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Bifactor IRT models are usual option for modeling composite constructs. However, in 

application, researchers typically must assume that all dimensions of person parameter space 

are orthogonal. This can result in absurd model interpretations. We propose a new bifactor 

model – the Completely Oblique Rasch Bifactor (CORB) model – which allows for estimation 

of correlations between all dimensions. We discuss relations of this model to other oblique 

bifactor models and study the conditions for its identification in the dichotomous case. We 
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analytically prove that this model is identified in the case that (a) at least one item loads solely 

on the general factor and no items are shared between any pair of specific factors (we call this 

the G-structure), or (b) if no items load solely on the general factor, but at least one item is 

shared between every pair of the specific factors (the S-structure). Using simulated and real 

data we show that this model outperforms the other partially oblique bifactor models in terms 

of model fit because it corresponds to the more realistic assumptions about construct structure. 

We also discuss possible difficulties in interpretation of CORB model’s parameters using by 

analogy the “explaining away” phenomenon from Bayesian reasoning. 
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Bifactor models (Holzinger & Swineford, 1937) are a common approach in Item 

Response Theory (IRT) for modeling composite constructs. These models enable the 

simultaneous estimation of a general factor, which is measured by all items, and specific 

factors, which are measured by subsets of them (see, for example, Figure 1). Bifactor models 

are particularly useful for capturing a general factor in tests with varied item types or in testlet-

based assessments, where groups of items are linked by a common stimulus (Reise, 2012). 

They are also a popular focus in psychometric research because they generalize higher-order 

models mathematically (Gignac, 2016). Additionally, bifactor models have a constrained form 

known as the testlet model, which is equivalent to higher-order models (Rijmen, 2010).  

Figure 1 

A bifactor structure with three specific factors. All items load on the general factors and on 

one specific factor 

 

Traditional bifactor models are constrained by a restrictive assumption: the general and 

specific factors must be orthogonal, meaning they are uncorrelated. According to the traditional 

framework, this assumption is necessary to ensure model identification (Reise et al., 2010). 

However, from an interpretational and substantive perspective, this assumption is often 
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nonsensical despite its mathematical justification. For example, consider a bifactor model 

applied to a test comprising items that measure algebra and geometry to derive a general 

mathematics score. This approach requires assuming that the general mathematics factor is 

uncorrelated with both algebra and geometry scores. Additionally, it demands that algebra and 

geometry scores themselves are uncorrelated. Such assumptions make it challenging to 

interpret the resulting factor scores as meaningful representations of content domains (Wilson 

& Gochyyev, 2020). 

Eid et al. (2017) highlighted a related paradox using stochastic measurement theory, 

demonstrating that orthogonal bifactor models should only be applied when the specific factors 

are interchangeable – essentially drawn at random from the universe of specific factors. This 

assumption, however, does not hold when specific factors represent distinct subject matter 

domains, such as algebra and geometry. Eid et al. (2017) further concluded that this 

requirement is rarely met in practice, leading to the overuse of bifactor models due to 

inappropriate measurement design. 

To address this limitation, researchers often justify their use of bifactor models by 

aligning their application with specific modeling objectives. Frequently, the focus is on the 

general factor, with specific factors serving as a mathematical tool to account for local 

dependencies among items caused by shared content or stimuli (e.g., DeMars, 2013). 

Alternatively, some researchers emphasize the specific factors and view the general factor as a 

common source of error variance across all items (Hendy & Biderman, 2019). In such cases, 

the assumption of total orthogonality contradicts theoretical models of the construct. 

Still, psychometricians often treat secondary factors as nuisance dimensions, enabling 

them to overlook interpretational challenges. However, this approach is suboptimal for 

modeling composite constructs, as it prioritizes mathematical convenience over an accurate 

representation of the relationships between components. Attempts have been made to 
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differentiate the contexts in which orthogonal bifactor models are applied. For example, these 

models have been shown to perform exceptionally well in measurement contexts (Cai et al., 

2011; Wang & Zhang, 2019; Jeon et al., 2018) but fail to yield reliable estimates in predictive 

contexts (Zhang et al., 2021, 2023a). 

To address these limitations, several extensions of bifactor IRT models have been 

proposed, providing partial solutions to the challenges of traditional bifactor models. These 

extensions allow for the direct estimation of specific entries in the variance-covariance matrix 

of the latent person parameter space. Notable examples include the Extended Rasch Testlet 

Model (ETM; Paek et al., 2009) and the Generalized Subdimensional Model (GSM; Brandt & 

Duckor, 2013), both of which have been developed within the Rasch modeling framework 

(Rasch, 1993). 

The ETM permits the estimation of covariances between specific factors and the general 

factor while maintaining orthogonality among the specific factors. In contrast, the GSM 

enforces orthogonality between the general factor and the specific factors but allows 

correlations among the specific factors, albeit under complex constraints. More recently, 

partially oblique bifactor models, such as GSM (but without those constraints), have been 

shown to be analytically identified within the covariance structure modeling framework if the 

factor loading matrix satisfies certain stringent requirements (Fang et al., 2021). However, 

these models have demonstrated high numerical instability in practice (Zhang et al., 2023b), 

leading researchers to advise caution in their use. Furthermore, none of these partially oblique 

bifactor models allow for the unrestricted estimation of the entire variance-covariance matrix. 

As a result, the interpretation of factor scores and correlations remains as challenging as it is in 

traditional bifactor models. 

The purpose of this paper is twofold. First, from a theoretical perspective, we introduce 

the Completely Oblique Rasch Bifactor (CORB) model within the confirmatory IRT paradigm. 
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This model, with certain limitations, enables the direct estimation of all entries in the variance-

covariance matrix of person parameters, simplifying the interpretation of model parameters. 

We explore the structure and interpretation of the CORB model in relation to existing oblique 

bifactor models. As a special case of the Multidimensional Random Coefficients Multinomial 

Logit Model (MRCMLM; Adams et al., 1997), the CORB model can be calibrated using 

dedicated software such as the ConQuest program (Adams et al., 2020), the TAM package for 

the R language (Robitzsch et al., 2025), or other tools for Generalized Linear Mixed Effect 

Modeling (e.g., de Boeck et al., 2011). 

Second, this paper makes a practical contribution by describing two specific test 

dimensionality structures that facilitate the estimation of all correlations among person 

parameters. The first structure involves having at least one item that does not load on any 

specific factor, effectively serving as an indicator for the general factor. The second structure 

requires that every pair of specific factors shares at least one item. We demonstrate how these 

two structures ensure the identification of the CORB model and discuss their practical 

implications. 

The paper is organized as follows: First, we describe the MRCMLM framework and 

outline the conditions necessary for identifying multidimensional Rasch models derived from 

this framework. Second, we present the CORB model and examine the conditions under which 

it is identified. Third, we compare the CORB model with other oblique bifactor models. Fourth, 

we conduct a simulation study to demonstrate that the CORB model is more flexible and 

performs better than other oblique Rasch models in terms of technical characteristics. Fifth, we 

provide a real data example using a reading assessment for first-graders and discuss challenges 

in interpreting the CORB model. Finally, we conclude with a discussion of the CORB model 

and potential directions for future research and application. 
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1. MRCMLM framework 

Assume a test consists of 𝐼 items (𝑖 = 1, … , 𝐼), where each item has 𝐾௜ categories (𝑘௜ =

 1௜ , … , 𝐾௜), and the total number of categories in the test is 𝐾 (so that 𝐾 = 2𝐼 in the case of a 

dichotomous test). Without loss of generality, we assume all items are dichotomous. 

Consequently, each item is described by a single parameter (𝜉௜), and the total number of item 

parameters, 𝑃, equals the number of items, 𝐼. 

Further, let the test measure 𝐷 latent factors 𝜃ௗ (𝑑 = 1, … , 𝐷). Each of 𝐷 test scores, 

𝜃ௗ, is assumed to follow a distribution marginalized to have a mean (𝜇) of zero for model 

identification (i.e., 𝝁 = 𝟎). For simplicity, this distribution is assumed to be normal with an 

estimated variance 𝑣𝑎𝑟(𝜃ௗ). However, this normality assumption is not necessary in the 

general case (Le & Adams, 2013). The latent space of person parameters is then defined by a 

multivariate normal distribution characterized by a vector of means 𝝁 and a variance-

covariance matrix 𝜮. 

According to the reflective perspective on measurement, we assume a predetermined 

correspondence between every response category of each test item and a specific latent factor. 

This correspondence is governed by a scoring matrix 𝑩 (explained below). The first category 

of every item is scored as zero, which serves to identify the model and establishes this category 

as the reference category. 

Formally, the Multidimensional Random Coefficients Multinomial Logit Model 

(MRCMLM) is expressed as follows: 

𝑃(𝑿௜௞ = 1; 𝑨,  𝑩,  𝝃|𝜽) =
exp(𝒃௜௞

் 𝜽 + 𝒂௜௞
் 𝝃)

∑ exp(𝒃௜௞
் 𝜽 + 𝒂௜௞

் 𝝃)௄೔
௞ୀଵ

, (1) 

where 𝑿௜ is a vector-valued random variable indicating 𝑋௜௞ = 1 if a response to item 𝑖 is in 

category 𝑘 (out of all possible 𝐾௜ categories) and 0 otherwise, 

𝝃 is a vector of 𝑃 item parameters (= 𝐼 item difficulties in the dichotomous case), 
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𝑨 is the design matrix (𝐾⨉𝑃), composed of design vectors 𝒂௜௞ (each of length 𝑃), 

𝜽 is the vector of person parameters, representing a 𝐷-dimensional latent space, 

𝑩 is the scoring matrix (𝐾⨉𝐷), composed of scoring vectors 𝒃௜௞  (each of length 𝐷). 

The design matrix 𝑨 defines the relationships between item categories and item 

parameters, while the scoring matrix 𝑩 links item categories to the test dimensions. If non-zero 

entries of 𝑩 are estimated as free parameters, they are interpreted as discrimination (or scoring) 

parameters, and the model corresponds to the 2PL approach in IRT. Conversely, if these entries 

are constrained to unity, the model follows the Rasch approach2. Generally, the 𝑩 matrix is 

structured as a factor loading matrix. The MRCMLM framework encompasses a wide range of 

models, including multidimensional, dichotomous, and polytomous models (using the adjacent 

logit link function), as well as other specialized models from the exponential family, within 

both the Rasch and 2PL paradigms. 

1.1 Volodin & Adams Condition for Identifying a D-dimensional Rasch Model 

Volodin & Adams (2002) outlined the condition required for identifying 

multidimensional Rasch models with all correlated dimensions. They demonstrated that an 

oblique multidimensional Rasch model is identifiable if the following condition is met3: 

𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] = 𝐷 + 𝑃ோ ≤ 𝐾 − 𝐼, (2) 

where 𝑨ோis a reduced design matrix, carefully constructed to preserve the original model's 

structure, 

and 𝑃ோ is the length of the reduced vector of item parameters corresponding to 𝑨ோ. 

                                                
2 More generally, they can be assigned to any real number values, as necessary for the Partial Credit 

Model. 
3 We use the symbol | within square brackets to denote row-based matrix concatenation, ensuring clarity 

and avoiding confusion with matrix multiplication. Matrix multiplication is not possible in this context due to the 
non-conformable dimensions of the matrices involved. Similarly, Volodin and Adams (2002) addressed this 
potential ambiguity by using spacing between the symbols denoting matrices for the same purpose. 
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If Equation 2 holds, the model permits the direct estimation of all entries in the variance-

covariance matrix. However, constructing 𝑨ோ  involves systematically dropping 𝐷 item 

parameters from 𝑨 to impose the necessary constraints for identification. To establish this 

result, Volodin and Adams (2002) derived a series of theorems, which we reproduce and 

discuss in detail in this section. In section 1.2, we provide a detailed illustration of this 

procedure for the test dimensionality structure from Figure 1. 

 For the dichotomous multidimensional model described in Equation 1, model 

identification is typically achieved by constraining the average ability in each dimension to 0 

(𝝁 = 𝟎). However, this constraint is not strictly necessary. In the general case, these averages 

can be estimated as part of the Rasch model, and the resulting vector of constants 𝒄 can then 

be subtracted from the corresponding item difficulties without altering the likelihood of the 

data: 

𝝃∗ = 𝝃 − 𝑩𝒄, 

𝝁∗ = 𝝁 + 𝒄, then, 

𝑃(𝑿௜௞ = 1; 𝑨,  𝑩,  𝝃∗, 𝝁∗, 𝚺) = 𝑃(𝑿௜௞ = 1; 𝑨,  𝑩,  𝝃, 𝝁, 𝚺). 

