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Abstract

The freezing of water to ice is a classic problem in applied mathematics, involving the
solution of a diffusion equation with a moving boundary. However, when the water is
salty, the transport of salt rejected by ice introduces some interesting twists to the tale.
A number of analytic models for the freezing of water are briefly reviewed, ranging
from the famous work by Neumann and Stefan in the 1800s, to the mushy zone models
coming out of Cambridge and Oxford since the 1980s. The successes and limitations of
these models, and remaining modelling issues, are considered in the case of freezing sea-
water in the Arctic and Antarctic Oceans. A new, simple model which includes turbulent
transport of heat and salt between ice and ocean is introduced and solved analytically, in
two different cases—one where turbulence is given by a constant friction velocity, and
the other where turbulence is buoyancy-driven and hence depends on ice thickness. Salt
is found to play an important role, lowering interface temperatures, increasing oceanic
heat flux, and slowing ice growth.

2000 Mathematics subject classification: primary 35K05; secondary 86A05.

Keywords and phrases: Stefan problem, freezing brine, salt transport, modelling sea ice
growth.

1. Introduction

The temperature at which sea-water freezes depends on its salinity. The saltier the
brine, the lower the freezing point. When salinity is above the critical value of 24 psu
(practical salinity units), the freezing point is below the temperature of maximum
density, so that colder sea-water is heavier. Then cooler surface waters are heavier
and overturn, mixing a region of ocean down to a critical depth (the pyncnocline).
This region is cooled to near freezing, rather than just the surface waters.

When cold air causes open sea-water to begin to freeze, many small ice crystals
(frazil ice) form at the surface, stirred by wind, waves and currents [6, 10, 13]. This
may be further complicated by the formation of agglomerations of crystals called

1Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Taejon
305-701, South Korea; e-mail: Mark.McGuinness@vuw.ac.nz.
c© Australian Mathematical Society 2009, Serial-fee code 1446-1811/2009 $16.00

306

https://doi.org/10.1017/S1446181109000029 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000029


[2] Modelling sea ice growth 307

pancake ice, which collide and raft. A large solid sheet of ice is typically formed
when a critical thickness of about 10 cm is reached [6]. Then those crystals that are
oriented with the direction of most rapid growth near vertical become predominant as
the ice thickens.

Salt is rejected by growing ice as a dense brine, but the brine cannot escape as
rapidly as heat at the ice–ocean interface. This is due to the diffusivity of salt being
much less than thermal diffusivity. Then the very cold salty interface leads to a cold
fresher region nearby. As a consequence, while the actual ice–ocean interface is at
freezing point, the region below the interface is below freezing point, creating an
unstable situation—any ice that protrudes into the supercooled region grows faster.
This leads to the dendritic growth of ice as fingers or plates down into the sea. These
fingers and plates then bridge across, trapping brine in the ice–brine mixture. This
constitutional supercooling causes the ice–ocean interface to be convoluted, with a
gradual transition from water to a mixture of liquid (brine) and ice called a mushy
zone [7, 10, 34, 35], rather than a sudden planar change from liquid to ice.

Cold air drives the freezing process, and snow on top can complicate it by
decreasing conductive heat flow. There is radiative heat transfer between atmosphere
and ice. The ocean is relatively warm, with turbulent currents, and in Antarctica
near glacial ice shelves is occasionally slightly supercooled with billows of small ice
crystals present, to further complicate the picture.

2. Previous models

Classic work by Neumann in the 1860s [3] and, famously, by Stefan in 1891 [13]
was seminal in the early modelling of the growth of sea ice. The diffusion equation,
resulting from conservation of heat, is solved in one dimension with a moving
boundary between ice and ocean, in the case where the boundary is sharp and heat
transport from ocean to ice is negligible. The freezing interface is found to move as
the square root of time. Salt transport is ignored.

Conservation of energy leads to the heat conduction equation for the temperature
T (t, z) of the ice (◦C), assuming that the ice can be approximated as a one-dimensional
sheet with planar interfaces with air and ocean, z is elevation and t is time:

∂T

∂t
= D

∂2T

∂z2 , D ≡
ki

ρi Ci
. (2.1)

Here D is the thermal diffusivity of the ice (which averages about 10−6 m2 s−1 over
the temperature range −2 to −25◦C for an ice salinity of 5 psu), ρi ≈ 910 kg m−3 is
the ice density, Ci its thermal capacity (J kg−1 ◦C−1), and ki ≈ 2.2 W m−1 K−1 its
thermal conductivity [18, 24, 25]. Trapped brine means that Ci and D have a strong
dependence on T [23, 24].

