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ABSTRACT

We prove that if W and W’ are non-zero B-pairs whose tensor product is crystalline
(or semi-stable or de Rham or Hodge-Tate), then there exists a character p such that
W (p~1) and W' () are crystalline (or semi-stable or de Rham or Hodge-Tate). We also
prove that if W is a B-pair and if F' is a Schur functor (for example Sym" or A™) such
that F(W) is crystalline (or semi-stable or de Rham or Hodge—Tate) and if the rank
of W is sufficiently large, then there is a character u such that W (u~1!) is crystalline
(or semi-stable or de Rham or Hodge-Tate). In particular, these results apply to p-adic
representations.

Introduction

Let K and E be finite extensions of Q, and let Gx = Gal(Q,/K). Fontaine has defined the
notions of crystalline, semi-stable and de Rham FE-linear representations of Gx and proved that
the corresponding categories are stable under sub-quotient, direct sum and tensor product. The
goal of this note is to answer the following question: if V' and V' are p-adic representations whose
tensor product is crystalline (or semi-stable or de Rham or Hodge—Tate), then what can be said
about V and V'?

Berger has defined the tensor category of B&F

|K ~
W = (W, W;R) such that W, is a Be ®q, E-representation of G and W;R is a Gg-stable

BIR ®q, E-lattice of Wyr = (Bar ®q, F) ®(B§R®QPE) We. If W = (W, WJR) is a B&E—pair,

then the rank of W is defined to be rank(Be®QpE) We:rank(BIR(@Q B) WJR. If V is an
P

E-linear representation of Gk, then W (V)= ((B.®q, F)®rV, (Bl ®q, E)®pV) is a
B®E

pairs, in which the objects are couples

-pair, and the functor W(—) identifies the category of E-linear representations of G

K
with a tensor subcategory of the category of BS(E -pairs. The notions of crystalline, semi-stable,

de Rham, and Hodge—Tate objects may be extended in a natural way to objects in the category
of B‘%{E -pairs in such a way that an E-linear representation V of G is crystalline (or semi-stable

QF
B|K

theory of Bgr-representations (see [Fon04]), we can show the following result.

or de Rham or Hodge-Tate) if and only if the associated -pair W (V) is. Using Fontaine’s

THEOREM 2.3.2. Let W and W' be non-zero Bﬁf-pajrs. If the B‘(}?{E—pair W oW is

Hodge—Tate, then there is a finite extension F/E and a character p:Gg — F* such that
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G. DI MATTEO

the B%F—pairs W (') and W'(u) are Hodge-Tate. If, moreover, W @ W' is de Rham, then

so are W (u~t) and W' (u).

It is known that every de Rham B‘%{E-pair is potentially semi-stable, due to the results
of [And02, Ber02, Ked04, Meb02]. The properties of (¢, N, Gal(L/K))-modules allow us to
understand the situation when W and W' are both potentially semi-stable.

THEOREM 3.2.1. Let W and W’ be non-zero potentially semi-stable B‘%)(E -pairs. If the BS(E -pair
W @ W' is semi-stable, then there is a finite extension F//E and a character j: Gg — F* such

that the BS{F -pairs W (u~') and W'(u) are semi-stable. If, moreover, W @ W' is crystalline, then
so are W (u~t) and W'(u).

In particular, the above two theorems may be used to deduce analogous results for
p-adic representations (see Corollaries 2.3.3 and 3.2.2).
The same methods used to prove Theorems 2.3.2 and 3.2.1 above may be used to understand

the situation when the image of a B-pair by a Schur functor is crystalline (or semi-stable or
de Rham or Hodge-Tate). An integer partition v = (u1, ..., u,) € N{j with u; > - - > u, of an

integer n gives rise to the Schur functor Schur”(—), which sends B‘@?{E -pairs to B%E—pairs. If
r=1orifu; =uy=---=u,, then we put r(u) =r + 1 and we put r(u) = when this is not the
case. In particular, if u = (n), then r(u) = 2 and the associated Schur functor is Sym”(—) and if

u=(1,...,1), then r(u) =n + 1 and the associated Schur functor is A™(—).

THEOREM 2.4.2. Let W be a B%E-pair such that rank(W) > r(u). If the B%E-pair Schur*(W)

is Hodge—Tate, then there is a finite extension F/E and a character p:Gg — F* such that

the B%F-pair W (u~t) is Hodge-Tate. If, moreover, Schur*(W) is de Rham, then W (u~"') is

de Rham.

THEOREM 3.3.2. Let W be a potentially semi-stable B%E—pair such that rank(W) > r(u). If
the BF?(E -pair Schur" (W) is semi-stable, then there is a finite extension F'/E and a character j :
G — F* such that the B2 -pair W (u~') is semi-stable. If, moreover, Schur®(W) is crystalline,

|K
then so is W (u™1).

The above two theorems may be used to deduce analogous results for p-adic representations
(see Corollaries 2.4.3 and 3.3.3).

In the discussion following Corollary 2.4.3, we show that the bounds on rank(W) in
Theorems 2.4.2 and 3.3.2 are optimal.

It was shown by Skinner (see [Ski09, §2.4.1]) that if V is a p-adic representation and
if Sym?(V) is crystalline, then Wintenberger’s methods of [Win95, Win97] may be applied
to show that there exists a quadratic character p such that V(u) is crystalline. It is likely
that Wintenberger’s methods can be used in the same fashion to give another proof of our
Theorems 2.3.2, 3.2.1, 2.4.2, and 3.3.2.