Naturally, the problem of model identification reduces to demonstrating that 𝝃∗ ≡ 𝝃 and 

𝝁∗ ≡ 𝝁 for any response profile 𝒙 in a vector-valued variable 𝑿. In other words, if the model 

is identified, the matrices 𝑨 and 𝑩 must satisfy the condition 𝒙்(𝑩𝝁 + 𝑨𝝃) = 𝒙்(𝑩𝝁∗ + 𝑨𝝃∗). 

Voloding & Adams propose a sequence of theorems to establish when this condition holds. To 

do so, they consider the vector 𝜻 of length 𝑃 + 𝐷, which concatenates the vectors 𝝃் and 𝝁், 

and the corresponding vector 𝜻∗ of the same length, which concatenates the vectors 𝝃∗் and 

𝝁∗். 

Theorem 1. The model (1) can only be identified if 𝑃 + 𝐷 ≤ 𝐾 − 𝐼. 
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Proof. Assume, 𝑃 + 𝐷 > 𝐾 − 𝐼. Then, [𝑨|𝑩] cannot be of full column rank, as it can 

have at most 𝐾 − 𝐼 non-zero rows. Consequently, there would be no unique 

solution for the vector 𝜻, contradicting the definition of 𝝃∗ ≡ 𝝃 and 𝝁∗ ≡ 𝝁 or 

an identified model (1). Therefore, 𝑃 + 𝐷 ≤ 𝐾 − 𝐼 must hold. 

Theorem 2. The model (1) can only be identified if 𝑟𝑎𝑛𝑘[𝑨] = 𝑃, 𝑟𝑎𝑛𝑘[𝑩] = 𝐷, and 

𝑟𝑎𝑛𝑘[𝑨|𝑩] = 𝑃 + 𝐷. 

Proof. The matrix 𝑨 must conform to the vector 𝝃 of length 𝑃, it should have 

𝑟𝑎𝑛𝑘[𝑨] ≤ 𝑃. Assume, 𝑟𝑎𝑛𝑘[𝑨] < 𝑃. In this case, 𝑨𝝃 does not provide a 

unique solution for 𝝃, and the model (1) cannot be identified. Therefore, if the 

model is identified, 𝑟𝑎𝑛𝑘[𝑨] = 𝑃 must hold. Similarly, 𝑟𝑎𝑛𝑘[𝑩] = 𝐷 must 

also hold. Consequently, 𝑟𝑎𝑛𝑘[𝑨|𝑩] = 𝑃 + 𝐷 also must be true. 

Theorem 3. The model (1) can be identified only if 𝑟𝑎𝑛𝑘[𝑨|𝑩] = 𝑃 + 𝐷 ≤ 𝐾 − 𝐼. 

Proof. The necessary conditions directly follow from theorems 1 and 2. To prove the 

sufficiency, consider the identification condition for model (1) 

𝒙்[𝑨|𝑩](𝜻 − 𝜻∗) = 𝟎 ∀𝒙 ⇔ 𝜻 = 𝜻∗. 

The matrix [𝑨|𝑩] is of size (𝐾 − 𝐼) × (𝑃 + 𝐷) with 𝑟𝑎𝑛𝑘[𝑨|𝑩] = 𝑃 + 𝐷, 

and 𝑃 + 𝐷 ≤ 𝐾 − 𝐼. Thus, it is possible to remove (𝐾 − 𝐼) − (𝑃 + 𝐷) rows 

from [𝑨|𝑩] to construct a square submatrix of size (𝑃 + 𝐷) × (𝑃 + 𝐷) in full 

rank. Denote this matrix as 𝒁. 

Let 𝒙∗ be a vector corresponding to 𝒙 with the same elements removed as the 

rows excluded from [𝑨|𝑩] to construct 𝒁. To avoid trivial solutions, we 

constrain 𝒙 (and 𝒙∗) to not be entirely zero. Then, 𝒙்[𝑨|𝑩](𝜻 − 𝜻∗) =

𝒙∗்𝒁(𝜻 − 𝜻∗) = 𝟎 ∀𝒙 is equivalent to 𝒁(𝜻 − 𝜻∗) = 𝟎. This holds iff 𝜻 = 𝜻∗, 
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meaning that 𝝃∗ ≡ 𝝃 and 𝝁∗ ≡ 𝝁 ∀𝒙, which is the target of showing that the 

model is identified. 

It follows that, in general, the special cases of model (1) are not identified unless the 

vector 𝝁 is not constrained to all zeros. Additionally, this procedure does not address the 

covariance matrix 𝚺, which spans the latent space of person parameters. Instead, it emphasizes 

that item parameters play the central role in the identification of Rasch models. This procedure 

applies broadly to any completely oblique multidimensional Rasch model, including the 

Completely Oblique Rasch Bifactor model. 

However, in many scenarios, the constraint of 𝝁 = 𝟎 still might be insufficient for 

identification. For instance, if the test dimensionality structure aligns with that shown in Figure 

1, the matrix [𝑨|𝑩] fails to satisfy the condition in Equation 2. More generally, avoiding the 

constraint 𝝁 = 𝟎 can be advantageous. In such cases, as noted in Theorem 3, the full matrix 

[𝑨|𝑩] will not suffice for identification. This is where the construction of the reduced design 

matrix 𝑨ோ  becomes essential. 

After substituting 𝑨 with 𝑨ோ  in [𝑨|𝑩] (resulting in [𝑨ோ|𝑩]), Theorem 3 can often be 

proven in the marginal case where 𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] = 𝑃ோ + 𝐷 = 𝐾 − 𝐼, as demonstrated in this 

paper. The key question, then, is how to construct 𝑨ோ  so that it fully preserves the structural 

properties of 𝑨, up to a vector of additive constants 𝒄, while still enabling the proof of Theorem 

3. The process of construction 𝑨ோ  lies at the core of the Volodin-Adams procedure. 

For the Volodin-Adams procedure 𝐷 subsets of items (𝑱ଵ, … , 𝑱஽) are defined, each of 

size 𝑛ௗ > 1. It is not necessary that 𝑱௚ ∩ 𝑱௛ = ∅, 𝑔 ≠ ℎ; but it is necessary that 𝑱௚ ⊈ 𝑱௛, 𝑔 ≠

ℎ. Next, matrix 𝑬 of size 𝐷 × 𝐷 is constructed, where 𝑑th row is represented by the vector 𝒆ௗ, 

consisting of the column sums of values in 𝑩 for the items in 𝑱ௗ . Additionally, a set of 𝐷 items, 

𝑭, is identified such that 𝑱ௗ ∩ 𝑭 ≠ ∅ ∀𝑑. 
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Theorem 4. If det (𝑬) ≠ 0, then the completely oblique multidimensional dichotomous 

model can still be specified if 𝑨 is substituted with 𝑨ோ , where 𝑨ோ is reduced 

by 𝐷 columns compared to 𝑨, such that 𝑟𝑎𝑛𝑘[𝑨ோ] = 𝑃ோ = 𝑃 − 𝐷. 

Proof. Assume, 𝑱ௗ ∩ 𝑭 = 𝑖௡೏ௗ. Now, set 𝜉௜೙೏೏
= − ∑ 𝜉௜ೕ೏

௡೏ିଵ
௝ୀଵ , where 𝑖௝ௗ ∈ 𝑱ௗ . 

Under this assumption, the 𝑖௡೏ௗ-th row of 𝑨ோ  will contain value “-1” in the 

columns corresponding to 𝑖௝ௗ  (j= 1, … , 𝑛ௗ − 1), and “0” in the column 

corresponding to 𝑖௡೏ௗ. Repeat this procedure 𝐷 times, such that 𝑨ோ  contains 

𝐷 all-zero columns. Delete these all-zero columns, to obtain 𝑨ோ with 

𝑟𝑎𝑛𝑘[𝑨ோ] = 𝑃ோ = 𝑃 − 𝐷. 

Now suppose ∃𝒄 such that 𝒙்(𝑩𝝁 + 𝑨ோ𝝃) = 𝒙்(𝑩𝝁∗ + 𝑨ோ𝝃∗) ∀𝒙. For an 

extreme case, select 𝒙 such that it contains values of “1” in positions 𝑖௡ௗ (𝑛 =

1, … , 𝑛ௗ) and “0” elsewhere. Then, 𝒙்𝑨ோ𝝃 = 𝒙்𝑨ோ𝝃∗ = 𝟎, and 𝒙்𝑩(𝝁∗ −

𝝁) = 𝒙்𝑩𝒄 = 𝒆ௗ𝒄 = 𝟎 ∀𝑑. Now if det (𝑬) ≠ 0, then the only solution is 𝒄 =

𝟎, which implies 𝝃∗ ≡ 𝝃 and 𝝁∗ ≡ 𝝁. 

This completes the proof of Equation 2. Essentially, Volodin and Adams (2002) 

demonstrated that the matrix 𝑬 functions as a scaling and rotation matrix for the vector 𝒄 (of 

length 𝐷), which consists of constants that can be added to the vector of means 𝝁 and subtracted 

from the item parameters in each corresponding dimension without affecting the overall 

likelihood of the data. If the determinant of 𝑬 is non-zero, the vector 𝒄 can only contain zeros, 

indicating that the model under the given 𝑨ோ  is identified. The challenge of constructing the 

matrix 𝑨ோ  relies on a well-known result in the partial identification of Rasch models. According 

to this result, constraining the averages of latent dimensions to zero, or fixing one of the item 

parameters to zero, does not affect the relative rank order of items and respondents. Instead, it 

merely shifts the latent scale numerically, leaving the model’s interpretability and validity 

unaffected. 

https://doi.org/10.1017/psy.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.14


 13 

The full description of the procedure for the general case (including the polytomous 

case) is beyond the scope of this paper; for further details, refer to Volodin and Adams (2002). 

The supplementary materials for this paper include the R code for a function that automates 

this procedure in the dichotomous case.  

1.2 An Example of Test Dimensionality Structure from Figure 1 

Using the Volodin and Adams procedure, it can be shown that if a test has a structure 

similar to the one presented in Figure 1, it is impossible to construct non-nested sets of item 

parameters with a non-zero determinant of 𝑬 when all dimensions are oblique. For the structure 

in Figure 1 under a dichotomous test, 𝐷 = 4, 𝐾 = 18, 𝐼 = 9. 

The complete design matrix 𝑨 is of 9⨉9 size, where each column corresponds to a 

single item difficulty parameter, and each row corresponds to a single item. Strictly speaking, 

in the design matrix 𝑨, each row should describe a single category for a single item, resulting 

in a matrix of 18⨉9 size. However, since all rows corresponding to zero categories are 

redundant (composed entirely of zeros), they can be excluded from the design matrix for 

simplicity. In this simplified representation, an entry of “0” in the matrix indicates that the 

corresponding parameter is not applied to the respective item category, and an entry of “1” 

indicates that the item parameter is applied. The resulting design matrix 𝑨 is as follows: 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (3) 

The scoring matrix 𝑩 for Figure 1 is of 9⨉4 size (analogous to the design matrix 𝑨, it 

would typically be 18⨉4 but, again, zero rows can be excluded for simplicity). Each row in 𝑩 

corresponds to a single item, and each column corresponds to a single latent factor. The general 
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factor is represented by the first column. In this matrix, an entry of “0” indicates that the 

corresponding category does not load on the respective factor, and an entry of “1” indicates 

that the item does load on the respective factor. The resulting scoring matrix 𝑩 is as follows: 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (4) 

To construct the reduced design matrix 𝑨ோ , define four sets of item parameters: (i) items 

1 and 2, (ii) items 3 and 4, (iii) items 5 and 6, and (iv) items 7, 8, and 9. These sets correspond 

to the grouping indicated by the grey lines in Equation 5, which illustrate how the item 

parameters are partitioned into subsets for constructing 𝑨ோ: 

 

In this case, the reduced design matrix 𝑨ோ  is defined as follows, with the length of the 

reduced vector of items parameters 𝑃ோ = 5: 

 

 The corresponding partitioning of the matrix 𝑩 is: 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.  (5) 

𝑨ோ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0
−1 0 0 0 0
0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (6) 
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Then, the matrix 𝑬, consisting of the set-wise sums of the entries in 𝑩 is given by: 

𝑬 = ൦

2 2 0 0
2 1 1 0
2 0 2 0
3 0 0 3

൪. (8) 

Consequently, det(𝑬) = 0, which effectively terminates the Volodin-Adams procedure 

by showing that 𝑨ோ  does not fully preserve the structure of the original model. As a result, 

𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] fails to satisfy Equation 2, confirming that the reduced design matrix does not 

enable the identification of the model: 

𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] = 𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 1 1 0 0
−1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0
0 −1 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 0
0 0 −1 0 0 1 0 1 0
0 0 0 1 0 1 0 0 1
0 0 0 0 1 1 0 0 1
0 0 0 −1 −1 1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 8 ≠ 𝐷 + 𝑃ோ . (9) 

 Repeating this procedure for any arbitrary partitioning of items into sets demonstrates 

that such a test dimensionality structure does not permit the identification of the oblique 

bifactor model. Consequently, constraining all covariances among person dimensions to zero 

becomes necessary for model identification, leading to the orthogonal bifactor Rasch model 

(Wang & Wilson, 2005). 