Boundary conditions used by Stefan and Neumann are that at the air–ice interface
z = 0 the ice temperature T0 is equal to the air temperature Ta(t), and at the moving
boundary z =−h(t) that is the ice–ocean interface, the temperature is at freezing
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point T f , and the latent heat removal that advances the freezing front at ḣ m s−1 is
caused by heat conduction upwards to the colder air through the ice, so that

ρi Lḣ =−ki
∂T

∂z

∣∣∣∣
−h+

where L ≈ 3.3× 105 J kg−1 K−1 is the latent heat of fusion for sea-water.
The air temperature oscillates, and these temperature variations penetrate sea ice

at rates (and to effective depths) dependent on frequency, with a phase velocity [3]
estimated for constant diffusivity as 2D/δ m s−1 where δ is the penetration depth of the
thermal wave. The slowest waves then penetrate with phase velocities 2D/h m s−1,
which is faster than the ice growth rate estimated at ki (T f − Ta)/(ρi Lh) provided that

T f − Ta <
2Dρi L

ki
≈ 300◦C.

For air temperatures encountered in Antarctica and the Arctic, this inequality is
easily satisfied. T f is about −2◦C depending on salinity, and Ta during freezing
ranges from this value to about −70◦C. This means that the slowest penetrating
thermal waves do travel much faster than the ice growth rate. This does not mean
that the temperature profile is always linear—observations indicate otherwise, and the
observed curvature of temperature versus depth has been used to directly estimate the
thermal conductivity of sea ice [18, 24, 25]. However, oscillations also damp out as
they penetrate, with a damping factor of the order of exp(−

√
ω/(2D)z) [3], where

ω is the frequency of oscillation. Then, for example, an oscillation with period 40
days damps by a factor of e over a lengthscale of 1 m, and smaller period oscillations
damp out over even shorter depths. This suggests that a running average of 40 days or
so is a reasonable pre-treatment for air temperatures—the ice effectively averages out
rapid changes. Such a running average has much less variability than the original air
temperature.

For the purposes of calculating ice growth rate, a linear approximation (that is, a
steady-state solution to (2.1)) is often used to estimate the average temperature gradient
in the ice at the ice–ocean interface,

∂T

∂z
≈

Ta − T f

h
,

and the Stefan problem becomes

ḣ =
ki

ρi Lh
(T f − Ta).

This integrates to give the Stefan solution

h2
=

2ki

ρi L
θ ≈ 1.4× 10−8 θ,

where θ ≡
∫ t

0 (T f − Ta) dt is the number of degree-seconds of cooling. For a constant
air temperature θ is linear in time, so that h grows as the square root of time. The
Stefan solution is graphed in Figure 2, alongside data and later model results.
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Stefan’s solution is generally regarded as giving an upper limit on ice growth rate
and thickness. Snow reduces heat flow, solar heating slows cooling, and heat flow
from ocean to ice slows cooling—these effects have been ignored.

A more sophisticated boundary condition at the upper ice surface allows for a
thermal boundary layer in the air, or for a layer of snow, so that there is a flux (or
mixed boundary) condition,

∂T

∂z
= α(Ta − T0), z = 0,

where α is a nonnegative heat transfer coefficient with units per metre, which depends
on snow thickness if snow is present [12, 16]. This results in

ḣ =
kiα

ρi L(1+ αh)
(T f − Ta),

which integrates to give

h2
+

2
α

h =
2ki

ρi L
θ. (2.2)

In the limit α→∞, the mixed boundary condition reduces to the boundary condition
used by Stefan, Ta = T0, and the solution for h reduces to the Stefan solution.
In general for positive α, ice growth is slower that the square-root-of-time Stefan
behaviour, although for α = 40 m−1 the graphs practically coincide (Figure 2). Small
α gives linear growth of h with θ , and zero α corresponds to a perfectly insulated upper
boundary, with no heat taken from the ice and no ice generated.

