

}

≤
∑

(x,y)∈Eε
αεxy|JP(x, y)| ≤

k−1∑
i=0

2αεxixi+1
,

where in the last inequality we used that αε is symmetric.
To prove the converse, let J̄ ∈R

Eε
a be an optimal flux for MAε(δx, δy), that is,

divJ̄ = δx − δy and MAε(δx, δy) =
∑

(x,y)∈Eε
αεxy|J̄(x, y)|.

Since the graph Eε is finite, in order for J̄ to satisfy the divergence condition, there must exist a simple
path x0 = x, x1, . . . , xk = y such that (xi, xi+1) ∈ Eε and J̄(xi, xi+1)> 0 for every i. Let JP be the associated
vector field as in (4.2). Note that, for every λ ∈R, we have div

(
(1 − λ)J̄ + λJP

)= δx − δy. Furthermore,
the function

λ �→Fε((1 − λ)J̄ + λJP
)= ∑

(x,y)∈Eε
αεxy|(1 − λ)J̄(x, y) + λJP(x, y)|

is differentiable at λ= 0, since (J̄(x, y) = 0) ⇒ (JP(x, y) = 0). By optimality, the derivative at λ= 0 must
equal 0, i.e.

0 =
∑

(x,y)∈Eε
αεxy

(
JP(x, y) − J̄(x, y)

)
sgnJ̄(x, y) =

∑
(x,y)∈Eε

αεxyJ
P(x, y)sgnJ̄(x, y) − dε(x, y),

and, since (JP(x, y) �= 0) ⇒ (sgn JP(x, y) = sgn J̄(x, y)), we have

dε(x, y) =
∑

(x,y)∈Eε
αεxy|JP(x, y)| = 2

k∑
i=1

αεxixi+1
,

where, in the last equality, we used that the path is simple (and the symmetry of αε). This shows the
inequality ≥ and concludes the proof.

Consider the 1-Wasserstein distance associted to dε, that is,

W1,ε(m0, m1) = inf

{∫
Xε×Xε

dε(x, y) dπ (x, y) : (e0)#π = m0, (e1)#π = m1

}
,

as well as, by Kantorovich duality,

W1,ε(m0, m1) = sup

{∫
Xε

ϕ d(m0 − m1) : Lipdε (ϕ) ≤ 1

}
,

for every m0, m1 ∈ P(Xε).

Proposition 4.2. For every m0, m1 ∈ P(Xε), we have

MAε(m0, m1) =W1,ε(m0, m1). (4.3)

Proof of ≥. Fix m0, m1 ∈ P(Xε) and set m := m0 − m1. Let J̄ ∈R
Eε
a be an optimal flux forMAε(m0, m1),

that is,

divJ̄ = m and MAε(m0, m1) =
∑

(x,y)∈Eε
αεxy|J̄(x, y)|.
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Let ϕ:Xε →R be such that Lipdεϕ ≤ 1, i.e. |ϕ(y) − ϕ(x)| ≤ dε(x, y) for x, y ∈Xε. Then,∫
Xε

ϕ dm =
∫
Xε

ϕ ddivJ̄ =
∑
x∈Xε

ϕ(x)
∑
y∼x

J̄(x, y) = 1

2

∑
(x,y)∈Eε

ϕ(x)
(
J̄(x, y) − J̄(y, x)

)
= 1

2

∑
(x,y)∈Eε

(
ϕ(y) − ϕ(x)

)
J̄(x, y) ≤ 1

2

∑
(x,y)∈Eε

dε(x, y)|J̄(x, y)|.

In order to conclude, we make the following crucial observation: as a consequence of the optimality of
J̄, we claim that

J̄(x, y) �= 0 =⇒ dε(x, y) = 2αεxy. (4.4)

To this end, assume that J̄(x, y) �= 0 and consider an optimal J(x,y) for dε(x, y) =MAε(δx, δy). Note that,
by construction,

div
(
J(x,y)

)= δx − δy = diṽJ, where J̃ := δ(x,y) − δ(y,x),

which in turns also implies that

div
(
J̄ + J̄(x, y)

(
J(x,y) − J̃

))= divJ̄.