However, it is important to note that this procedure describes an analytical approach to 

model identification. In practice, the general principles of modeling suggest that some 

constraints can be introduced into analytically unidentified models to achieve empirical 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (7) 
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identification (Kenny, 1979; Rindskopf, 1984). The Volodin-Adams procedure does not 

account for such constraints; it specifically evaluates whether the completely oblique 

multidimensional Rasch model is analytically identified. 

The orthogonal Rasch bifactor model represents an extreme yet common solution for 

identifying bifactor models, where all factor covariances are simultaneously constrained to 

zero. In Section 3.3, we discuss that while this solution ensures identification, it may be overly 

restrictive and unsuitable for certain purposes. 

2. The Completely Oblique Rasch Bifactor model 

The Completely Oblique Rasch Bifactor (CORB) model is distinguished from the 

orthogonal bifactor Rasch model by two key features. 

2.1 Distinction 1: the Variance-Covariance Matrix 

The first distinction is that, unlike the orthogonal bifactor Rasch model, the CORB 

model enables the simultaneous estimation of all entries in the variance-covariance matrix 𝚺 of 

latent factors. For example, in a test consisting of three specific factors, the variance-covariance 

matrix of the dimensions in the latent person parameter space for the CORB model takes the 

form shown in Equation 10. This contrasts with the orthogonal bifactor model, where the 

corresponding variance-covariance matrix is restricted as shown in Equation 11 (Wang & 

Wilson, 2005). 

𝚺 =

⎣
⎢
⎢
⎢
⎡

𝑣𝑎𝑟൫𝜃௚൯ 𝑐𝑜𝑣൫𝜃௚, 𝜃௦భ
൯ 𝑐𝑜𝑣൫𝜃௚ , 𝜃௦మ

൯ 𝑐𝑜𝑣൫𝜃௚, 𝜃௦య
൯

𝑐𝑜𝑣൫𝜃௦భ
, 𝜃௚൯ 𝑣𝑎𝑟൫𝜃௦భ

൯ 𝑐𝑜𝑣൫𝜃௦భ
, 𝜃௦మ

൯ 𝑐𝑜𝑣൫𝜃௦భ
, 𝜃௦య

൯

𝑐𝑜𝑣൫𝜃௦మ
, 𝜃௚൯ 𝑐𝑜𝑣൫𝜃௦మ

, 𝜃௦భ
൯ 𝑣𝑎𝑟൫𝜃௦మ

൯ 𝑐𝑜𝑣൫𝜃௦మ
, 𝜃௦య

൯

𝑐𝑜𝑣൫𝜃௦య
, 𝜃௚൯ 𝑐𝑜𝑣൫𝜃௦య

, 𝜃௦భ
൯ 𝑐𝑜𝑣൫𝜃௦య

, 𝜃௦మ
൯ 𝑣𝑎𝑟൫𝜃௦య

൯ ⎦
⎥
⎥
⎥
⎤

. (10) 
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𝚺 =

⎣
⎢
⎢
⎢
⎡
𝑣𝑎𝑟൫𝜃௚൯ 0 0 0

0 𝑣𝑎𝑟൫𝜃௦భ
൯ 0 0

0 0 𝑣𝑎𝑟൫𝜃௦మ
൯ 0

0 0 0 𝑣𝑎𝑟൫𝜃௦య
൯⎦

⎥
⎥
⎥
⎤

. (11) 

From the comparison of the variance-covariance matrices, it is evident that the 

orthogonal bifactor Rasch model is a special case of the CORB model. Specifically, 

constraining all off-diagonal elements in Equation 10 to zero results in the matrix form given 

in Equation 11. 

2.2 Distinction 2: the structure of test dimensionality 

The orthogonal bifactor Rasch model (Wang & Wilson, 2005), when specified for the 

structure of test dimensionality similar to Figure 1, can be expressed in scalar notation as 

follows4: 

𝑃(𝑋௜ = 1|𝜽) ∝ exp (𝜃௚ + 𝜃௦೏
− 𝜉௜), (12) 

where 𝑃(𝑋௜ = 1|𝜽) is the probability of a response of 1 to item 𝑖, given the vector-valued latent 

variable 𝜽 of dimensionality 𝐷, 

𝜃௚ is the value of the general factor, 

𝜃௦೏
 is the value of the specific factor 𝑑 (𝑑 = 1, … , 𝐷௦, where 𝐷௦ is the number of specific 

factors, so that 𝐷 = 𝐷௦ + 1 due to the general factor), and 

𝜉௜ is the difficulty of item 𝑖. 

We refer to test dimensionality structures similar to Figure 1 as “clear bifactor 

structures”: no items load solely on the general factor without also loading on specific factors, 

and no specific factors share any items. Jennrich and Bentler (2012) describe such bifactor 

structures as “perfect cluster structures”, referring to item clustering logic. 

                                                
4 For simplicity, from this point forward, the model equations will be expressed in terms of 

proportionality functions to avoid specifying the full model denominator as in Equation 1. 
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The CORB model is not identified for all such clear bifactor structures. However, the 

CORB model becomes identifiable when the test dimensionality structure resembles the one 

shown in Figure 2 – that is, when there is at least one item that loads on the general factor but 

not on any specific factor. 

To define the test dimensionality structure for a case like Figure 2, researchers must 

identify two sets of items: 𝑮 – the set of items (consisting of at least one item) that loads only 

on the general factor and not on any specific factor, and 𝑻 – the set of items that load on both 

the general factor and one specific factor. 

The complete scalar formulation of this model is as follows: 

𝑃(𝑋௜ = 1|𝜽) ∝ ቊ
exp൫𝜃௚ + 𝜃௦೏

− 𝜉௜൯ , 𝑖𝑓 𝑖 ∈ 𝑻,

exp൫𝜃௚ − 𝜉௜൯ , 𝑖𝑓 𝑖 ∈ 𝑮.
 (13) 

For the structure shown in Figure 2, 𝑻 = {2,3,4,5,6,7,8,9,10}, representing items that 

load on both the general and specific factors, and 𝑮 = {1}, representing the item that loads 

solely on the general factor. We call CORB models with such structures “G-structures”. 

Figure 2 

A bifactor structure for identifying the CORB model. Item 1 loads solely on the general 

factor, while no items are shared between any pair of specific factors. Factor covariances are 

non-zero but are not depicted in the figure. 
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The implementation of the Volodin-Adams procedure, analogous to the outline 

provided for Equations 3 – 9, is illustrated below for the G-structure depicted in Figure 2. This 

implementation demonstrates that the procedure enables the construction of 𝑨ோ , where the 

corresponding 𝑬 matrix has a non-zero determinant, thereby satisfying Equation 2.  

 

 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

𝑨ோ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑃ோ = 6. 

https://doi.org/10.1017/psy.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.14


 20 

det(𝑬) = det ൦

2 1 0 0
2 2 0 0
3 0 3 0
3 0 0 3

൪ = 18 ≠ 0. 

𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] = 𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0 0
0 −1 0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 1 0 1 0
0 0 −1 −1 0 0 1 0 1 0
0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0 0 1
0 0 0 0 −1 −1 1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 10 = 𝐷 + 𝑃ோ =

𝐾 − 𝐼. 

The intuitive explanation for this logic can be drawn from the work of Zhang et al. 

(2023b). They demonstrated that the identification of partially oblique bifactor factor-

analytical models hinges on the factor loadings matrix. In Rasch modeling, however, all 

discrimination parameters are constrained to unity. Now, consider a “clear” completely oblique 

bifactor structure. As shown earlier (Equations 3–9), such a Rasch bifactor model is not 

identifiable. However, adding a “construct item” (from the 𝑮 set) to this bifactor structure 

increases the number of observed variables without increasing the number of estimated factor 

loadings. This adjustment renders the model identifiable. 

That said, the G-structure requires at least one item that loads solely on the general 

factor, effectively defining it. Eid et al. (2017) refer to such items as “reference indicators”, as 

all other indicators’ parameters are estimated relative to this reference. Including general 

construct items, however, may be impractical when the test is purely composite and comprises 

distinct components. While Eid et al. (2017) emphasize the necessity of such items and Zhang 

et al. (2023b) provide detailed guidance on selecting them (including real-world examples, 

which interested readers may consult in their work). Overall, however, this requirement poses 

a challenge for test developers and item writers. 

https://doi.org/10.1017/psy.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.14


 21 

Fortunately, an alternative test dimensionality structure can identify the CORB model, 

as shown in Figure 3. This structure requires that every pair of dimensions shares at least one 

item. 

Figure 3 

A bifactor structure for identifying the CORB model. No single item loads solely on the 

general factor, but at least one item is shared between each pair of specific factors (i.e., item 

1 for specific factors 1 and 3, item 4 for specific factors 1 and 2, and item 7 for specific 

factors 2 and 3). Factor covariances are non-zero but are not depicted in the figure. 

 

To specify the structure of test dimensionality for a case similar to Figure 3, one must 

define two sets of items: 𝑺 – the set of items that load on two specific factors, and 𝑻 – the set 

of items that load on one specific factor. 

The complete scalar formulation of this model is given as: 

𝑃(𝑋௜ = 1|𝜽) ∝ ൝
exp൫𝜃௚ + 𝜃௦೏

− 𝜉௜൯ , 𝑖𝑓 𝑖 ∈ 𝑻

exp ቀ𝜃௚ + 𝜃௦೏ೠ
+ 𝜃௦೏೤

− 𝜉௜ቁ , 𝑖𝑓 𝑖 ∈ 𝑺, 𝑢 ≠ 𝑦
 

(14) 

For the structure depicted in Figure 3: 𝑻 = {2,3,5,6,8,9}, representing items that load 

on the general factor and one specific factor, and 𝑺 = {1,4,7}, representing items that load on 
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the general factor and two specific factors. We call CORB models with such structures “S-

structures”. 

The calculations below illustrate the implementation of the Volodin and Adams 

procedure for the test dimensionality structure shown in Figure 3: 

 

 

det(𝑬) = det ൦

2 2 0 1
2 2 1 0
2 0 2 0
3 0 1 3

൪ = 4 ≠ 0. 

𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] = 𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 1 1 0 1
−1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0
0 −1 0 0 0 1 1 1 0
0 0 1 0 0 1 0 1 0
0 0 −1 0 0 1 0 1 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 1 0 0 1
0 0 0 −1 −1 1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 9 = 𝐷 + 𝑃ோ = 𝐾 − 𝐼. 

To intuitively understand why the S-structure allows for CORB model identification, 

we turn to the geometric interpretation of the multidimensional Item Characteristic Surface 

(ICS; Reckase & McKinley, 1991; Ackerman, 1994). In this framework, the shape of the 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 1
1 1 0 0
1 1 0 0
1 1 1 0
1 0 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

𝑨ோ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0
−1 0 0 0 0
0 1 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑃ோ = 5. 
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multidimensional ICS is determined by two key factors: (1) the angle between the latent 

dimensions (represented as the arccosine of the Pearson correlation between the factors) 

measured by the items with within-item multidimensionality, and (2) the discrimination 

parameters of these items on the respective factors. 

In Rasch models, however, the discrimination parameters are constrained to unity. As 

a result, the structure of item response variance in the shared items directly defines the 

correlations between the latent factors, since the discriminations cannot vary freely. This fixed 

discrimination ensures that shared items play a critical role in establishing the relationships 

among the latent dimensions, making the S-structure effective for CORB model identification. 

When a test consists of multiple content areas, the S-structure of test dimensionality 

may offer a more practical approach to CORB model identification. To specify this structure, 

a test developer can enhance the existing test by adding new items that combine, in a 

compensatory manner, pairs of specific factors. Alternatively, Bifactor Exploratory Structural 

Equation Modeling (Morin et al., 2016) can aid in identifying items suitable for inclusion in 

the 𝑺 set. Such items should exhibit significant and relatively similar factor loadings to the 

“main” items associated with the specific factors. This approach is often more feasible than 

creating “construct items” to define the general factor, which can be challenging in most testing 

contexts. 