1. Notation and generalities

1.1 Notation

Let Qp be an algebraic closure of Q, and let C,, be a p-adic completion of Qp. Let Q" denote
the maximal non-ramified extension of Q,, in Qp. If F/Qyp is a finite extension, then we let FGal
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denote the Galois closure of F' in Qp. Let Byr, B:{R, B.is, and By denote Fontaine’s rings as
in [Fon94a] and let B, = BY.". In this note, E/ Q, and K/Q,, denote finite extensions. If B is any

cris
of the above rings or any Galois sub-extension of Q, /K, then Bg will denote the ring B ®q, F
endowed with an action of Gx = Gal(Q,,/K) defined by g(b® e) = g(b) ® e for all g € Gg. If W
is a free Bg-module of finite rank endowed with a semi-linear action of Gk, then we refer to W

as a Bg-representation of Gg.

1.2 The category of B%’(E—pairs

A B%E—pair is a couple W = (W, Wii,) where W, is a B, g-representation of G and W is
a G-stable Bl o-lattice of Wyg := (Bar,£) OB, ) We. We define rank(W) to be the rank of

W, as a Be g-module. If W and W' are B%E—pairs, then W o W' = (W, ®8, , W, WCTR ®B§R .

W't is a B pair. If F/E and L/K are finite extensions and if W is a B®F-pair, then
dR K |K
FopWlg, is a BSF—pair. If V is an E-linear representation of G, then we let W (V)
denote the B@E—pair (Be,p) @£V, (Big p) ®£ V). The properties of B%E—pairs are developed
in [Ber08, BC10, Nak09]. In this note, we consider only tensor products of non-zero B%E—pairs.

1.3 Representations with coefficients in an extension

Let F//Qp be a finite extension such that K D FGal 1f B € {C,, Bqr} or if B is any Galois
sub-extension of Q, /K, then the map

Beq, F~ P B
h:Fﬂap (1)

(0@ f) = (b-h(f))n

(where h runs over the embeddings of F into Qp) is an isomorphism of B-algebras which
commutes with the action of Gg.

In particular, a B p-representation W of G decomposes into a direct sum W = @, F-q, Wi,
as a B-representation of G, where W}, is the sub-B-representation of rankg W), =rankg, W
coming from the h-factor map (b® f)+—b-h(f): B®q, F'— B of the map (1) above. A
Bgr,r-representation W of G is de Rham if and only if the Bqr-representations W}, are de Rham
for each embedding h: F — Qp and a C, p-representation W of G is Hodge-Tate if and only
if the Cp-representations W), are Hodge-Tate for all embeddings h: I’ — Qp.

LEMMA 1.3.1. If W and W' are Bp-representations of G and if W = @, Wy, and W' = @, W},
are their decompositions as described above, then the decomposition of the B p-representation
W @B, W' is given by @h:Fﬂap(Wh XB W}/L)

1.4 Schur functors applied to B-pairs

Let n > 1 be an integer and let n =wu; + - - - + w, be an integer partition such that u; > u;41 > 1
for all 1€ {1,...,r — 1}, which we denote by uw = (uq,...,u,). We represent u by its Young
diagram Y, which is a diagram of n-many boxes arranged into left-justified rows such that the
ith row from the top contains u;-many boxes. We let v; denote the length of the jth column
from the left. Put r(u) =r 41 if Y, is a rectangle (i.e., if u; =---=wu,) and put r(u) =7 if Y,
is not a rectangle.
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If d > 1 is an integer, then a tableau on Y, with values in {1, ..., d} is a labeling of the boxes
of Y, with elements in {1, ..., d} such that the labeling is weakly increasing from left to right
and strongly increasing from top to bottom; we let T = (¢;;) denote a tableau with the integer
ti; €{1,...,d} in the jth column of the ith row of Y,,. If d > r, then there is a tableau on Y,
which has i in each box of the ith row from the top; we refer to this tableau as the standard
tableau, and we denote it by T7. If d > r(u), then there are tableaux T, . .., Ty on Y, with values
in {1,...,d} such that for alli € {1,...,d — 1}, there is an integer j € {1,...,d — 1} such that
T; and Tj41 have the same entries in all but one box, and in this box 7} contains ¢ and 7)1
contains 7 + 1.

Let R be a commutative ring with 1. The partition u gives rise to the Schur functor Schur®(—),
which sends R-modules to R-modules. If M is an R-module, then Schur"(M) may be realized as
a quotient of the R-module A" (M) ®@p --- @ A" (M). If {m1,...,mp} C M and if T = (t;;)
is a tableau on Y, with values in {1,..., k}, then we let mp denote the image of the element
(Mg Ao A, ) @ - @ (muy, ) A - Ay, ) in Schur(M). If M is a free R-module of
finite rank with basis (e, ..., eq), then Schur*(M) is a free R-module with basis (er),, where
T ranges over all tableaux on Y, with values in {1,...,d}.

For example, if M is an R-module, then the Schur module associated to the partition u = (n)
is Sym"(M) and the Schur module associated to the partition u=(1,...,1) is A"(M). The
fundamental properties of tableaux and Schur modules are developed in [Ful97].

If W=(We Wi) is a BE&P_pair, then Schur®(W) = (Schur(W,), Schur*(Wi)) is a

|K
BS{E -pair. If V' is an FE-linear representation of G, then we have an isomorphism of B%E—pairs

Schur*(W (V) = W (Schur®(V)).