By optimality of J(x,y), we have

Fε (̃J) = 2αεxy ≥Fε

(
J(x,y)

)= ∑
(̃x,̃y)∈Eε

αεx̃,̃y|J(x,y)(̃x, ỹ)|, (4.5)

whereas the optimality of J̄ yields

Fε

(
J̄ + J̄(x, y)

(
J(x,y) − J̃

))= ∑
(̃x,̃y)∈Eε\{(x,y),(y,x)}

αεx̃̃y|J̄(̃x, ỹ) + J̄(x, y)J(x,y)(̃x, ỹ)|

+ αεxy|J̄(x, y)J(x,y)(x, y)| + αεyx|J̄(x, y)J(x,y)(y, x)|
≥Fε(J̄) =

∑
(̃x,̃y)∈Eε

αεx̃̃y|J̄(̃x, ỹ)|.

By applying the triangle inequality and simplifying the latter formula, we find∑
(̃x,̃y)∈Eε

αεx̃̃y|J̄(x, y)J(x,y)(̃x, ỹ)| ≥ 2αεxy|J̄(x, y)|. (4.6)

The combination of (4.5) and (4.6) implies dε(x, y) = 2αεxy. With (4.4) at hand, we can write∫
Xε

ϕ dm ≤
∑

(x,y)∈Eε
αεxy|J̄(x, y)| =MAε(m0, m1),

and we conclude by arbitrariness of ϕ.

Proof of ≤. Let π be such that (ei)#π = mi for i = 0, 1. Further, for every x, y ∈Xε, let J(x,y) ∈R
Eε
a be

optimal for MAε(δx, δy). It follows from a direct computation that the divergence of the asymmetric
flux

J :=
∑

x,y∈Xε

π (x, y)J(x,y)

is equal to m0 − m1. Thus,

MAε(m0, m1) ≤
∑

(̃x,̃y)∈Eε
αεx̃̃y|J(̃x, ỹ)| ≤

∑
x,y∈Xε

π (x, y)
∑

(̃x,̃y)∈Eε
αεx̃̃y|J(x,y)(̃x, ỹ)| =

∫
Xε×Xε

dε dπ ,

and we conclude by arbitrariness of π .

In view of the equality MAε =W1,ε, it is worth noting that for cost functions of the form (4.1) there
are (at least) two different possible methods to show discrete-to-continuum limits for MAε. One such
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method is provided by the current work and makes use of the �-convergence of Aε to Ahom proved in
[[23], Theorem 5.4]. The convergence of the “weighted graph distance” dε follows a posteriori. Another
approach is to study directly the scaling limits of the distance dε as ε→ 0 and, from that, infer the
convergence of the associated 1-Wasserstein distances, in a similar spirit as in [4].

4.2. General properties of fhom

For j ∈R
d, recall that

fhom(j) := inf {F(J) : J ∈ Rep(j)} , (4.7)

where Rep(j) is the set of all Zd-periodic functions J ∈R
E
a such that

Eff(J) := 1

2

∑
(x,y)∈EQ

J(x, y)(yz − xz) = j and divJ ≡ 0.

As noted in [[23], Lemma 4.7], we may as well write min in place of inf in (4.7).
Our first observation is that, indeed, the homogenised density is a norm. This has already been proved

in [[23], Corollary 5.3]; for the sake of completeness, we provide here a simple proof in our setting.

Proposition 4.3. The function fhom is a norm.

Proof. Finiteness follows from the nonemptiness of the set of representatives proved in [[23], Lemma
4.5]. To prove positiveness, take any j ∈R

d and J ∈ Rep(j). For every norm ‖·‖, we have

‖j‖ = ‖Eff(J)‖ ≤ 1

2

∑
(x,y)∈EQ

|J(x, y)|‖yz − xz‖ ≤ F(J)

2
max

(x,y)∈EQ

‖yz − xz‖
αxy

. (4.8)

The constant that multiplies F(J) at the right-hand side is finite because every αxy is strictly positive
and the graph (X , E) is locally finite. Absolute homogeneity and the triangle inequality follow from the
absolute homogeneity and subadditivity of F and the affinity of the constraints.