It is crucial to note that not all items are suitable to serve as “construct items” in G-

structures or “shared items” in S-structures. A defining feature of Rasch modeling is that all 

items with the same dimensionality structure share the same discrimination parameters. This 

concept, when related to the logic of factor analysis, implies that all items with the same 

dimensionality structure allocate the same proportions of response variance to the different 

latent factors. 
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For example, if a “shared item” in an S-structure has a distribution of response variance 

across latent factors that does not align with variance-covariance structure of other items 

loading on these factors, it is likely to be flagged as a misfitting item in item fit analyses. 

Similarly, “construct items” in G-structures are subject to the same requirement. As a result, 

modifying the dimensionality structure of existing test items or developing new tests 

identifying the CORB model remains a challenging task. 

In both cases, deviations from the clear bifactor structure (Figure 1) are necessary to 

identify the CORB model. However, it is important to note that the G-structure and S-structure 

do not exhaust the possible dimensionality structures capable of identifying the CORB model. 

To determine whether the CORB model is identifiable for a particular test structure, it is 

necessary to apply the Volodin-Adams procedure. 

Additionally, both the G-structure and S-structure also identify the orthogonal Rasch 

bifactor model. This is because the orthogonal Rasch bifactor model is a special case of the 

more general CORB model, which is identifiable under these structures. In such cases, instead 

of being defined solely by Equation 12, the orthogonal Rasch bifactor model would also be 

described by Equations 13 or 14, depending on the structure. 

3. Other oblique bifactor models 

3.1 The Extended Rasch Testlet model 

The closest relative of the CORB model in the literature is the Extended Rasch Testlet 

model (ETM; Paek et al., 2009). The ETM allows for the estimation of non-zero correlations 

between the specific factors and the general factor while maintaining orthogonality among the 

specific factors. The variance-covariance matrix 𝚺 of person parameters for the same number 

of dimensions as in Equations 10 and 11 is represented as follows: 
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𝚺 =

⎣
⎢
⎢
⎢
⎡

𝑣𝑎𝑟൫𝜃௚൯ 𝑐𝑜𝑣൫𝜃௚ , 𝜃௦భ
൯ 𝑐𝑜𝑣൫𝜃௚ , 𝜃௦మ

൯ 𝑐𝑜𝑣൫𝜃௚ , 𝜃௦య
൯

𝑐𝑜𝑣൫𝜃௦భ
, 𝜃௚൯ 𝑣𝑎𝑟൫𝜃௦భ

൯ 0 0

𝑐𝑜𝑣൫𝜃௦మ
, 𝜃௚൯ 0 𝑣𝑎𝑟൫𝜃௦మ

൯ 0

𝑐𝑜𝑣൫𝜃௦య
, 𝜃௚൯ 0 0 𝑣𝑎𝑟൫𝜃௦య

൯ ⎦
⎥
⎥
⎥
⎤

. (15) 

The scalar specification of the ETM follows the same form as Equations 13 or 14. The 

only difference between the CORB model and the ETM lies in their variance-covariance 

structures. Specifically, the ETM is a special case of the CORB model: constraining all off-

diagonal elements in Equation 10, except for those corresponding to the covariances between 

the general factor and specific factors (i.e., the first row and the first column), results in 

Equation 15. This implies that the same test dimensionality structures that identify the CORB 

model also identify the ETM. Furthermore, in the original paper (Paek et al., 2009), the G-

structure of the ETM was used for model identification, corresponding to Equation 13, as 

several “construct items” were included. 

At the same time, the original orthogonal Rasch bifactor model (originally called the 

Rasch Testlet Model or RTM; Wang & Wilson, 2005) is a special case of the ETM. 

Constraining all off-diagonal elements in Equation 15 to zero results in Equation 11, which 

represents the variance-covariance matrix of the RTM. Consequently, these models form a 

hierarchy of nested models, enabling their comparison using a likelihood ratio test. 

3.2 The Subdimensional family of models 

The Generalized Subdimensional Model (GSM; Brandt, Duckor, 2013) and the 

Subdimensional Rasch Model (SRM; Brandt, 2008) allow for the estimation of correlations 

between specific factors while maintaining orthogonality between the specific factors and the 

general factor. To achieve this, these models require the exclusion of one specific factor from 

estimation:  
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𝚺 =

⎣
⎢
⎢
⎢
⎡
𝑣𝑎𝑟൫𝜃௚൯ 0 0 𝑁𝐴

0 𝑣𝑎𝑟൫𝜃௦భ
൯ 𝑐𝑜𝑣൫𝜃௦మ

, 𝜃௦భ
൯ 𝑁𝐴

0 𝑐𝑜𝑣൫𝜃௦భ
, 𝜃௦మ

൯ 𝑣𝑎𝑟൫𝜃௦మ
൯ 𝑁𝐴

𝑁𝐴 𝑁𝐴 𝑁𝐴 𝑁𝐴⎦
⎥
⎥
⎥
⎤

. (16) 

In this setup, the last specific factor in Equation 16 is defined as the negative sum of all 

remaining specific factors. This constraint necessitates a modification of the scoring matrix 𝑩, 

as shown in Equation 17. Below is an example of the scoring matrix 𝑩 for a clear bifactor 

structure (Figure 1): 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 −1 −1
1 −1 −1
1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (17) 

Comparing Equation 17 with Equation 4 shows that this modification of the scoring 

matrix 𝑩 makes the GSM not a special case of the CORB model, as it does not simply constrain 

some parameters to zero. 

Due to the exclusion of a specific factor, it is necessary to recalibrate the GSM with 

alternative reparameterizations at least three times to obtain the complete variance-covariance 

matrix of the specific factors (i.e., GSM and SRM require 𝐷௦ ≥ 3). This process involves: 

(1) Excluding the last specific factor (𝑠஽ೞ
) to recover all covariances between specific 

except those involving last specific factor (𝑠஽ೞ
), as described by Equations 16 and 17. 

(2) Excluding the second to last specific factor (𝑠஽ೞିଵ) to recover all covariances 

involving the last specific factor (𝑠஽ೞ
), except for the covariance between specific factors 𝑠஽ೞ

 

and 𝑠஽ೞିଵ. This step results in: 
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𝚺 =

⎣
⎢
⎢
⎢
⎡
𝑣𝑎𝑟൫𝜃௚൯ 0 𝑁𝐴 0

0 𝑣𝑎𝑟൫𝜃௦భ
൯ 𝑁𝐴 𝑐𝑜𝑣൫𝜃௦య

, 𝜃௦భ
൯

𝑁𝐴 𝑁𝐴 𝑁𝐴 𝑁𝐴
0 𝑐𝑜𝑣൫𝜃௦భ

, 𝜃௦య
൯ 𝑁𝐴 𝑣𝑎𝑟൫𝜃௦య

൯ ⎦
⎥
⎥
⎥
⎤

, (18) 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0
1 1 0
1 1 0
1 −1 −1
1 −1 −1
1 −1 −1
1 0 1
1 0 1
1 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (19) 

(3) Excluding the third to last specific factor (𝑠஽ೞିଶ) to recover the covariance of the 

specific factors 𝑠஽ೞ
 and 𝑠஽ೞିଵ. This step results in: 

𝚺 =

⎣
⎢
⎢
⎢
⎡
𝑣𝑎𝑟൫𝜃௚൯ 𝑁𝐴 0 0

𝑁𝐴 𝑁𝐴 𝑁𝐴 𝑁𝐴
0 𝑁𝐴 𝑣𝑎𝑟൫𝜃௦మ

൯ 𝑐𝑜𝑣൫𝜃௦య
, 𝜃௦మ

൯

0 𝑁𝐴 𝑐𝑜𝑣൫𝜃௦మ
, 𝜃௦య

൯ 𝑣𝑎𝑟൫𝜃௦య
൯ ⎦

⎥
⎥
⎥
⎤

, (20) 

𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 −1 −1
1 −1 −1
1 −1 −1
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (21) 

 These different reparameterizations describe the same latent space of person 

parameters, differing only in which parameters are directly estimated. This is possible because 

all reparameterizations satisfy the constraint ∑ 𝜃௦೏

஽ೞ
ௗୀଵ = 0 for every respondent. The choice of 

which factor to exclude is arbitrary and does not affect model fit. This can also be verified 

using the Volodin-Adams procedure across different reparameterizations. 

Equation 22 applies to all reparameterizations since they differ only in the scoring 

matrix 𝑩: 
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Equations 23 to 25 demonstrate that the determinants of the 𝑬 matrices are non-zero 

when the partitioning specified in Equation 22 is applied to Equations 17, 19, and 21: 

det(𝑬) = det ൥
2 2 0
2 1 1
5 −3 −1

൩ = 18 ≠ 0, (23) 

det(𝑬) = det ൥
2 2 0
2 0 −1
5 −2 1

൩ = −18 ≠ 0, (24) 

det(𝑬) = det ൥
2 −2 −2
2 0 −1
5 2 3

൩ = 18 ≠ 0. (25) 

The absolute values of all determinants are identical, indicating that not only does 𝑨ோ 

fully specify the model represented by 𝑨, but also that the same partitioning of the 𝑨 matrix 

across different parameterizations of the same GSM model results in the same latent person 

parameter space. This property arises from the nature of the 𝑬 matrix, which moderates the 

scaling and rotation of the constants vector 𝒄. Equation 26 confirms that all reparameterizations 

of the GSM model are identifiable. 

𝑨ோ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 −1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑃ோ = 6. (22) 
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𝑟𝑎𝑛𝑘[𝑨ோ|𝑩] = 𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 1 1 0
−1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1 0
0 −1 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 −1 −1
0 0 0 0 0 1 1 −1 −1
0 0 −1 −1 −1 −1 1 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 1 1 0
−1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1 0
0 −1 0 0 0 0 1 −1 −1
0 0 1 0 0 0 1 −1 −1
0 0 0 1 0 0 1 −1 −1
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0 1
0 0 −1 −1 −1 −1 1 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝑟𝑎𝑛𝑘

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 1 −1 −1
−1 0 0 0 0 0 1 −1 −1
0 1 0 0 0 0 1 −1 −1
0 −1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0 1
0 0 −1 −1 −1 −1 1 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 9

= 𝐷 + 𝑃ோ = 𝐾 − 𝐼. 

(26) 

Moreover, empirical comparisons of parameters estimated multiple times across 

different reparameterizations demonstrate that they converge to the same values (Federiakin, 

2020). 

From the model definitions described above, it follows that calibrating the GSM to 

study the variance-covariance matrix becomes meaningless when the number of specific 

factors is two. In such cases, one of the two specific factors will always be excluded from 

calibration under any parameterization, and their correlation will necessarily be constrained to 

-1, since the sum of the specific factors is fixed to zero for every respondent. 
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Unlike the ETM and the CORB model, the GSM can be identified in cases of clear 

bifactor structures. The GSM follows the scalar form: 

𝑃(𝑋௜ = 1|𝜽) ∝ exp൫𝑘ௗ൫𝜃௚ + 𝜃௦೏
൯ − 𝜉௜൯, (27) 

or equivalently: 

𝑃(𝑋௜ = 1|𝜽) ∝ exp ቀ𝑘ௗ൫𝜃௚ + 𝜃௦೏
− 𝜉௜൯ቁ. (28) 

The parameter 𝑘ௗ distinguishes the GSM from the SRM (which follows Equation 12) and 

highlights that the GSM is not a special case of the CORB model. The parameter 𝑘ௗ is essential 

for addressing an implicit assumption in the SRM, which assumes equality of variances across 

all specific factors. Consequently, the GSM requires an additional constraint of ∑ 𝑘ௗ
ଶ஽ೞ

ௗୀଵ =

𝐷௦. The notation in Equation 27 was initially proposed by Brandt and Duckor (2013), while the 

notation in Equation 28 was introduced later by Robitzsch et al. (2025, p. 145) for simplicity 

in estimation. It is important to note, however, that these two notations are equivalent and both 

align with the Rasch modeling paradigm. 

Additionally, the GSM differs from the ETM and the CORB model in its interpretation 

of the latent parameter space. In the GSM, the specific factors are orthogonal to the general 

factor, and their sum is constrained to zero. As a result, the GSM models the relationships 

among the components within the general factor (see Brandt, 2017, for the algebraic 

formalization). The construct components themselves, under this unidimensional 

interpretation, are represented as the sums of the corresponding specific factors and the general 

factor. In contrast, the ETM and, by extension, the CORB model describe components that are 

additional to the general factor. In this sense, the GSM is conceptually closer to a 

unidimensional model, while the ETM and CORB models are “more multidimensional” in their 

interpretation. 

Consequently, the GSM does not belong to the model hierarchy of RT-ETM-CORB. 

Comparisons between the GSM and these models can only be conducted using information 
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criteria such as AIC (Akaike, 1974) and BIC (Schwarz, 1978). These criteria penalize model 

fit for additional parameters (AIC) and adjust for sample size (BIC). 