An empirical fit [1] to the thickness of snow-free ice in Thule, Greenland, illustrated
in Figure 1 to show the scatter of data points, used the same formula,

h2
+ 0.051h = 0.775× 10−8 θ (2.3)

where h is in metres and θ is degree-seconds. See [17] for other empirical
relationships.

Matching the coefficients of h in (2.2) and (2.3) implies that α ≈ 40 m−1. However,
the constant term on the right-hand side of (2.3) is not a good match with known values
listed earlier in this paper. Figure 2 shows a comparison between the empirical (data)
thicknesses given by (2.3) and our solution (2.2), using α = 40 m−1. Our simple
model (with up-to-date values for ki , ρi , and L) predicts a faster growth of sea ice than
is observed.

Reducing our ki value from 2.2 to 1.3 gives a good fit to the data (graphically
indistinguishable from the fit that Anderson drew; Figure 1), but this is at the cost of
almost halving the typical measured value of thermal conductivity in sea ice [18]. A
number of missing factors in the model could account for the misfit, including radiative
heat transfer, heat flow from the ocean to the ice (the oceanic heat flux), and the role
played by the transport of salt. We will consider the latter two mechanisms in the next
section.
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FIGURE 1. Data and empirical fit to snow-free ice in Greenland, after Anderson, 1961 [1]. (Reprinted
with permission of the International Glaciological Society and Prof. Anderson.)

Also shown in Figure 2 is a fit to sea ice thicknesses measured in McMurdo
Sound [26]. These grow initially more slowly than Anderson’s measurements, then
more rapidly once the ice is about 1 m thick. This may be related to the appearance
of a different ice crystal structure in the McMurdo ice [26] at this thickness, possibly
associated with the accretion of ice from a supercooled mixed oceanic layer. Slow
early solid ice growth may be due to heat transport from this layer, as it is supercooled,
and later faster growth of solid ice may be reaping the benefit of small crystals of ice
that are nucleated in the mixed layer, rising to the solid ice interface and sticking there.

A very detailed vertical model of the heat conduction problem is solved numerically
by Maykut and Untersteiner [17]. They concentrate particularly on the atmosphere–
ice interface, and on parameterizations of the various mechanisms for heat exchange
there, especially radiative transport. Salt transport is not modelled, however, which
may impact on heat transport from the ocean.

3. Salt transport

Here we consider the importance of also modelling the transport of salt, for the
growth of sea ice. Salt alters the freezing point of sea-water, and salt diffusivity is very
different from thermal diffusivity.

Weber [32] considers the very early growth of sea ice, and includes salt transport.
He shows that the coupling between salinity and heat transport cannot be neglected.
His model, like that of Stefan, ignores heat transport between ice and ocean. Salt
transport to the ocean is modelled as diffusive. The model is solved by a heat
balance integral method, which uses a polynomial approximation to the temperature
and salinity profiles. Weber assumes a small temperature drop across the ice, and takes
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FIGURE 2. A graph of ice thickness h in metres versus degree-days of cooling θ , comparing an empirical
fit by Anderson [1] (circles), an empirical fit to data from McMurdo Sound [26] (boxes), and Stefan’s
solution and our simple model (2.2) with α = 40 m−1, which both plot almost identically (solid line).

the interface to be sharp and smooth. Recent measurements and modelling suggest that
all three of these assumptions are violated in practice (for example [6]) in the early
growth of fresh polar sea ice.

Weber does find that including salt transport reduces ice growth rate, because salt
lowers the freezing temperature at the ice–ocean interface, and for his thin ice this
affects heat transport to the atmosphere. Furthermore, ice growth rate in his model
is proportional to the square root of time, for constant air temperature. Weber notes
that the rejected salt will lead to convection, and that morphological instability and
dendritic ice growth are likely, invalidating the assumption of a flat interface between
ice and ocean.

A similar approach is taken by Notz et al. [22] in their modelling of the formation of
a false bottom under summer melt ponds in the Arctic. Their model admits a similarity
solution, since there are no external length or timescales, and interfaces grow as the
square root of time.