LEMMA 1.4.1. Let F/Q, be a finite extension such that K > F%3 and let B € {C,, Bar}. If
W is a Bp-representation of G and if W = @h,Fﬂa W}, is the decomposition of W as a
° P

B-representation of G as in § 1.3, then the decomposition of the B p-representation Schur® (W)
as a B-representation is given by Schur*(W) =@, r_q Schur"(W,).
: P

2. Hodge—Tate tensor products and Schur B-pairs

2.1 Sen’s theory of Cy,-representations

Let x:Gk — Z,; denote the cyclotomic character, Hx = Gal(Q,,/Kx) its kernel, and I'x =
Gal(K«/K). In [Sen80], Sen associates to a C, g-representation W of G a K g-module
Dgen (W), which is free of rank d = rankc, (W) and is endowed with a K..-semi-linear -linear
action of I'gr, together with a K g-linear operator Oy which gives the action of Lie(I'x) on
Dgen (W). The action of I'x commutes with Oy, and therefore the characteristic polynomial Py
of Oy has coefficients in KSOK =K®q, .

Suppose that E contains K2 for the remainder of this subsection. If h: K — F is an
embedding, then we may associate to W the set of its h-weights Wt (W) := {x € Q,| Pl (z) =0}
of roots of P&V counted with multiplicity, where P{{/ is the polynomial of degree d with coefficients
in £ obtained by applying the map (k,e)+— h(k)-e: K ®q, E — E to the coefficients of Pyy.
For example, if C, (i) denotes the C, g-representation associated to the i-fold twist by the
cyclotomic character (i € Z) and if h: K — E is an embedding, then the h-weight of C, g(i) is i.

Sen showed in [Sen80, 2.3] that a C,-representation W of G is Hodge-Tate if and only
if it is semi-simple with integer Sen weights. In particular, a C, g-representation W of G is
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Hodge-Tate if and only if it is semi-simple as a C,-representation of G i and for each embedding
h:E — K, the h-weights of W are in Z.

If all Sen weights of a Cp-representation W are in Z, then [Fon04, Theorem 2.14] implies
that W is a direct sum of indecomposable C,-representations of the form C,[i; d] := C,(i) ®z,
Z,(0; d) where i € Z is a Sen weight of W and Z,(0; d) is the Z,-module of polynomials in log ¢
of degree less than or equal to d with coefficients in Z,. The Cy-representation Cy[i; d] is simple
if and only if d =0.

The Ko p-representation Dgen (W) and its operator Oy satisfy the following properties.

PROPOSITION 2.1.1. Let E and K be finite extensions of Q, and let W and W’ be
C,, g-representations of G .

(i) If W' is a sub-representation of W, then Oy’ = Oy and Oy is the canonical
operator induced by Oy . In particular, if 0 = W' — W — W"” — 0 is an exact sequence
of Cy, p-representations, then Po,, = Po ., Po,,,. If E D KGa then WtM(W) = Wth(W’) L
WtH(W") (counted with multiplicity).

(ii) If F/E is a finite extension, then Dgen(F @ W) =F Q@ Dsen(W) and Opgw is the
F-linearization of Oy, . In particular, if E D K% then the h-weights of W are the same as
those of F @ W.

(iii) We have a natural isomorphism Dsen(W ®c, 4 W') = Dgen (W) O Koo Dgen(W')  of
K p-representations of TI'yy and the Sen operator on Dgen(W Qc, g W' is O ®
Id + Id ®©yy. In particular, if E > K2 then for each embedding h : K — E the h-weights
of W ®c, , W' are the elements s + s', where s is an h-weight of W and s is an h-weight
of W'.

(iv) If L/K is a finite Galois extension, then Dgsen(Wla,)= Loo ®K. Dsen(W) as an
Lo g-representation of I'r,, and Oy, L is the L-linearization of Oy .

COROLLARY 2.1.2. Suppose E D K% and let W be a C, p-representation of Gg. If h: K — E
is an embedding and if ay p, . . . , aq, denote the h-weights of W, then the h-weights of Schur (W)
are the elements ap =}, ; a,; » for any tableau T = (t;;) on the Young diagram of u with values

in{l,...,d}.
LEMMA 2.1.3. Suppose E D> K% let hy,...,h, denote the embeddings of K into E, and
let wy,...,w, be elements of E. There exists a finite Galois extension F/E and a character

p: Gg — F* such that Wt (F(u)) = {w;} fori=1,...,7.

Proof. Let xx : Gk — Oj be the character associated to a Lubin-Tate module over Og. The
h-weight of K (x) is 1 if h is the inclusion of K in F, and 0 otherwise [Col93, Theorem I1.2.1].

If w e E, then w = p "W’ for some w’ € O, and some integer n > 0. Consider the topological
factorization OF = [kx] x (1 +mg). Consider a topological factorization of the Z,-module
L +mg into Z/p*Z x Zy, where a >0 and r = [K : Qp]. Let (xx) denote the projection of x

onto the submodule Zj; in this factorization. If y1, ..., y, are a Z,-basis of Z, and if F/FE is an
extension containing zq, ..., 2, € 1 + mp such that zlpn =y;, then the map p(yy*----- yor) =
zf/‘“ ---- z¢'ar composed with (yg) is a character whose h-weight is p~"w’ = w when h = id
and 0 otherwise. We denote this character by (xx)*.