3.3 Other possibilities for oblique bifactor modeling 

It is important to note that the models discussed so far do not represent the full range of 

oblique bifactor models. Exploratory bifactor factor analysis offers additional oblique bifactor 

solutions. For example, Jennrich and Bentler (2012) proposed two criteria for bifactor rotation 

of the factor loading matrix. However, their approach has an approximating nature and comes 

with additional requirements. 

First, their method constrains the specific factors to be orthogonal to the general factor, 

making its interpretation the reverse of the ETM. Second, their approach is not identified in 

clear bifactor cases. When the data structure is truly bifactor, Jennrich and Bentler’s criteria 

fail to provide a unique factor solution. Finally, this approach belongs to the exploratory data 

analysis paradigm, which poses challenges for its application in hypothesis testing, modeling 

growth and change, or conducting measurement invariance analysis. As a result, the practical 

application of these models in testing scenarios remains limited. 

Lorenzo-Seva and Ferrando (2019) proposed a somewhat similar logic for partially 

oblique exploratory bifactor modeling. Their approach involves a sequence of rotation steps 

designed to build upon one another, stabilizing the results of their procedure. 

Partially oblique confirmatory bifactor models have recently gained attention in the 

field of factor analysis. Fang et al. (2021) demonstrated that, within the covariance structure 

model (applicable to both identity and probit link functions), it is not analytically necessary for 

bifactor models to have orthogonal specific factors if the factor loading matrix satisfies certain 

conditions of linear independence. A key condition for their identification is the linear 

independence of columns in the submatrices of the factor loadings matrix. Specifically, if the 
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submatrices corresponding to the specific factors have a column rank of at least 2, models with 

correlated specific factors can be identified (for details, see Fang et al., 2021). 

In their work, Fang et al. (2021) adapted the general results of Anderson and Rubin 

(1956) and the conclusions of Grayson and Marsh (1994) for Multitrait-Multimethod (MTMM) 

models to bifactor models. However, more recently, Zhang et al. (2023b) revealed that these 

models are highly numerically unstable in practice, highlighting the need for more rigorous 

investigation into their empirical identifiability and cautioning against their unchecked use. 

Interestingly, Zhang et al. (2021, 2023b) also proposed a model augmentation approach 

equivalent to the G-structures of test dimensionality described in this paper. They demonstrated 

that this approach stabilizes estimation algorithms and resolves many convergence issues in 

the case of freely estimated factor loadings. Notably, these suggestions follow the structure of 

partially oblique bifactor models – specifically Bifactor-(S-1) and Bifactor-(S*I-1) models with 

correlated specific factors (Eid et al., 2017) – which have been critically discussed by Koch 

and Eid (2024). 

In the context of this paper, these findings suggest that while there are structural 

parallels between factor analysis and logistic IRT, the identification strategies can differ 

significantly (Bee et al., 2023). Further exploration of these differences and their implications 

for model stability and practical application remains a promising area for future research. 

Overall, the Bifactor-(S-1) and Bifactor-(S*I-1) models (Eid et al., 2017), the 

augmentation approach by Zhang et al. (2021, 2023b), and G-structures all fit within a common 

structural framework. However, by fixing factor loadings to known values, researchers are able 

to estimate correlations among all latent factors. Crucially, this alters the interpretation of these 

correlations. In traditional partially oblique bifactor models (such as Bifactor-(S-1) or Bifactor-

(SI-1)), correlations between specific factors are partial correlations – conditional on the 

general factor – similar to the correlations between general and specific factors in the ETM 
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model. In contrast, in the CORB model the latent dimensions are not treated as residuals; they 

are not conditioned on one another. As a result, their variances are not strictly separated, 

allowing for a more holistic interpretation of the latent structure. 

Additionally, the literature describes other completely oblique Rasch bifactor models 

that impose specific constraints on the variance-covariance matrix of person parameters. For 

example, Robitzsch et al. (2025) introduce models with a zero constraint on the sum of 

covariances across all dimensions (Robitzsch et al., 2025, p. 143), or a zero constraint on the 

sum of variances and covariances of all dimensions (Robitzsch et al., 2025, pp. 143–144). 

These models appear to be identifiable under clear bifactor structures, though this conclusion 

does not directly follow from the Volodin-Adams procedure. 

This suggests that certain constraints on the variance-covariance matrix can render 

analytically unidentified multidimensional Rasch models empirically identifiable. 

Consequently, some special cases of the CORB model – such as the ETM – may also be 

empirically identified under clear bifactor structures. 

In contrast, the G-structures and S-structures of test dimensionality described in this 

paper provide analytical (in this context – definitive) identification for the CORB model and 

all its special cases, including the ETM. However, the models introduced by Robitzsch et al. 

(2025) have only been described in the software literature and have not yet been thoroughly 

studied. Moreover, their practical interpretation remains unclear, as it is nearly impossible to 

align such constraints with realistic expectations from the data or the structure of the construct 

being measured. 

Finally, a wide range of longitudinal and MTMM models are relevant to this type of 

bifactor modeling. Specifically, within the longitudinal framework, derivations of Jöreskog’s 

(1970) simplex model (Wilson et al., 2012) can be viewed as nested bifactor models with G-

structures. These models produce latent estimates of difference scores that reflect changes in 
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ability across measurement occasions. This is conceptually similar to bifactor models in which 

specific factor estimates represent the difference between the general ability and the ability 

required to solve the items associated with a given specific factor. 

While longitudinal models can estimate the full correlation matrix of latent dimensions 

– thanks to constraints placed on the factor loadings of anchor items (Duncan & Duncan, 2004) 

– the reliability of the resulting difference scores has been a longstanding concern (e.g., 

Cronbach & Furby, 1970). Although the debate on the reliability of factor scores continues (see 

Trafimow, 2015), we explore this issue in the context of the CORB model through our 

simulation study. 

Several special cases of MTMM models are also highly relevant to partially oblique 

bifactor models. In particular, some MTMM models adopt a latent difference score approach 

by imposing constraints on factor loadings (e.g., Pohl et al., 2008). Other models have modified 

these constraints so that specific factors do not reflect the difference between two abilities, but 

rather the deviation from a person-specific average across all specific abilities – resulting in 

latent mean models (e.g., Pohl & Steyer, 2010). 

More broadly, a growing body of research is investigating the conditions under which 

correlation matrices in these models are identifiable (see Bee et al., 2023, for a recent review). 

These modeling approaches have been extended to a variety of applications, ranging from 

survey validation to rater assessments (Eid et al., 2024), and now represent one of the most 

prominent and rapidly evolving areas in psychometrics. 

4. The simulation study 

4.1 Design 

We conducted a simulation study to examine the recovery of model parameters by the 

CORB model and compare it to existing partially oblique bifactor models. For simplicity in 
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comparing model fits, the simulations utilized only the G-structure of test dimensionality. The 

study addressed three Research Questions related to parameter recovery: 

RQ1: How does the number of “construct items” affect parameter recovery? 

RQ2: How does the number of specific factors affect parameter recovery? 

RQ3: How does the number of items per specific factor affect parameter recovery? 

To address the research questions: 

1. For RQ1, we varied the number of construct items from 1 to 2 to 3, while keeping the 

number of items per specific factor and the number of specific factors constant (5 and 

3, respectively). 

2. For RQ2, we varied the number of specific factors from 3 to 4 to 5, while keeping the 

number of items per specific factor and the number of construct items constant (3 and 

1, respectively). 

3. For RQ3, we varied the number of items per specific factor from 3 to 5 to 7, while 

keeping the number of specific factors and the number of construct items constant (5 

and 3, respectively). 

Overall, we designed 9 simulation conditions, with 100 replications for each condition. 

In each replication, we calibrated the CORB model, the ETM, three reparameterizations of the 

GSM (averaging the results across them), and the orthogonal RTM, all using the same test 

dimensionality structures for comparison. 

In the replications of these conditions, we randomly varied the variance-covariance 

matrices of the latent person parameter space, ensuring they were positive-definite. The 

variances ranged from 0.3 to 4 logits, with all dimensions (including the general factor) being 

oblique, reflecting a realistic setup. Across all simulations, the sample size was fixed at 2,000, 

and the item difficulties were spaced equally from -2 to 2 logits. Items were assigned alternating 

loads on specific factors, though the number of items varied. 
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To compare the simulation results, we utilized the following metrics: 

 AIC and BIC indices: To assess model fit while accounting for parameter complexity 

and sample size. 

 Pearson correlation: Between Expected a Posteriori (EAP; Bock & Mislevy, 1982) 

ability estimates and their true values. 

 EAP reliabilities: To assess the consistency of EAP estimates (Adams, 2005). 

 Root Mean Squared Error (RMSE) of factor correlation matrix was estimated as Root 

Mean Squared Frobenius norm of the difference matrix between estimated and true 

covariance matrices across all replications, providing inherent normalization to its 

values and robustness to the varying covariance scale: 

𝑅𝑀𝑆𝐸 = ඨ
∑ ||𝚺௥

෢ − 𝚺௥||ி
ଶோ

௥ୀଵ

𝑅
, 

where ||𝚺௥
෢ − 𝚺௥||ி is the Frobenius norm of the difference matrix between the true 

covariance matrix 𝚺௥  in replication 𝑟 and the estimated covariance matrix 𝚺௥
෢, 

𝑅 is the total number of replications. 

 Bias in the variance estimates: 

𝐵𝑖𝑎𝑠 =
∑ 𝜁௥

෡ − 𝜁௥
ோ
௥ୀଵ

𝑅
, 

where 𝜁௥ is a true value of the parameter in the replication 𝑟, 

𝜁௥
෡  is an estimate of the parameter in the replication 𝑟. 

Since RMSE was essentially estimated in the correlation matrix, it does not account for 

potential biases in the variance estimates of latent dimensions. Bias in the variances was 

used to account for this limitation. It allows us to evaluate the general tendency of a 

model to overestimate or underestimate the variances of latent dimensions, as well as 

the expected magnitude of this over- or underestimation. 
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First, we expect the CORB model to yield the most accurate parameter estimates 

compared to other partially oblique bifactor models, since it was used as the data-generating 

model and reflects the most realistic assumptions about the construct structure. Specifically, 

we anticipate that the CORB model will recover the most accurate correlation estimates. Also, 

we expect the CORB model to demonstrate the best global model-data fit across all conditions. 

Second, we expect that the number of specific factors and the number of construct items 

will have the greatest impact on model fit, as these elements directly influence the 

dimensionality of the test structure. Therefore, in RQs 1 and 2, we expect the CORB model to 

outperform the other oblique bifactor models most significantly. 

Third, we expect the CORB model to achieve the highest EAP reliabilities of test scores. 

This is because EAP estimation can incorporate information from the variance-covariance 

matrix of the dimensions, allowing scores in the oblique multidimensional model to “reinforce” 

one another in proportion to their correlations (de la Torre & Patz, 2005). 

For the simulations we used TAM package v. 3.7-16 for R software (Robitzsch et al., 

2021). 

4.2 Results 

4.2.1. RQ1: How Does the Number of “Construct Items” Affect Parameter Recovery? 

The ETM failed to converge in 23% of cases when there was 1 construct item, 19% of 

cases with 2 construct items, and 22% of cases with 3 construct items. These results suggest 

that the number of construct items does not significantly impact the ETM’s convergence 

behavior. In contrast, all other models converged 100% of the time, regardless of the number 

of construct items. This indicates potential distortions in the person parameter space during 

estimation, rendering the ETM difficult or impossible to estimate consistently. 

Table 1 
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Comparison of the bifactor models of interest for the first research question of the simulation 

study. 