3.1. Turbulent transport The turbulent transport of heat and salt in the general
context of cooling a binary alloy is modelled by Woods and Huppert [33]. They posit
a boundary layer beneath the ice, and flux terms depending on a Rayleigh number
to the power of one third. Various turbulent sub-models are considered, including the
formation of plumes or blobs of brine, and various relative rates of transport of heat and
salt are examined. Their mixed layer is of finite extent, and may become supercooled.
Small-time asymptotic analysis gives square-root-of-time growth, which changes to
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linear-in-time behaviour later on, in the limit of relatively slow salt transport.
A new simple model that extends the Stefan approach to include the turbulent

transport of heat and salt at the ice–ocean interface is now introduced here and solved
approximately. A linear temperature profile in the ice is assumed, with the surface of
the ice at air temperature. Conservation of heat and salt at the growing interface gives

ḣ =
ki (T f − Ta)

ρi Lh
−

QT

ρi L
(3.1)

and

ḣ =
QS

D S
, (3.2)

where D S = ρi (Si − Sw), and QT and QS are turbulent fluxes of heat and salt.
We assume that there is a thermal and saline boundary layer in the ocean next to

the ice with density ρw, temperature T f , and salinity Sw. The average salinity in the
sea ice is Si . Units for salinity are parts per thousand, or grams of salt per kilogram of
brine. We assume that parts per thousand equates to psu.

The average salinity of sea ice and of the ocean, near the ice–ocean interface,
depend on how fast it is freezing. We model the variation of sea ice salinity by taking
the salinity of sea ice to be proportional to the (variable) salinity of the sea-water near
the ice (as in [27]), so that

Si = f Sw where f ≈ 0.14,

and hence,
D S =−Sw%i (1− f )≈−0.86Sw%i .

Freezing point is approximated as [32]

T f =−ASw,

where A ≈ 0.054◦C/psu.
The turbulent flux terms for heat and salt are (using a simple model for transfer

from a region close to the ice with salinity and density Sw and %w, to a well-mixed
region further away)

QT =−CH u∗(T f − Tm)%wCw and QS =−CSu∗(Sw − Sm)%m,

where the constants Tm , %m , and Sm are temperature, density, and salinity in a deeper,
well-mixed ocean layer, Cw is the thermal capacity of that water, and CH ≈ 0.0058
is a turbulent transfer coefficient measured in the field [19]. A value for CS is here
calculated from CH in the spirit of [20] as

CS = CH

(
Pr
Sc

)2/3

≈ 0.03CH ≈ 2× 10−4.
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Here, Sc= 2432 is the Schmidt number for salt in water (kinematic viscosity
divided by molecular diffusivity), and Pr= 13.4 is the Prandtl number (kinematic
viscosity divided by thermal diffusivity). This parameterization of the turbulent
transport of salt and heat reflects the importance under ice of a viscous sublayer,
across which molecular properties are significant [20], making the transport of salt
comparatively slow.

We will use the simple average value for the friction velocity, u∗ ≈ 0.015 m s−1, as
measured in the Weddell Sea in 1996 [19], and take the mixed layer in the ocean to be
at the freezing temperature for its salinity. Then our variables are ice thickness h(t)
and boundary-layer salinity Sw(t). Equating the right-hand sides of (3.1) and (3.2)
gives a quadratic for Sw as a function of h,

Sa S2
w + Sb Sw + Sc = 0, (3.3)

where

Sa ≡
CH u∗ρwCwA

L
+

ki A

Lh
, Sb ≡

CH u∗ρwCwTm

L
+

ki Ta

Lh
+

Csu∗ρm

0.86

and

Sc ≡
−Csu∗ρm Sm

0.86
.

With an eye on (3.2), it is useful to transform variables in (3.3) as Y = Sw/(Sw − Sm).
The resulting quadratic in Y ,

YaY 2
+ YbY + Sc = 0,

where Ya ≡ Sa S2
m + Sb Sm + Sc and Yb ≡−(Sb Sm + 2Sc), has a solution that is

closely matched by taking the balance between the Y 2 and the Y terms, giving a linear
dependence on h,

Y ≈
Ta

ASm + Ta
+

u∗
ki

(
CHρwCwTm − (Csρm L/0.86)

ASm + Ta

)
h ≈ 1+ Y1h,

where Y1 ≈−780/Ta for air temperatures much less than T f .
Then if the air temperature Ta is taken to be constant, (3.2) integrates to give the

solution

h2
+ γ1h ≈

2ki

ρi L
θ,

where γ1 ≡ 1.7ki |Ta|/(u∗Csρm L) and L≡ L − (0.86CHρwCwTm)/Csρm . Using our
parameter values this becomes

h2
+
|Ta|

460
h ≈ 0.88× 10−8θ, (3.4)

which, using a range of air temperatures, Ta =−5 to −45◦C, gives a close match to
Anderson’s data as illustrated in Figure 3.
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FIGURE 3. Data from Anderson [1] (circles), Purdie et al. [26] (boxes), and our turbulent salt transport
model (3.4) with Ta =−5◦C (upper curve) and Ta =−45◦C (lower curve).