We may suppose that F' is Galois over K. Given wy, ..., w, € E, the product of characters
[1(h; *(xx))* has h;-weight equal to w; for each 1 <i < r, where h; ' : F — F is the inverse of
an automorphism h; : F — F extending h; : K — E C F. O
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In particular, if W = (W, WJR) is a B%E—pair, then all of the above may be applied to

the C, g-representation W= WCTR / tWJR. We say that a B@E—pair W is Hodge-Tate if the
C, g-representation W is Hodge-Tate. We let Wt(WW) denote the set of all Sen weights associated

to W.

2.2 Fontaine’s theory of Byr-representations

Let W be a Bggr-representation of Gx and let W C W be a G g-stable B:{R—lattice. The quotient
W :=W/tW is a Cp-representation of G, and we may therefore associate to it the set Wt(WV)
of its Sen weights, which is a set of elements of Qp of cardinal dimp_, W which is stable by the
action of G . The following proposition shows that all lattices of W have the same Sen weights
up to integers, so that the set of Sen weights modulo Z of a lattice W is an invariant of W.

PROPOSITION 2.2.1. Let W be a Bgg-representation of Gr. If W and W' are two G -stable
B;fR—]attices of W, then each Sen weight of W' may be written in the form « + i where a is a
Sen weight of W and i € Z.

Proof. Let ¢ >0 be an integer such that the lattice t°VV’ is contained in W and let ¢ > 0 be an
integer such that the lattice t'W is contained in t“W'.

Consider the sequence of G k-stable lattices,
W =W +1EW CHW + 1T IW - CHEW W CEW + W =W,

and let X, denote the lattice tW' + kW (for 0<k<). We have Gg-equivariant
inclusions tXj11 C Xy C Xy for k=0,1,...,¢ —1; we therefore have exact sequences of
C,-representations,

Xk+1/th+1 — Xk—i—l/-)(k —0 and 0— th+1/th — Xk/t.)(k — Xk+1/th+1,

which, taken together with parts (i) and (iii) of Proposition 2.1.1, and since x — tz induces an
isomorphism of (X, 1/X%)(1) onto tX1/tX), implies that Wt(Xy) C Wt (X 1) U (Wt(Xei1) +
1). By recurrence, the Sen weights of Xy = t°W' are all of the form « + i, where « is a Sen weight
of Xy =W and i is an integer. Again by part (iii) of Proposition 2.1.1, the Sen weights of W’
are of the form « + 4 where « is a Sen weight of W. a

If W is a Bgr-representation of G and if W C W is a Gi-stable lattice, we call the image of
the set Wt(W) modulo Z the set of de Rham weights of W, and we denote this set by Wtqg (W).
The set of de Rham weights of W is endowed with an action of G . Fontaine’s theorem [Fon04,
3.19] shows that any Bgg-representation W decomposes along the set of G g-orbits in Wtgg (W),

and that W is de Rham if and only if it is semi-simple with de Rham weights in Z.

If the de Rham weights of W are all in Z, then Fontaine’s theorem [Fon04, 3.19] implies that
W is a direct sum of indecomposable objects of the form Bqr[{0}; d] := Bar ®z, Zy(0; d) where
Z,(0; d) is the Z,-module of polynomials in one variable X = log ¢ of degree less than or equal to
d with coefficients in Z,, such that g(X) = X +log(x(g)) for all g € Gx. The Bgr-representation
Bgr[{0}; d] is simple if and only if d = 0.

2.3 Hodge—Tate and de Rham tensor products of B-pairs

Let W = (W, W(;FR) be a B%E—pair. We say that W is de Rham if the Byr-representation Wyr
of Gk is de Rham. We say that W is Hodge—Tate if the C,, p-representation W = W;R/tW;R of
Gk is Hodge-Tate.
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LEMMA 2.3.1. If W and W' are C,-representations of Gx with Sen weights in Z such that
W ®c, W' is Hodge-Tate, then W and W' are Hodge-Tate.

If W and W' are Bgg-representations of G g with de Rham weights in Z such that W ®@g_, W’
is de Rham, then W and W' are de Rham.

Proof. Let W and W’ be Bgr-representations of Gk with de Rham weights in Z. By Fontaine’s
theorem [Fon04, 3.19], W and W’ admit unique decompositions W ~ @;_, Bqr[{0}; d;]° and
W'~ @;;1 B4r[{0}; d;]eg. The Bgg-representations W and W’ are de Rham if and only if all of
the d; and d; are equal to zero. If W ®@p,, W' is de Rham, then Bqr[{0}; di] ®B,, Bar[{0}; d]]
is de Rham for every 1 <¢<r and 1< j <r’. Suppose, for example, that W is not de Rham,
so that we may assume d; > 0. Let U = Bar[{0}; di] ®B,; Bar[{0}; di], let v1 =1® 1, and let
(v1,v2,...,v7) be a K-basis of Dqr(U) = U%%, where f = (dy +1)(d| +1). If U is de Rham,
then the element X ® 1 €U may be written as a sum X ®1=06(1®1)+ 2{22 biv; with
bi € Bgr for all 1<i< f. Since g(X ®1) =X ®1+1log(x(9))(1 ®1) for all g € Gk, we have
g(b1) — by =log(x(g)) for all g € G. If by € B}y, then g(6(b1)) — 6(b1) =log x(g) for all g € G,
which is impossible since g— log x(g) is a generator of the one-dimensional K-vector space
HY(Gg, Cp). If by € "B \t"'B1; for some h <0, then by = t"' for a unique ¥’ € Bz \tBiy
and x(g)"g(t)) — b € t7"Bl; CtBl;, so that reducing modulo ¢ would imply that 6(V) €
C,(h)9x = {0}, which is a contradiction. We therefore see that W and W' must be de Rham.