Hence, MAhom is always (i.e. for any choice of (αxy)x,y and of the graph (X , E)) the W1-distance w.r.t.
some norm. However, the norm fhom can equal the 2-norm |·|2 only in dimension d = 1. In fact, the unit
ball for fhom has to be a polytope, namely the associated sphere is contained in the union of finitely many
hyperplanes. These types of norms are also known as crystalline norms.

Proposition 4.4. The unit ball associated to the norm fhom, namely

B := {
j ∈R

d : fhom(j) ≤ 1
}

,

is the convex hull of finitely many points. In particular, the associated unit sphere is contained in the
union of finitely many hyperplanes, i.e. fhom is a crystalline norm.

Proof. Let X be the vector space of all Zd-periodic functions J ∈R
E
a such that divJ ≡ 0. The sublevel

set

X1 := {J ∈ X : F(J) ≤ 1}
is clearly compact (due to the strict positivity of (αxy)x,y) and can be written as finite intersection of
half-spaces, namely

X1 =
⋂

r∈{−1,1}EQ

⎧⎨⎩J ∈ X :
∑

(x,y)∈EQ

αxyrxyJ(x, y) ≤ 1

⎫⎬⎭ .
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Thus, X1 is the convex hull of some finite set of points A, that is, X1 = conv(A). Since fhom is defined as
a minimum, we have

B = {j ∈R
d : ∃J ∈ Rep(j), F(J) ≤ 1

}= Eff(X1) = Eff(conv(A)) = conv(Eff(A)),

where the last equality is due to the linearity of Eff.

4.3. Embedded graphs

To visualise some examples, we shall now focus on the case where (X , E) is embedded, in the sense that
V is a subset of [0, 1)d, and we use the identification (z, v) ≡ z + v (see also [[23], Remark 2.2]). It has
been proved in [[23], Proposition 9.1] that, for embedded graphs, the identity

Eff(J) = 1

2

∑
(x,y)∈EQ

J(x, y)(y − x) (4.9)

holds for every Z
d-periodic and divergence-free vector field J ∈R

E
a . In what follows, we also make the

choice

αxy := 1

2
|x − y|2, (x, y) ∈ EQ.

4.3.1. One-dimensional case with nearest-neighbour interaction
Assume d = 1, let x1 < x2 < · · ·< xk be an enumeration of V , and set

E := {(x, y) ∈X ×X s.t. there is no z ∈X strictly between x and y}.
In other words, denoting x0 = xk − 1 and xk+1 = x1 + 1,

E =
⋃
z∈Z

k⋃
i=1

{(xi, xi+1)} ∪ {(xi, xi−1)} .

By rewriting (4.8) using (4.9), and by the definition of fhom, we find

|j| ≤ fhom(j), j ∈R
d.

On the other hand, given j ∈R
d, choose

J(x, y) := jsgn(y − x), (x, y) ∈ E .

This vector field is in Rep(j) because

divJ(xi) = J(xi, xi+1) + J(xi, xi−1) = j − j = 0

for every i, and

Eff(J) = 1

2

k∑
i=1

(
J(xi, xi+1)(xi+1 − xi) + J(xi, xi−1)(xi−1 − xi)

)
= j

2

k∑
i=1

(|xi+1 − xi| + |xi − xi−1|
)

= j

2

(
xk+1 − x1 + xk − x0

)
= j.

A similar computation shows that F(J) = |j|, from which fhom(j) = |j|.
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(A)

(B)

(C)

Figure 2. Examples of graphs in R
2 and corresponding unit balls for fhom.
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4.3.2. Cubic partition
Consider the case where X =Z

d and

E := {
(x, y) ∈Z

d ×Z
d : |x − y|∞ = 1

}
.

It is a result of [[23], Section 9.2] that

fhom(j) = |j|1, j ∈R
d.

Notice that, in this case, the 2-norm is evaluated only at vectors on the coordinate axes. Therefore, the
same result holds when αxy = 1

2
|x − y|p, for any p.

4.3.3. Graphs in R
2

A few other examples in dimension d = 2 are shown in Figure 2: for each one, we display the graph and
the unit ball in the corresponding norm fhom. To algorithmically construct the unit balls, we solve the
variational problem (4.7) for every j on a discretisation of the circle S

1. In turn, this is achieved with
the help of the Python library CVXPY [7], [3]. For visualisation, we make use of the library matplotlib
[28].
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