The term γ1 reflects the effect of salt transport on ice growth, and vanishes as
Csu∗→∞ and salt transport increases. If Cs→∞, then L→ L and Stefan’s solution
is recovered. If Cs vanishes, h becomes linear in θ and also vanishes.

Note that salt transport has considerably reduced the modelled ice growth rate.
Other authors have noted the importance of including salt transport, although in
different contexts [22, 32] to the present one. Here, salt can be understood to be
a bottleneck in the transport process, accumulating in our model at the ice–ocean
interface because it has a much smaller diffusivity than heat. The heat balance
is satisfied because the accumulation of salt lowers the ice temperature there, and
increases the oceanic heat flux to the ice (commensurate with a slower growth rate).

The heat flux from the freezing interface to the air, and the heat flux from the ocean
to the freezing interface, are graphed in Figure 4, assuming an air temperature of
−25◦C. These values compare well with measured values in polar waters [19]. The
oceanic heat flux is significant compared with the heat flux to the atmosphere, which
is about 2.6 times the oceanic heat flux.

The ratio of oceanic and atmospheric heat fluxes is almost constant over the ice
thickness range 0.1–2 m. This is because both fluxes depend approximately on the
inverse of ice thickness h, the flux to air because the average temperature gradient is
inversely proportional to h, and the oceanic heat flux because the salinity and hence
the freezing temperature at the interface is roughly inversely proportional to h.
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FIGURE 4. Heat fluxes (W m−2) from freezing ice–ocean interface to air (upper curve) and from the ocean
to that interface (lower curve), versus ice thickness, for the turbulent transport model with constant friction
velocity and an air temperature of −25◦C. The net heat flux from the freezing front is the difference
between these two fluxes.

3.2. Buoyancy-driven turbulence The previous model used a constant friction
velocity that reflected an average turbulence environment consistent with field
measurements. However, one of the factors driving turbulent transport is the rejection
of brine from growing sea ice in turbulent plumes. Since brine is rejected more rapidly
when ice is growing faster, there is a coupling between friction velocity and ice growth
rate. We now consider the effects of taking turbulent transport to be driven entirely by
brine rejection.

This may be modelled [2, 8, 14, 31] by taking u∗ =
√

Cd W∗, where Cd ≈ 1.3×
10−3 is the drag coefficient [9], and W∗ is the Deardorff or free convection velocity
scale [5]. Turner [30] gives W∗ in terms of the buoyancy flux

W 3
∗ = Bλ,

where the buoyancy flux is B ≡−g〈%′ww
′
〉/〈%m〉 (see also [21]), 〈%′ww

′
〉 is the average

vertical flux (positive upwards in this paper) of random variations %′w in fluid density
at the ice–ocean interface, and 〈%m〉 is the mixed layer density. The lengthscale used
is [21] λ= κzi where κ = 0.4 is von Kármán’s constant. The term zi is the thickness
of the mixed layer, stirred by brine rejection under the growing sea ice, and from
measurements [11] is of the order of 50 m in mid-winter in McMurdo Sound. Fluid
density depends mainly on salinity, so that

d%w
d S
≡ %ws ≈ 0.81 kg/m3/psu

and %′w = %ws S′w. Then B ≈−%ws g〈w′S′w〉/〈%m〉. The average vertical flux of salt
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follows from our model, using (3.2):

〈w′S′w〉 = ḣ
D S

%w
≈−

0.86 ḣ Sw%i

%w
.

Hence,

W 3
∗ = 0.86 %ws λgḣ

(
Sw%i

%m%w

)
.