The same arguments together with Fontaine’s theorem [Fon04, 2.14] show that if W and W’
are Cp-representations of Gx with Sen weights in Z such that W ®c, W' is Hodge-Tate, then
W and W' are Hodge-Tate. O
THEOREM 2.3.2. Let W and W' be non-zero B%E—pairs. If the B%E—pair WeoW' is
Hodge—Tate, then there is a finite extension F/E and a character p: Gxg — F* such that the
B%F—pairs W (') and W'(p) are Hodge—Tate. If, moreover, W ® W' is de Rham, then so are
W(u~") and W'(p).

Proof. Let W and W' be B%E—pairs and suppose that the B%E—pair W @ W' is Hodge-Tate.
By extending scalars if necessary, we may suppose that E/Q, is finite Galois and contains K,
so that the methods of §2.1 apply.

Let r =rank(W) and let r' =rank(W’). For each embedding h: K — E, let a1 p, ..., arp
denote the h-weights of the C, g-representation W and let @y ps -« - Gy denote the h-weights
of W’. Part (iii) of Proposition 2.1.1 implies that if h: K — E is an embedding, then the
h-weights of W ® W’ are the elements a; 5, + a;}h for 1 <i<rand1<j<r/, which are integers
since the C, g-representation W @ W’ :W®CP,E W’ is Hodge Tate. By Lemma 2.1.3, there
is a finite Galois extension F//E and a character pu:Gg — F* such that for all embeddings
h:K — E CF, the h-weight of the C,, p-representation W (F(u)) is aj p.

We now show that the B%F—pairs W(u=t) and W'(u) are Hodge-Tate. If h: K - ECF
is an embedding, then parts (ii) and (iii) of Proposition 2.1.1 imply that the h-weights
of W(u~') are the integers a;j —ay, (for 1<i<r) and the h-weights of W’(u) are the

integers ay +a;h for 1< j<r'. Since being Hodge Tate is the same as being potentially
HodgeTate, it suffices to show that the B%F—pairs W(uY)|g, and W'(u)|g, are Hodge-

Tate. Let W(pu=1) =@, p_p W(n1), and W (u) = @®,,.p_r W (1), be the decompositions of
C,, r-representations of G as described in §1.3. The C,-representations W (u=1), and W’(u),
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have weights in Z for every h. The isomorphism

W oW~ @ Wk, ®c, Wi,
h:F—F

of Cp-representations of Gp as in Lemma 1.3.1 implies that W(u=1), ®c, W' (n), is
Hodge Tate for each embedding h:F — F. By Lemma 2.3.1, W(u~1), and W’(u), are
Hodge-Tate for each embedding h: F — F, and therefore W (u~1) and W’(u) are Hodge-Tate.

Therefore, the BS(F pairs W (u~!) and W'(u) are Hodge-Tate.

Suppose now that E/Q, is a finite Galois extension and that W and W' are

BS(E -pairs such that the BS(E -pair W ® W' is de Rham. By the above, there is a finite Galois

extension F'/F and a character p: Gx — F* such that the B%F -pairs W (1) and W'(u) are
Hodge-Tate. We now show that W (u~!) and W/(u) are de Rham. It suffices to show that the
restrictions of W(p™!) and W’(u) to G are de Rham. Let W (u V)ar = D). p.p W Har.n
and W (u)ar = @y, p.p W (1)ar,» be the decompositions of Byr-representations of G as in
§1.3. For each embedding h: F — F, the Bqr-representations W (u 1) ar 5 and W' (u)ar,p have
de Rham weights in Z. By Lemma 1.3.1, the Bgg-representation W(/,L_l)dR,h ®Byr W' (11)ar,n
is de Rham for each embedding h: F' — F, and therefore so are W (u™)ar,, and W (p)ar.n by

Lemma 2.3.1. Therefore, the Bﬁ’f—pairs W(p=t) and W'(u) are de Rham. O

COROLLARY 2.3.3. Let E/Q, and K/Q, be finite extensions, and let V and V' be non-zero
E-linear representations of Gg. If V. ®p V' is Hodge-Tate, then there is a finite extension F/E
and a character p : Gx — F* such that V (u=1) and V'(u1) are Hodge—Tate. If, moreover, V @p V'
is de Rham, then so are V(u~') and V'(1).

2.4 Hodge—Tate and de Rham Schur B-pairs

In what follows, let n > 1 be an integer and let u= (uy,...,u,) denote an integer partition
n=uy+---+u (u; =ujp1 =1)of n. ifu; = = u,, put r(u) =r + 1. Otherwise, put r(u) = r.

LEMMA 2.4.1. IfW is a Cp-representation of G having Sen weights in Z such that dimc, (W) >
r(u) and Schur*(W) is Hodge-Tate, then W is Hodge—Tate.

If W is a Bqr-representation of G having de Rham weights in Z such that dimp, (W) > r(u)
and Schur® (W) is de Rham, then W is de Rham.