Statistics 

Number of 

construct 

items 

Model 

RT ETM GSM CORB 

Average correlation of the 

general factor EAP point 

estimates with their true 

values (SD) 

1 
0.754 

(0.145) 

0.758 

(0.153) 

0.771 

(0.137) 

0.813 

(0.104) 

2 
0.776 

(0.145) 

0.788 

(0.131) 

0.787 

(0.139) 

0.827 

(0.099) 

3 
0.806 

(0.135) 

0.832 

(0.099) 

0.803 

(0.154) 

0.848 

(0.087) 

Average correlation of 

specific factors EAP point-

estimates with their true 

values (SD) 

1 
0.591 

(0.164) 

0.607 

(0.176) 

0.542 

(0.196) 

0.705 

(0.137) 

2 
0.607 

(0.150) 

0.636 

(0.154) 

0.563 

(0.187) 

0.725 

(0.120) 

3 
0.605 

(0.152) 

0.637 

(0.146) 

0.553 

(0.199) 

0.733 

(0.101) 

Average EAP reliability of the 

general factor (SD) 
1 

0.615 

(0.211) 

0.696 

(0.140) 

0.789 

(0.102) 

0.698 

(0.129) 

2 
0.625 

(0.215) 

0.725 

(0.130) 

0.783 

(0.122) 

0.695 

(0.148) 

3 
0.660 

(0.206) 

0.750 

(0.130) 

0.789 

(0.132) 

0.721 

(0.139) 

Average EAP reliability of the 

specific factors (SD) 
1 

0.401 

(0.178) 

0.472 

(0.158) 

0.502 

(0.141) 

0.531 

(0.143) 
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2 
0.414 

(0.163) 

0.479 

(0.147) 

0.511 

(0.136) 

0.544 

(0.129) 

3 
0.411 

(0.168) 

0.475 

(0.142) 

0.493 

(0.152) 

0.539 

(0.128) 

Average AIC (SD) 
1 

32538.81 

(1257.91) 

32298.78 

(1275.37) 

32264.23 

(1245.66) 

32209.76 

(1252.28) 

2 
34178.04 

(1429.97) 

33869.69 

(1351.05) 

33878.67 

(1355.31) 

33779.92 

(1356.78) 

3 
36444.85 

(1679.01) 

36133.05 

(1617.01) 

36153.31 

(1627.57) 

36002.29 

(1619.58) 

Average BIC (SD) 
1 

32650.83 

(1257.91) 

32427.60 

(1275.37) 

32387.45 

(1245.66) 

32355.39 

(1252.28) 

2 
34295.66 

(1429.97) 

34004.11 

(1351.05) 

34007.49 

(1355.31) 

33931.14 

(1356.78) 

3 
36568.07 

(1679.01) 

36273.07 

(1617.01) 

36287.74 

(1627.57) 

36159.12 

(1619.58) 

Average RMSE of correlation 

matrix (SD) 
1 

0.377 

(0.080) 

0.303 

(0.112) 

0.445 

(0.110) 

0.154 

(0.081) 

2 
0.379 

(0.089) 

0.293 

(0.115) 

0.435 

(0.168) 

0.121 

(0.056) 

3 
0.390 

(0.090) 

0.297 

(0.104) 

0.430 

(0.138) 

0.092 

(0.049) 

Average bias of the general 

factor variance (SD) 
1 

-0.043 

(1.170) 

0.062 

(0.755) 

0.658 

(1.138) 

-0.138 

(0.526) 
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2 
-0.030 

(1.094) 

0.085 

(0.588) 

0.518 

(1.078) 

-0.093 

(0.390) 

3 
-0.120 

(1.008) 

-0.017 

(0.531) 

0.339 

(0.979) 

-0.030 

(0.283) 

Average bias of the specific 

factor variances (SD) 
1 

-0.170 

(1.234) 

-0.169 

(1.124) 

-0.614 

(1.210) 

-0.166 

(0.463) 

2 
-0.202 

(1.083) 

-0.224 

(1.042) 

-0.603 

(1.403) 

-0.104 

(0.325) 

3 
-0.224 

(0.890) 

-0.260 

(0.862) 

-0.546 

(1.540) 

-0.030 

(0.281) 

In general, the results indicate that the CORB model outperforms other partially oblique 

bifactor models in terms of the correlation of parameter estimates with their true values and 

global model fit. Across all simulation conditions, the CORB model consistently provides 

better parameter recovery. Interestingly, however, the reliability of the general factor in the 

CORB model is lower than that of the GSM. This aligns with the fact that the GSM primarily 

focuses on a unidimensional interpretation of the test, thereby forcing more information from 

item scores into the general factor. 

Similarly, the general factor reliability in the ETM is higher than in the CORB model 

for a related reason: the ETM’s orthogonality assumption between specific factors enhances 

the general factor’s reliability, while weakening the specific factor reliability compared to the 

CORB model. As expected, the worst performance overall is observed for the completely 

orthogonal bifactor model, both in terms of reliability and model fit. 

When comparing the RMSE of the correlation matrix, the results align with 

expectations for the RTM, the ETM, and the CORB model: the more general the model, the 

better it recovers correlations. However, the GSM exhibits a surprising result. Despite fitting 
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better than the ETM according to AIC and BIC, the GSM produces a latent space of person 

dimensions that deviates the most from the data-generating space. This outcome reflects the 

GSM’s modeling approach, which constrains the components of the construct to lie within the 

general factor rather than treating them as additional to it. 

Interestingly, the RTM, the ETM, and the GSM show minimal systematic bias in 

variance estimates (relative to the standard deviation of this bias). In contrast, the CORB model 

tends to slightly underestimate the variances of both the general and specific factors, 

particularly when the test includes only 1 construct item. Nevertheless, the CORB model 

demonstrates superior stability in terms of the bias-variance trade-off compared to other 

models. 

Regarding RQ1, increasing the number of construct items improves the performance of 

all models. This global improvement can likely be attributed to test length – a well-established 

factor in improving the precision of parameter estimates, as longer tests provide more data 

upon which parameter estimates are based. 

4.2.2. RQ2: How Does the Number of Specific Factors Affect Parameter Recovery? 

The ETM failed to converge in 8% of cases for 3 specific factors, 20% of cases for 4 

specific factors, and 32% of cases for 5 specific factors. Unlike the results in the previous 

simulation (RQ1), this suggests that the ETM’s convergence is influenced by the complexity 

of the latent person parameter space, with higher numbers of specific factors leading to greater 

convergence issues. In contrast, all other models converged 100% of the time, regardless of the 

number of specific factors. 

Table 2 

Comparison of the bifactor models of interest for the second research question of the 

simulation study. 

Statistics Model 
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Number of 

specific 

factors 

RTM ETM GSM CORB 

Average correlation of the 

general factor EAP point 

estimates with their true values 

(SD) 

3 
0.695 

(0.194) 

0.688 

(0.180) 

0.710 

(0.186) 

0.750 

(0.147) 

4 
0.767 

(0.135) 

0.768 

(0.143) 

0.771 

(0.130) 

0.795 

(0.115) 

5 
0.790 

(0.131) 

0.779 

(0.148) 

0.796 

(0.130) 

0.814 

(0.110) 

Average correlation of specific 

factors EAP point-estimates 

with their true values (SD) 

3 
0.524 

(0.164) 

0.532 

(0.200) 

0.504 

(0.188) 

0.643 

(0.144) 

4 
0.383 

(0.328) 

0.385 

(0.348) 

0.527 

(0.172) 

0.472 

(0.384) 

5 
0.304 

(0.350) 

0.324 

(0.349) 

0.558 

(0.168) 

0.375 

(0.425) 

Average EAP reliability of the 

general factor (SD) 
3 

0.517 

(0.239) 

0.601 

(0.180) 

0.673 

(0.157) 

0.601 

(0.171) 

4 
0.626 

(0.186) 

0.694 

(0.122) 

0.747 

(0.114) 

0.690 

(0.131) 

5 
0.650 

(0.193) 

0.685 

(0.162) 

0.767 

(0.125) 

0.713 

(0.147) 

Average EAP reliability of the 

specific factors (SD) 
3 

0.320 

(0.151) 

0.378 

(0.142) 

0.395 

(0.132) 

0.466 

(0.130) 

4 
0.321 

(0.144) 

0.377 

(0.138) 

0.412 

(0.120) 

0.461 

(0.123) 
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5 
0.338 

(0.146) 

0.379 

(0.121) 

0.439 

(0.119) 

0.482 

(0.113) 

Average AIC (SD) 
3 

20256.51 

(691.54) 

20150.09 

(671.80) 

20095.42 

(668.94) 

20059.69 

(670.87) 

4 
26347.71 

(689.87) 

26166.26 

(654.67) 

26028.61 

(653.10) 

25997.71 

(651.39) 

5 
32190.70 

(1042.07) 

32043.03 

(1068.81) 

31744.09 

(986.44) 

31726.26 

(992.03) 

Average BIC (SD) 
3 

20334.93 

(691.54) 

20245.30 

(671.80) 

20185.03 

(668.94) 

20171.71 

(670.87) 

4 
26448.52 

(689.87) 

26289.48 

(654.67) 

26157.44 

(653.10) 

26154.53 

(651.39) 

5 
32313.92 

(1042.07) 

32194.26 

(1068.81) 

31917.72 

(986.44) 

31933.49 

(992.03) 

Average RMSE of correlation 

matrix (SD) 
3 

0.392 

(0.075) 

0.343 

(0.097) 

0.423 

(0.134) 

0.170 

(0.093) 

4 
0.364 

(0.071) 

0.315 

(0.072) 

0.380 

(0.134) 

0.169 

(0.077) 

5 
0.339 

(0.051) 

0.295 

(0.052) 

0.322 

(0.087) 

0.158 

(0.055) 

Average bias of the general 

factor variance (SD) 
3 

-0.073 

(1.046) 

0.082 

(0.787) 

0.503 

(1.055) 

-0.191 

(0.541) 

4 
0.037 

(0.843) 

0.074 

(0.623) 

0.574 

(0.837) 

-0.078 

(0.450) 
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5 
0.056 

(0.685) 

0.053 

(0.452) 

0.548 

(0.679) 

-0.130 

(0.400) 

Average bias of the specific 

factor variances (SD) 
3 

-0.203 

(1.224) 

-0.253 

(1.245) 

-0.662 

(1.341) 

-0.186 

(0.548) 

4 
-0.192 

(1.081) 

-0.374 

(1.023) 

-0.316 

(1.554) 

-0.151 

(0.529) 

5 
-0.102 

(1.064) 

-0.285 

(0.945) 

-0.085 

(1.705) 

-0.071 

(0.524) 

In general, the results are consistent with the previous simulation and indicate that the 

CORB model outperforms the other partially oblique bifactor models across all key statistics – 

from the correlation between parameter estimates and their true values to global model fit (with 

the exception of the general factor reliability in the GSM model). The insights from the 

previous simulation study are repeated here: the GSM tends to recover the most reliable general 

factor scores, but this comes at the expense of interpreting the specific factors. 

The CORB model provides a balance between the reliability of the general factor and 

the specific factors. It improves the reliability of the general factor compared to the traditional 

orthogonal bifactor model while simultaneously recovering the most reliable scores for the 

specific factors. As expected, the CORB model recovers the correlation matrix more accurately 

than all other bifactor models and remains significantly more stable in terms of variance 

estimates. 

Interestingly, while increasing the number of specific factors reduces the 

underestimation of the general factor variance on average, the CORB model’s recovery of the 

general factor variance, although improved and more stable, does not surpass that of its special 

cases (such as the ETM or GSM). This may indicate that the CORB model requires special 
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convergence criteria or longer estimation times to achieve better performance in complex test 

structures. 

Regarding RQ2, increasing the number of specific factors tends to improve overall 

model performance for all models. However, as in RQ1, this improvement may primarily result 

from the increased test length, which enhances parameter precision by providing more data for 

estimation. 

4.2.3. RQ3: How Does the Number of Items per Specific Factor Affect Parameter 

Recovery? 

The ETM failed to converge in 19% of cases with 3 items per specific factor, 41% of 

cases with 5 items per specific factor, and 66% of cases with 7 items per specific factor. These 

results indicate that the convergence of the ETM strongly depends on the length of the testlet, 

with longer testlets significantly reducing its likelihood of convergence. In contrast, all other 

models converged 100% of the time, regardless of the number of items per specific factor. 

Table 3 

Comparison of the bifactor models of interest for the third research question of the simulation 

study. 