Then the friction velocity may be found in terms of salinity in the boundary
layer from the model equations, u∗ = C3/4

d

√
b(Sw − Sm) and W∗ = u∗/

√
Cd , where

b ≡ λgCS%ws/(0.86 %w).
Equating the right-hand sides of (3.1) and (3.2) then gives a quintic in 1S ≡

√
Sw − Sm . The physically realistic solution to this quintic is approximated within

10% by matching the cubic and constant terms, to get a linear relationship between1S
and h−1/3. Substituting this back into (3.2) gives

ḣ ≈
ki |Ta|

ρi Lγ3(h + γ2h1/3)
,

where

γ2 ≡

(
0.86 ki |Ta|

γ3Csρm LC3/4
d

√
bSm

)2/3

and γ3 ≡ 1−
0.86 CHρwCwTm

CSρm L
.

This integrates for constant Ta , giving

h2
+

3
2
γ2h4/3

=
2ki

ρi Lγ3
θ. (3.5)

The term γ2 is of order C−1
s , so vanishes as salt transport increases, recovering Stefan’s

solution, and γ2 is singular as salt transport reduces to zero, giving similar behaviour to
the previous model which assumed constant u∗. The solution given by (3.5) is graphed
in Figure 5 for the case where air temperature is −25◦C, and compared with data and
the previous model.

The modelled ice thickness when turbulence is driven by buoyancy is much less
than data and other models indicate. This is because of the assumption that only
buoyancy, from rejected brine plumes, drives turbulence under sea ice. Typical values
of u∗ obtained from this model are about 100 times smaller than the measured value
1.5× 10−2 m s−1 used in the previous model. This suggests that brine rejection plays
a minor role in generating turbulence in the mixed layer. So in this model, salt builds
up at the ice–ocean interface, lowering the temperature there. The result is a much
increased oceanic heat flux to the freezing interface, and hence a much reduced net
heat flux from it. Relatively more heat is removed from the oceanic mixed layer, at the
expense of the growth of the freezing front.
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FIGURE 5. Data from Anderson [1] (circles), Purdie et al. [26] (boxes), a constant turbulence salt transport
model (3.4) with Ta =−25◦C (solid curve) and a model with only buoyant plumes driving the turbulence
(dashed curve) as in (3.5), also with Ta =−25◦C.

Both turbulent salt flux models predict cooling of the oceanic mixed layer by this
mechanism, which may lead to supercooling. It is unclear how supercooling in the
mixed layer is relieved—ice may grow in dendritic structures from the interface,
especially if supercooling is greater nearby, and/or ice may grow from nucleation sites
within the turbulent mixed layer. The latter mechanism is a relatively efficient way
to make ice, in the form of turbulent billows of small ice crystals [11, 15] within the
mixed layer, as this ice does not immediately thicken the layer of solid ice. Hence heat
flow to the atmosphere is more rapid than if the ice does thicken this layer.

A dendritic response to supercooling means the interface between ice and ocean
is not planar but highly convoluted. One modelling approach to this phenomenon is
to approximate such a mushy zone as a porous medium made of ice and brine, with
a porosity and permeability that depend on temperature [7, 33–36]. The ice–ocean
boundary is then warmer than in the planar interface models with salt transport, and
oceanic heat flux is reduced.

4. Conclusions

The inclusion of salt transport is important when modelling the growth of sea
ice. A simple model for turbulent transport of salt and heat between ice and ocean
characterized by a constant friction velocity has been developed and solved. In this
model, the presence of salt at the ice–ocean interface lowers the freezing temperature
there, increasing the heat flux from the ocean, and slowing down the growth of sea ice,
to give an excellent match with observations.
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While the modelling of the growth of sea ice has come a long way since the
remarkable work of Neumann and Stefan, it still falls short of modern understandings
of ice structure and oceanic conditions. The constant friction velocity model presented
here does well in fitting Anderson’s classic data, and is consistent with observed
oceanic heat fluxes, but fails to explain changes in ice crystal structure often seen
in thicker sea ice [28, 29].

Mushy zone models are a good approach to modelling the dendritic growth
observed in supercooled waters, but do not address the question of which ice growth
mechanism will dominate in a supercooled ocean under sea ice—dendritic growth
from solid surface ice, or frazil growth from nucleation sites within a turbulent
oceanic mixed layer. Models addressing such frazil growth will have to contend
with the growth and breakage of a population of small discs of ice with a size
distribution [4], rising under buoyancy but stirred by turbulence, stabilizing the
turbulence by buoyancy, and interacting with the temperature and turbulence fields
and with the solid ice above.
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