Proof. Let W be a Bggr-representation of Gg having de Rham weights in Z such that
dimp,, (W) = r(u). If W is not de Rham, then Fontaine’s theorem [Fon04, 3.19] gives a
decomposition W = Bgr[{0}; d] ® W' for some d > 0, so that

Schur" (W) ~ @(Schur’\(BdR[{O}; d]) @Byx Schur*(W'))®u
A

as a Bgr-representation of G g, where c&‘} uZ 0 denotes the Littlewood—Richardson number. There
are A and yp such that ¢} , and Schur(Bar[{0}; d]) ®B,,, Schur®(W') are non-zero, and such
that d +1 > r(\). This can be seen by using the fact that ¢y, is equal to the number of pairs
of tableaux T of shape A and U of shape p such that the product tableau T - U is equal to the
standard tableau 7T} on the Young diagram of u. Details on this combinatorial argument may be
found in the author’s forthcoming thesis.

The Bggr-representations Schur*(Bqr[{0}; d]) and Schur®(W’) have de Rham weights in Z
by Lemma 2.1.1. If Schur(W) is de Rham, then so is Schur*(Bgr[{0}; d]) ®B,;, Schurt(W’)
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and Lemma 2.3.1 implies that Schur*(Bggr[{0}; d]) is de Rham. Let (1, X, X?,..., X%) denote
the standard Bggr-basis of Bgr[{0};d]. If T} is the standard tableau defined in §1.4, then
the element ep, € Schur®(Bqgr[{0}; d]) is such that g(ep,) =ep, for all g€ Gg. Let T' be the
tableau with values in {1,...,d+ 1} which is obtained from T) by adding 1 to the value in
the bottom-most cell of the right-most column of Y); this tableau T" exists since d + 1 > r(\).
A calculation shows that g(ers) = e + v log x(g)er,, where v is the length of the right-most
column of Yj. If Schur*(Bgg[{0};d]) is de Rham, then it admits a basis (er, e2,...,es) of
elements such that, foralli=2,..., f, g(e;) =e; forall g € Gg. If by, ..., by € Bgr are elements
such that eqr = bier + ) ;-5 biei, then g(b1) — b1 = v log x(g) for all g € Gk, which is impossible.
Therefore, W and W’ must be de Rham.

One can prove the claim for C,-representations by using Fontaine’s theorem [Fon04, 2.14]
and applying the same arguments. O

THEOREM 2.4.2. Let W be a B‘%{ -pair such that rank(W') > r(u). If the B%E—pair Schur" (W)
is Hodge—Tate, then there is a finite extension F/E and a character p:Gg — F* such that
the B%}F—pair W (=t is Hodge-Tate. If, moreover, Schur*(W) is de Rham, then W (u~!) is
de Rham.

Proof. Let W be a B‘K -pair such that d =rank(W) > r(u) and suppose that Schur"(W) is
Hodge Tate. By extending scalars if necessary, we may suppose that £/Q, is finite Galois and
contains K.

If h: K— FE is an embedding, then let a;4,...,aq), denote the h-weights of W. By
Corollary 2.1.2, the h-weights of the C, g-representation Schur"(W)= Schur*(W) are the

elements of the form arj =) ay, n for any tableau T' = (t;;) with values in {1,...,d} on
the Young diagram of u. Since Schur"(W) is Hodge-Tate, the elements arj are in Z. Since
d =rank(W) > r(u), considering the tableaux Ti,...,T; in §1.4 allows us to conclude that

ajp, —a1p €7Z for all 1 <i<d. By Lemma 2.1.3, there is a finite Galois extension F/E and
a character p:Gx — F* such that the BS{ -pair W(F(p)) has ayp as its h-weight for each
embedding h: K — E C F.

We now show that the B@F pair W (u~1) is HodgefTate It suffices to show that the restriction
of W(u™') to Gp are Hodge Tate. Let W (1) = @,. ., W(u~1), be the decomposition as a
C,-representation of Gr as described in §1.3. The C,-representation W (u~1), has Sen weights
in Z for each embedding h: F — F. By Lemma 1.4.1, the C,-representation Schur"(W(p=1),)
of Gr is Hodge-Tate for each embedding h: F — F. Since dimgc, W (u=1), = rank(W) > r(u),
Lemma 2.4.1 implies that W (p—1) 5 is Hodge-Tate for each embedding h : F' — F'. The B‘ -pair

W (™) is therefore Hodge Tate.

Suppose now that W is a BIK -pair such that rank(W)>r(u) and Schur*(W) is

de Rham. There is a finite Galois extension F//E and a character p: Gxg — F* such that the
B%E pair W (u~!) is Hodge-Tate. We now show that W (u~!) is de Rham. Let W(u~!)qr

D.r_r W (1 )ar,n be the decomposition as a Bgr-representation of Gp as described in
§1.3. The Bggr-representation W(,ufl)dRJl has de Rham weights in Z for each embedding
h:F — F. By Lemma 1.4.1, SChllI"u(W(,U,_l)dR,h) is a de Rham Bgg-representation of G for
each embedding h: F — F and therefore W (u~ )dR n is de Rham for each embedding h since

dimp,, W(p 1) ar,n = rank(W) > 7(u). Therefore, the B‘%{ -pair W(u~1t) is de Rham. O
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COROLLARY 2.4.3. Let n>1 be an integer, let u be a partition of n, and let V be an
E-linear representation of Gg such that dimg(V') > r(u). If Schur"(V) is Hodge-Tate, then
there is a finite extension F//E and a character p: Gx — F* such that V(u~!) is Hodge—Tate.
If, moreover, Schur" (V') is de Rham, then V is de Rham.