Statistics Length of 

specific 

factors 

Model 

RTM ETM GSM CORB 

Average correlation of the 

general factor EAP point 

estimates with their true 

values (SD) 

3 items 
0.850 

(0.083) 

0.846 

(0.084) 

0.850 

(0.084) 

0.868 

(0.071) 

5 items 
0.865 

(0.098) 

0.866 

(0.126) 

0.862 

(0.101) 

0.893 

(0.064) 

7 items 
0.849 

(0.133) 

0.862 

(0.153) 

0.849 

(0.132) 

0.894 

(0.072) 

https://doi.org/10.1017/psy.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.14


 46 

Average correlation of 

specific factors EAP point-

estimates with their true 

values (SD) 

3 items 
0.307 

(0.361) 

0.332 

(0.371) 

0.546 

(0.179) 

0.384 

(0.438) 

5 items 
0.349 

(0.411) 

0.360 

(0.405) 

0.624 

(0.159) 

0.421 

(0.462) 

7 items 
0.383 

(0.430) 

0.401 

(0.417) 

0.673 

(0.148) 

0.454 

(0.479) 

Average EAP reliability of the 

general factor (SD) 
3 items 

0.740 

(0.128) 

0.769 

(0.090) 

0.813 

(0.090) 

0.768 

(0.095) 

5 items 
0.774 

(0.118) 

0.804 

(0.078) 

0.863 

(0.066) 

0.803 

(0.102) 

7 items 
0.771 

(0.152) 

0.820 

(0.096) 

0.879 

(0.089) 

0.815 

(0.106) 

Average EAP reliability of the 

specific factors (SD) 
3 items 

0.339 

(0.138) 

0.392 

(0.118) 

0.430 

(0.113) 

0.493 

(0.109) 

5 items 
0.432 

(0.154) 

0.471 

(0.133) 

0.547 

(0.119) 

0.569 

(0.114) 

7 items 
0.508 

(0.163) 

0.531 

(0.148) 

0.633 

(0.116) 

0.642 

(0.113) 

Average AIC (SD) 
3 items 

36133.58 

(1398.77) 

35988.58 

(1337.36) 

35664.30 

(1315.10) 

35568.71 

(1323.55) 

5 items 
55848.24 

(2064.83) 

55656.65 

(2088.40) 

55099.90 

(2016.15) 

54986.73 

(1994.92) 

7 items 
74980.44 

(3645.04) 

74311.80 

(3527.21) 

73853.91 

(3575.12) 

73716.20 

(3570.18) 
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Average BIC (SD) 
3 items 

36268.00 

(1398.77) 

36151.01 

(1337.36) 

35849.13 

(1315.10) 

35787.14 

(1323.55) 

5 items 
56038.68 

(2064.83) 

55875.08 

(2088.40) 

55340.73 

(2016.15) 

55261.18 

(1994.92) 

7 items 
75226.88 

(3645.04) 

74586.25 

(3527.21) 

74150.75 

(3575.12) 

74046.65 

(3570.18) 

Average RMSE of correlation 

matrix (SD) 
3 items 

0.343 

(0.054) 

0.295 

(0.055) 

0.347 

(0.149) 

0.101 

(0.040) 

5 items 
0.339 

(0.051) 

0.277 

(0.051) 

0.311 

(0.084) 

0.093 

(0.033) 

7 items 
0.344 

(0.051) 

0.281 

(0.053) 

0.319 

(0.094) 

0.089 

(0.042) 

Average bias of the general 

factor variance (SD) 
3 items 

0.073 

(0.649) 

0.011 

(0.429) 

0.408 

(0.661) 

-0.077 

(0.260) 

5 items 0 (0.541) 
-0.052 

(0.332) 

0.387 

(0.541) 

-0.093 

(0.254) 

7 items 
0.009 

(0.672) 

-0.079 

(0.290) 

0.457 

(0.735) 

-0.126 

(0.280) 

Average bias of the specific 

factor variances (SD) 
3 items 

-0.204 

(1.002) 

-0.455 

(0.867) 

-0.276 

(1.780) 

0.025 

(0.411) 

5 items 
-0.155 

(0.723) 

-0.143 

(0.652) 

-0.153 

(1.618) 

-0.014 

(0.280) 

7 items 
-0.189 

(0.787) 

-0.094 

(0.654) 

-0.094 

(2.431) 

-0.060 

(0.284) 
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In general, the results are consistent with the previous simulations and once again 

demonstrate that the CORB model outperforms other partially oblique bifactor models across 

all simulation conditions and key statistics (with the exception of the general factor reliability 

in the GSM model). While the GSM model consistently yields the highest reliabilities, the 

CORB model produces the most accurate parameter estimates, as evidenced by the lower 

average RMSE of the correlation matrix and, in this case, also by the lower bias in variance 

estimates. Both increasing the number of “construct items” and lengthening the specific factors 

positively impact parameter recovery across all models. 

Notably, while the GSM model consistently recovers a latent space that is furthest from 

the data-generating space, it paradoxically exhibits better model fit than the orthogonal bifactor 

model and the ETM, though not better than the CORB model. This highlights a critical 

limitation: a naïve comparison of the GSM with other models based solely on global model fit 

indices (such as AIC and BIC) can lead to substantial distortion in the interpretation of test 

scores. Such distortion undermines the intended construct validity that test developers aim for 

when designing the test. Therefore, we strongly recommend exercising caution when using the 

GSM model alongside the orthogonal bifactor model, the ETM, and the CORB model, as the 

GSM is fundamentally different from these models. Crude comparisons may result in 

significant validity threats. 

Regarding RQ3, we can again conclude that, in general, the longer the test, the better 

the results, across all models. 

5. A Real Data Example 

5.1 The Test and the Data 

For the real data example, we used data from a low-stakes computerized assessment of 

reading literacy in Russian called “START”. This test is designed to measure first-graders’ 

reading literacy, defined as their ability to: (1) recognize letters of the Russian alphabet, (2) 
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read words aloud, (3) read a short story aloud (“mechanical” reading), and (4) comprehend 

reading material (Ivanova & Kardanova-Biryukova, 2019). The assessment is conducted by 

teachers, who assist each student by opening the test in an internet browser and determining 

whether the student’s responses to each item are correct. All teachers follow standardized test 

administration guidelines provided by the test developers. The test consists of 35 dichotomous 

items, divided into four subsections based on the construct definition: letter recognition (9 

items), reading words aloud (9 items), mechanical reading (3 items), reading comprehension 

(14 items). 

For the sake of illustration, we calibrated the models without using a specific factor for 

reading comprehension. This approach forces the models to rely solely on the G-structure of 

the test dimensionality. Initially, this simplification was necessary to identify the CORB model 

and the ETM. To ensure consistency in model comparison, we applied the same G-structure to 

the RTM and GSM models. Consequently, all reading comprehension items were treated as 

“construct items” defining the general factor across all models. For the GSM, this meant that 

the 𝑘ௗ parameter was not estimated for the “construct items”, constraining their discrimination 

to unity. 

This G-structure aligns with the construct definition, as reading literacy is 

conceptualized as the ability to comprehend texts. In this framework, the “lower-order” skills 

(letter recognition, word reading aloud, and mechanical reading) are considered prerequisites 

for reading comprehension. 

The data was collected in November 2020 from a region in the Russian Federation. The 

sample includes 1,000 first-grade students, though it is not representative of the broader 

population. 

5.2 Results 

The results of the model comparison are presented in Table 4. 
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Table 4 

The results of the model comparison of the real data. 

Statistics 

Model 

RTM ETM 

GSM 

CORB 

Variant 1 
Variant 

2 
Variant 3 

Deviance 20667.8 20413.2 21394.5 21392.9 21388.2 20320.7 

Number of parameters 39 42 42 42 42 45 

Sample size 1000 

AIC 20745.8 20497.2 21478.5 21476.9 21472.2 20410.7 

BIC 20937.2 20703.3 21684.6 21683.0 21678.3 20631.5 

R
el

ia
bi

lit
y 

General factor 0.920 0.922 0.942 0.942 0.943 0.914 

Letter 

recognition 
0.466 0.620 - 0.391 0.395 0.619 

Reading of 

words 
0.346 0.348 0.355 - 0.358 0.416 

Mechanical 

reading 
0.390 0.520 0.422 0.404 - 0.539 

V
ar

ia
nc

e 

General factor 8.740 9.207 10.019 9.878 10.160 9.199 

Letter 

recognition 
6.168 5.678 - 4.223 4.588 5.809 
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Reading of 

words 
4.934 5.144 3.104 - 3.342 5.682 

Mechanical 

reading 
5.101 6.778 3.098 2.814 - 6.987 

𝑘ௗ 

Letter 

recognition 
- - 0.315 0.350 0.330 - 

Reading of 

words 
- - 0.477 0.452 0.467 - 

Mechanical 

reading 
- - 1.635 1.635 1.635 - 

Note. The results of the GSM are presented for 3 reparameterizations of it. 

Likelihood Ratio Test confirmed that ETM fits better than RTM (𝜒ଶ=254.6, df=3, p-value < 0.001). 

Likelihood Ratio Test confirmed that CORB model fits better than both RTM (𝜒ଶ=347.1, df=6, p-value < 0.001) 

and ETM (𝜒ଶ=92.5, df=3, p-value < 0.001). 

The correlation matrix from the ETM is presented in Table 5. 

Table 5 

The correlation matrix from the ETM. 

 General factor 
Letter 

recognition 

Reading of 

words 

Mechanical 

reading 

General factor 1 -0.643 0.076 0.427 

Letter 

recognition 
-0.643 1 0 0 

Reading of 

words 
0.076 0 1 0 
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Mechanical 

reading 
0.427 0 0 1 

The gathered correlation matrix from the GSM is presented in Table 6. 

Table 6 

The gathered correlation matrix from all three reparameterizations of the GSM. 

 General factor 
Letter 

recognition 

Reading of 

words 

Mechanical 

reading 

General factor 1 0 0 0 

Letter 

recognition 
0 1 -0.579 -0.439 

Reading of 

words 
0 -0.579 1 -0.021 

Mechanical 

reading 
0 -0.439 -0.021 1 

The correlation matrix from the CORB model is presented in Table 7. 

Table 7 

The correlation matrix from the CORB model. 

 General factor 
Letter 

recognition 

Reading of 

words 

Mechanical 

reading 

General factor 1 -0.650 0.043 0.390 

Letter 

recognition 
-0.650 1 0.280 0.011 

Reading of 

words 
0.043 0.280 1 0.579 
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Mechanical 

reading 
0.390 0.011 0.579 1 

5.3 Interpretation of Results 

The results from the real data application indicate that the CORB model fits the data 

better than other oblique bifactor models and the orthogonal bifactor model, which is expected 

since the CORB model is more general. However, the most significant distinction of the CORB 

model lies in its interpretability. Unlike other bifactor models, the CORB model allows for the 

direct interpretation of specific factors as “components” of general reading skills, as it permits 

these factors to correlate freely. In contrast, the assumptions of complete or partial 

orthogonality in other bifactor models imply that the extracted factor scores are abstract 

constructs, statistically “purified” from the influence of other factors. 

The variances of all latent factors appear relatively high compared to similar studies. 

This can be attributed to the high “guttmanization” of students’ response profiles (Maggino, 

2014) and the data collection conditions. Guttmanization likely results from the theoretical 

framework of the test, which presupposes a hierarchical structure of behavior indicators. In 

such a framework, a student is unlikely to answer a subsequent item correctly if they have 

already failed a preceding one. Additionally, on the practical side, the teacher (acting as the 

proctor) may end the testing session prematurely when a student begins to struggle, reinforcing 

the hierarchical nature of the responses. These factors likely increase item discriminations, and 

as a result, constraining discriminations to unity leads to relatively high variance estimates. 

The estimates from different reparameterizations of the GSM exhibit some numerical 

fluctuations but tend to converge toward consistent values (albeit slightly less consistently than 

in previous studies; Federiakin, 2020). 

One of the most challenging results to interpret is the occurrence of negative 

correlations in the correlation matrices. For example, a naive interpretation of Tables 5 and 7 
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might suggest that students who excel in letter recognition tend to struggle with reading 

comprehension, and vice versa. This apparent paradox affects both the ETM and CORB 

models. In the GSM case, the negative correlations in Table 6 can be explained from a technical 

standpoint: since the sum of specific dimensions is constrained to zero for each student, 

increasing one specific factor necessarily decreases the others, thereby inducing negative 

correlations. 

Although the paradox of negative correlations appears puzzling from a content 

perspective, it is a well-documented phenomenon in within-item multidimensional models (van 

Rijn & Rijmen, 2012). This effect is known as the “explaining away phenomenon”, extensively 

studied within the framework of Bayesian reasoning and the causal interpretation of IRT 

models (Marsman et al., 2018). The principle behind this phenomenon is that “the confirmation 

of one cause of an observed event reduces the need to invoke alternative causes” (Wellman & 

Henrion, 1993, p. 287). In the context of within-item multidimensional IRT models, this 

implies that when an item loads on two latent dimensions in a compensatory manner, a student 

can succeed in answering the item through three possible scenarios: 

1. Compensating low ability on dimension 1 by having high ability on dimension 2. 

2. Compensating low ability on dimension 2 by having high ability on dimension 1. 

3. Having high ability on both dimensions. 

However, scenario 3 is less likely, as it requires more conditions to be simultaneously 

satisfied. Therefore, negative correlations between dimensions arise because scenarios 1 and 2 

dominate in the sample. Hooker and Finkelman (2010) proved this result for bifactor models 

that do not comply with the Schmid-Leiman (1957) constraints. Later, van der Linden (2012) 

provided a rigorous generalization of this result, while van Rijn and Rijmen (2012) graphically 

demonstrated it for all compensatory within-item multidimensional models. 
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Consequently, the negative correlations observed in the ETM and CORB models do not 

imply that students who are better at reading are worse at recognizing letters, or vice versa. 