We now show that the bound on rank(W) in Theorem 2.4.2 is optimal. If W is a Bl%’(E -pair
such that rank(W) < r(u), then Schur*(W) is of rank 1 if u; =---=wu, and Schur*(W)=0
otherwise. In the former case, rank(W) =7 and Schur*(W) = )._, det(W). Let V' denote a
two-dimensional Q-vector space endowed with an action of Gq, such that g € Gq, acts on
a basis £ = (e1, e2) by the matrix

((1] logp(lx(g))>

so that V' is not Hodge-Tate since C, ®q, V = C,[{0}; 1], but Gq, acts trivially on A?V. There
is no character 1 : Gq, — E* such that V(p~1) is HodgeTate; such a character would necessarily
have weights in Z, and Lemma 2.4.1 would imply that V itself is Hodge—Tate.

3. Semi-stable tensor products and Schur B-pairs

3.1 Semi-stable B-pairs

Let W = (W, WJR) be a B%E—pair. We say that W is crystalline if the Bs-representation
(Baris,E) ®B, 5 We of Gg is trivial. Similarly, we say that W is semi-stable if the
Bgi-representation (Bgt ) @B, p We of G is trivial. We say that W is potentially crystalline
(or potentially semi-stable) if there is a finite extension L/K such that the BEE—pair Wla,

is crystalline (or semi-stable). Note that if V' is an E-linear representation of Gk, then V is

crystalline (or semi-stable) if and only if the BS(E -pair W (V') is crystalline (or semi-stable).

Let L/K be a finite Galois extension and let Ly = LN Q) fWisa B‘%{E -pair which is

semi-stable when restricted to G, then Dy, (W) = (Bst,r @B, 5 Wo)r is a free Ly, g-module
such that rankz, ., (Dst,r.(W)) = rank(W), and it is endowed with an injective additive self-map ¢
that is E-linear and semi-linear for the absolute Frobenius automorphism o on Lo, an Ly g-linear
nilpotent endomorphism N such that Ny =ppN, and an E-linear and Lg-semi-linear action of
Gal(L/K) which commutes with ¢ and N. The following follows from [Fon94b, 4.2.6, 5.1.5].

ProrosiTIiON 3.1.1. Let W be a potentially semi-stable BFI@{E -pair, semi-stable when restricted

to G, where L/K is finite and Galois. The BS(E -pair W' is semi-stable if and only if the inertia
group Iy, /i acts trivially on Dy (W), and W is crystalline if and only if it is semi-stable and

N =0 on Dy 1(W).

3.2 Semi-stable tensor products

THEOREM 3.2.1. Let W and W’ be non-zero potentially semi-stable BS(E -pairs. If the B%E -pair
W @ W' is semi-stable, then there is a finite extension F//E and a character j: Gx — F* such

that the BF?{F -pairs W (u~1) and W'(u) are semi-stable. If, moreover, W @ W' is crystalline, then

so are W (u~t) and W' (u).
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Proof. Let L/K be a finite Galois extension such that W and W' are semi-stable as BEE -pairs.
By [Fon94b, 5.1.7], we have an isomorphism of E -(¢, N, Gal(L/K))-modules:

Dst,L(W ® W,) ‘: Dst,L(W) ®L07E Dst,L(W,)-

Let € C Dg,,(W) and &' C Dy, ,(W') be Lo g-bases, so that the set £ ® &’ of elementary
tensors is a basis of Dg (W @ W'). For all g € Gk, let Uy =Mat(g|€) € GL4(Lo,r) and let
U, = Mat(g|€’) € GLa (Lo, g). By Proposition 3.1.1, I} /i acts trivially on Dy (W @ W’), and we
have Mat(g|€ ® £') = U, ® U, =1d for all g € I} /i, so that U, = n, Id and Uy = ng_l Id with n, €
(Lo,r)*. The relation ¢g = gy on Dy (W) translates to the matrix relation Mat(¢|&) - o(Uy) =
Uy - g(Mat(g|€)) for all g € Gal(L/K), so that for all g € I1, /), we have ny € (Lo,p)°~' = E and
therefore 7y € £

We now show that there is a finite extension F//E such that the character n: Iy /x — E*
can be extended to a character p: Gal(L/K) — F*. Let w € Gal(L/K) be such that its residual
image generates the cyclic group Gal(ky /kk). If g € Gal(L/K), then we can write g = g'w’ for
a unique ¢’ € Ik and unique 0 <i < f — 1, where f = [kp : kg]. Let § EQp be an fth root of
n(w’). Since n(wg'w™) =n(g') for all ¢’ € It K, putting F = E(£) and p(g) :=1(g)¢" defines a
homomorphism u: Gg — F*.

The Bﬁ(p—pairs W (') and W'(u) are semi-stable, by Proposition 3.1.1. If, moreover,
W @ W' is crystalline, then the BS(F -pair W (1) ®@ W'(u) is crystalline as well and by the
isomorphism of F' -(¢, N, Gal(L/K))-modules recalled above, we have

Dy, (W (™) @ W'(1)) & Dse, . (W(1™)) @1 Dst,L(W ().

The monodromy operator N ® Id + Id @ N’ is zero, and therefore the matrices of N and N’ are
scalar multiples of the identity. Since N and N’ are nilpotent, these scalars are necessarily zero
since Lo p is reduced, and thus W (u~1) and W’(u) are crystalline by Proposition 3.1.1. O

COROLLARY 3.2.2. Let V and V' be non-zero potentially semi-stable E-linear representations of
Gg. If V. ®p V' is semi-stable, then there is a finite extension F/E and a character . : Gg — F*
such that the F-linear representations V (u~1) and V'(u1) are semi-stable. If, moreover, V @p V'
is crystalline, then so are V(u=1) and V'(u).

3.3 Semi-stable Schur B-pairs

In this subsection, n > 1 is an integer and u = (uq, ..., u,) denotes an integer partition n =
uy + -+ -+ u, such that u; >wu;pp > 1forallee {1,...,r—1}.

LEMMA 3.3.1. Let L/K be a finite Galois extension and let D be an E -(¢, N, Gal(L/K))-
module such that rank(D) > r(u). If I,/ acts trivially on Schur" (D), then Iy i acts on D via
a character 1) : Iy g — E*. If N =0 on Schur*(D), then N =0 on D.

Proof. By extending scalars if necessary, we may suppose that £ O L. We have an isomorphism
of rings, Lo g ﬁ@h: Lo—Q, E on which Ik acts trivially on both sides. We therefore see
that D decomposes as an FE-linear representation of I, into D=~p, D, where Dy is
the E-linear representation of Iy x coming from the h-factor map (A, e)+— h(Ne: Log — E.
The corresponding decomposition of Schur*(D) is given by Schur"(D) ~ &, Schur*(D},), and
by assumption Iy, acts trivially on each FE-linear representation Schur*(Dy,). Let I L/K
act Qp—linearly on Dy, :Qp ®@p Dp. Let g€ Ir k. Since Ip i is finite, there is a Qp—basis
&l = (eih, - eg’h) of D;, and elements )v‘ih, e )\fl’h €Q, such that g(e‘zh) = )\‘Zhef,h for
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all i e {1,...,d}. Consider the Q,-basis of Schur"(D},) consisting of elements e%h, where T'
ranges over all tableaux on Y, with values in {1,...,d}. One has g(e} ;)= \} e, where
A = Hle(/\ih)mT(i) and mr (i) denotes the number of times that i appears in the tableau T
Since dimap Dy, =rank(D) > r(u), one sees that )\ff’h = )‘g,h =...= )\g’h = A} by considering
the tableaux Ti,...,T; as in §1.4, and therefore g(z) = Az for all z € Dy,. Note that we
necessarily have )\Z € E. We therefore see that for each embedding h: Lo — F, Ik acts on Dy,
by a character ny, : I1,/x — E*, which translates to saying that Ik acts on D by a character
n:1Ipx — (Log)*. Since pg = gp forallg € I i and (Lo g)°~" = E, wesee that 1) : I jjx — E*.

Moreover, since N is an Lo g-linear map, the factors in the decomposition D ~ &, D;, are
N-stable. We let N again denote the FE-linear nilpotent map induced on Dj. Since N =0 on
Schur (D) = @, Schur(Dy,), we see that N = 0 on Schur®(Dj,) for each embedding h : Ly — Q.
Let (e’lyh, cey e&}h) denote a Jordan canonical basis for N on Dj,. Suppose that N # 0, so that
we may suppose N (6/27 ) = 6/1, p- If T'is the tableau on Y, in which i appears in all boxes of the
1th row, except in the right-most column where ¢ + 1 appears, then a calculation shows that

N(er) = er p, where T’ is another tableau, therefore contradicting the fact that N =0 on Dj,.
We therefore see that N =0 on each Dy, so that N =0 on D and thus N =0 on D. O

THEOREM 3.3.2. Let W be a potentially semi-stable B%E—pair such that rank(W) > r(u). If

the BF%E -pair Schur" (W) is semi-stable, then there is a finite extension F'/E and a character y :
Gy — F* such that the BE -pair W (u~") is semi-stable. If, moreover, Schur®(W) is crystalline,

|K
then so is W (u~1).

Proof. Let L/K be a finite Galois extension such that W is semi-stable as a BEE -pair, so that
[Fon94b, 5.1.7] implies that we have an isomorphism of F -(¢, N, Gal(L/K))-modules

Schur"(Dgt,1,(W)) = Dy 1, (Schur(W)).

If Schur"(W) is semi-stable, then Proposition 3.1.1 implies that I}, acts trivially on
Schur*(Dst,,(W)). Lemma 3.3.1 implies that Ir/x acts on Dy (W) via a character n: I,/ —
E*. By the same reasoning as in the proof Theorem 3.2.1, there is a finite extension F//E and a
character p: Gal(L/K) — F* such that u|r, . = n. By Proposition 3.1.1, W (u~1) is semi-stable.

If Schur" (W) is crystalline, then N = 0 on Schur"(Dg;, 1,(W)). Lemma 3.3.1 implies that N =0
on Dy (W), which implies the same for Dy (W (71)), so that W (u~1) is crystalline. O

Theorem 3.3.2 implies the following.

COROLLARY 3.3.3. Let V be a potentially semi-stable E-linear representation of G g such that
dimp V > r(u). If the E-linear representation Schur(V) of Gk is semi-stable, then there is a
finite extension F'/E and a character ji: G — F* such that the F-linear representation V(1)
of Gk is semi-stable. If, moreover, Schur*(V) is crystalline, then so is V (u™1).
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