Instead, these negative correlations are statistical artifacts resulting from the conditioning of 

parameter estimates on the distribution of student abilities. Therefore, this paradoxical outcome 

does not require extensive content interpretation or explanations based on substantial issues 

with the construct. 

Interestingly, in both the ETM and CORB models, the correlations of the three specific 

factors with the general factor support the theoretical hierarchy of reading skills proposed by 

Ivanova & Kardanova-Biryukova (2019). Specifically, the closer a specific factor is to reading 

comprehension (which defines the general factor) in the theoretical hierarchy of skills, the 

stronger its correlation with the general factor becomes. It is important to note that the hierarchy 

of skills in this context is defined purely in terms of theoretical interpretation and does not 

impose structural constraints on the model itself. That is, although students are theoretically 

expected to acquire skills in a sequential manner, the model treats all skills as independent but 

correlated dimensions. 

As a result, the closer two skills are in terms of cognitive content (e.g., letter recognition 

is cognitively closer to word reading than to mechanical reading), the stronger their correlation 

becomes. This effect may act as a counterbalance to the explaining-away phenomenon, driven 

by the similarity of the cognitive content across latent dimensions. 

6. Discussion 

Bifactor models are prevalent in psychometric literature because they directly extract 

the general factor from a truly composite test structure while accounting for local item 

dependence. However, they are notoriously difficult to interpret, as their identification requires 

highly restrictive constraints on the variance-covariance matrix. Specifically, the assumption 

of total orthogonality often results in models where only the general factor is practically 
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interpretable, while the specific factors are typically treated as nuisance dimensions and 

ignored. 

In response to these limitations, several partially oblique bifactor models have been 

proposed and studied. Notably, the Extended Rasch Testlet Model (ETM) allows for direct 

estimation of correlations between the general factor and specific factors while maintaining 

orthogonality among the specific factors. Another well-documented model is the Generalized 

Subdimensional Model (GSM), which allows correlations between specific factors but 

constrains them to be orthogonal to the general factor. However, the theoretical interpretations 

of these models vary considerably, as different constraints on the variance-covariance matrix 

lead to different conceptualizations of the construct being measured. Additionally, other 

bifactor models similar to the GSM – but without such constraints – can apparently be 

identified if the factor loading matrix satisfies specific conditions. Despite this, the 

interpretation and practical application of these models are often as complicated as those of 

orthogonal bifactor models due to the complexity of their underlying assumptions. 

The purpose of this paper was twofold: 

1. To introduce the Completely Oblique Bifactor Rasch (CORB) model, which enables 

the direct estimation of all correlations between latent factors. 

2. To describe the structures of test dimensionality that allow for the CORB model’s 

identification. 

Through simulation studies and a real data example, we demonstrated that the CORB 

model outperforms other bifactor models in terms of model fit and the recovery of factor 

correlations. However, successful identification of the CORB model requires a specific test 

design structure. In this paper, we introduced and analyzed two such structures: 

1. G-structure (Figure 2): This structure requires that the test contains at least one 

“construct item” that loads solely on the general factor. 
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2. S-structure (Figure 3): This structure requires that no items load solely on the general 

factor, but at least one item is shared between every pair of specific factors. 

These test dimensionality structures allow for direct estimation of all correlations 

between specific factors, simplifying the interpretation of the latent person parameter space. 

To analytically establish the identification of the CORB model, we applied the Volodin-Adams 

procedure, which verifies the identification of oblique Rasch models by examining the rank 

and structure of the design and scoring matrices. 

However, as a within-item multidimensional compensatory IRT model, the CORB 

model is susceptible to paradoxical results, where two latent factors that are theoretically 

expected to correlate positively may instead be estimated as negatively correlated. For 

example, in the real data application, the specific factor “Letters recognition” was negatively 

correlated with the general factor, interpreted as reading comprehension. Nevertheless, such 

results are not truly paradoxical; they can be explained by the “explaining away” phenomenon 

from the Bayesian reasoning paradigm. From this perspective, these results are merely 

statistical artifacts that do not require extensive content interpretation. 

Broadly, this paper addresses the topic of bifactor model identification. Most 

researchers, particularly applied researchers and test developers, tend to assume that bifactor 

models must be orthogonal. In certain contexts, such as testlets and item bundles, this 

assumption is appropriate. Moreover, orthogonality significantly accelerates parameter 

estimation, as it prevents these models from falling victim to the “curse of dimensionality”, 

which exponentially increases computational complexity and slows down numerical 

integration as the number of correlated latent dimensions grows (Rijmen, 2009). In such cases, 

factors secondary to the researcher’s primary interest are often treated as nuisance dimensions 

that explain common variance across items. 
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However, our work demonstrates that deliberate modifications to the structure of test 

dimensionality can enable researchers to estimate all entries in the variance-covariance matrix 

of a bifactor model. This approach allows for models that align more closely with theoretical 

assumptions about the construct’s structure, particularly when the construct is intentionally 

composite rather than being artificially defined by the stimuli. Although such models are more 

computationally demanding and less advantageous from a technical standpoint due to their 

vulnerability to the curse of dimensionality, they offer significant theoretical benefits. 

Specifically, they are more useful in cases where researchers seek to explore the nuances of the 

construct structure (especially the correlation matrix of person dimensions) or apply the model 

in predictive measurement contexts (Zhang et al., 2021, 2023a). 

Furthermore, recent advances in parameterizing IRT (Converse, 2021) and factor-

analytical models (Urban & Bauer, 2021) as artificial neural networks may help mitigate these 

computational challenges. Neural networks are far less susceptible – if not entirely immune – 

to the curse of dimensionality (Cheridito et al., 2021). Therefore, parameterizing the CORB 

model as a neural network could potentially eliminate computational inefficiencies, rendering 

computational time a negligible concern. 

In the context of model identification, our paper highlights that the conditions for 

identifying oblique bifactor models remain an area for further research. Notably, existing 

models that impose zero constraints on the sum of covariances, or on the sum of variances and 

covariances of person parameters, suggest that many oblique bifactor models that are 

analytically unidentified (under currently known procedures) may, in fact, be empirically 

identified. Further exploration of identification conditions could pave the way for the 

development of new oblique bifactor models with practical and theoretically meaningful 

interpretations. 
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Additionally, while models with freely estimated discrimination parameters require 

linear independence of factor loadings on the general and specific factors for identification 

(Zhang et al., 2023b; Fang et al., 2021), this requirement appears irrelevant for Rasch models. 

In Rasch models, discrimination parameters are constrained to unity by definition, resulting in 

linearly dependent “factor loadings” on the general and specific factors. This distinction 

underscores the need for a more detailed investigation into the identification conditions specific 

to Rasch-based bifactor models. 

Interestingly, since the ETM is a special case of the CORB model, it is conceptually 

possible to extend the CORB framework by proposing the Subdimensional Oblique Rasch 

Bifactor (SORB) model. The SORB model shares conceptual similarities with the GSM and is 

closely related to partially oblique models in factor analysis (Zhang et al., 2023b; Fang et al., 

2021), while also being a special case of the CORB model. Consequently, the SORB model 

follows the same identification requirements as the CORB model, since it adheres to the general 

formulations of Equations 13 or 14, similar to the ETM. However, instead of recovering the 

variance-covariance matrix in Equation 10, the SORB model recovers the matrix given by 

Equation 28: 

𝚺 =

⎣
⎢
⎢
⎢
⎡
𝑣𝑎𝑟൫𝜃௚൯ 0 0 0

0 𝑣𝑎𝑟൫𝜃௦భ
൯ 𝑐𝑜𝑣൫𝜃௦భ

, 𝜃௦మ
൯ 𝑐𝑜𝑣൫𝜃௦భ

, 𝜃௦య
൯

0 𝑐𝑜𝑣൫𝜃௦మ
, 𝜃௦భ

൯ 𝑣𝑎𝑟൫𝜃௦మ
൯ 𝑐𝑜𝑣൫𝜃௦మ

, 𝜃௦య
൯

0 𝑐𝑜𝑣൫𝜃௦య
, 𝜃௦భ

൯ 𝑐𝑜𝑣൫𝜃௦య
, 𝜃௦మ

൯ 𝑣𝑎𝑟൫𝜃௦య
൯ ⎦

⎥
⎥
⎥
⎤

 (28) 

The constraint of correlations between specific factors and the general factor to zero, combined 

with the free estimation of correlations among specific factors, results in a “reversed” ETM, 

conceptually similar to the oblique bifactor solutions proposed by Jennrich and Bentler (2012) 

and Lorenzo-Seva and Ferrando (2019), but approached from a confirmatory modeling 

paradigm. This constraint also makes the orthogonal RTM a special case of both the ETM and 

the SORB model, though without nesting these models within one another. 
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This model is closer in interpretation to the ETM and CORB models than to the GSM. 

Specifically, it models specific factors as additional to the general factor, rather than as 

components of the general factor, as in the GSM. However, unlike the partially oblique bifactor 

models from factor analysis (Zhang et al., 2023b; Fang et al., 2021), it constrains discrimination 

parameters, potentially making it easier to identify and more numerically stable. Further 

exploration of this model and its comparison to the GSM could be a valuable area for future 

research. In particular, a multi-step estimation procedure involving the following steps may 

improve numerical stability of parameter estimates and allow for estimation of the 2PL-

counterparts of all models used in this paper: 

1. Preliminary estimation of a model. 

2. Extraction of the estimated correlation matrix of the multivariate ability distribution 

from the preliminary estimation. 

3. Fixing the correlation matrix in subsequent bifactor models with free factor loadings. 

4. Estimating discrimination parameters given the fixed correlation matrix. 

This approach could yield further improved model fit, more stable parameter estimates and 

enhance the robustness of bifactor model applications. 

This paper has several limitations. First, we only considered dichotomous items. To 

identify the CORB model in a test with polytomous items, at least one category of at least one 

item must load solely on the general factor, or alternatively, at least one category of at least one 

item must be shared between every pair of specific factors. However, this result is specific to 

the adjacent logit link function. Extending these findings to other link functions, such as probit 

or cumulative link functions, represents a promising avenue for future research. 

Moreover, the proposed structures of test dimensionality reflect a complex but tractable 

process of test development, particularly under partial credit scoring in educational 

assessments. Among the two structures discussed in this paper, developing items for the S-
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structure appears more feasible. For example, consider a test with a clear bifactor structure, 

where one subdimension represents addition skills and another represents subtraction skills. In 

this scenario, a researcher could create items requiring both skills (e.g., word problems 

combining addition and subtraction) to transform a clear bifactor structure into an S-structure. 

Conversely, developing items that measure only general arithmetic skills (i.e., not 

specific to addition or subtraction) is likely more challenging. This example illustrates that 

while transforming an existing test into an S-structure may be achievable, constructing items 

for a G-structure, which requires purely general items, can be considerably more difficult. 

Additionally, this paper does not delve into several important applied aspects of the 

CORB model. For example, we do not explore how the CORB model relates to the intricate 

connections between second-order models and bifactor models defined by the Schmid-Leiman 

constraints (Rijmen, 2010; Gignac, 2016; Mansolf & Reise, 2017). Furthermore, we do not 

address the item development process in detail and only briefly touch upon the topic of item 

fit. 

A more in-depth discussion on the interpretation of the ETM and other partially oblique 

bifactor models is also necessary. Currently, their detailed interpretation remains unclear – 

particularly regarding when and how such complex variance-covariance matrix constraints can 

be expected to align with the underlying construct. Additionally, this paper does not examine 

the potential impact of the CORB model on subscore reporting (Haberman et al., 2024). While 

the demand for interpretable scores on specific factors motivates our work, further research is 

needed to assess the added value of subscores derived from the CORB model. 

Moreover, the CORB model is presented solely within the Rasch measurement 

paradigm, which assumes that items with the same factor loading structure share identical 

factor loadings. This marks a key point of divergence from the 2PNO paradigm, where 

discrimination parameters are freely estimated. Investigating analogous models within the 
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2PNO paradigm, examining their properties, and generalizing the Volodin-Adams procedure 

to this paradigm represent promising directions for future research. 

Finally, working in the confirmatory IRT paradigm, we do not discuss the consequences 

of the CORB model for exploratory paradigm. Developing further rotation methods for the 

exploratory oblique bifactor analysis, determining the number of latent factors (Chen & Li, 

2022), analyzing exploratory model fit, and other issues in the exploratory modeling also 

present a perspective avenue for further research. 

Finally, since this paper operates within the confirmatory IRT paradigm, we do not 

discuss the implications of the CORB model for the exploratory paradigm. Developing 

advanced rotation methods for exploratory oblique bifactor analysis, determining the 

appropriate number of latent factors (Chen & Li, 2022), assessing exploratory model fit, and 

addressing other issues in exploratory modeling represent promising avenues for future 

research.  
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