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Asymptotic homogenisation is considered for problems with integral constraints imposed on a slowly varying
microstructure; an insulator with an array of perfectly dielectric inclusions of slowly varying size serves as a
paradigm. Although it is well-known how to handle each of these effects (integral constraints, slowly varying
microstructure) independently within multiple scales analysis, additional care is needed when they are combined.
Using the flux transport theorem, the multiple scales form of an integral constraint on a slowly varying domain is
identified. The proposed form is applied to obtain a homogenised model for the electric potential in a dielectric
composite, where the microstructure slowly varies and the integral constraint arises due to a statement of charge
conservation. A comparison with multiple scales analysis of the problem with established approaches provides
validation that the proposed form results in the correct homogenised model.

1. Introduction
Homogenisation via multiscale asymptotics is one coarse-graining method that can be used to derive
the effective properties of composite media [14]. Typically used for periodic microstructure, example
applications of the technique include modelling flow in porous media, wave propagation in poroelastic
materials, filtration and decontamination processes [4, 7, 14, 15].

The result of the homogenisation process is the reduction of a problem posed on a complicated
domain, or with rapidly varying coefficients, to two simpler problems: one ‘cell problem’ describing
the microscale variation; and a second ‘homogenised model’ describing the macroscale variation of
variables across the whole domain. The technique can be extended to problems with a slowly varying
geometry, albeit at the cost of having a cell problem which varies with the macroscale [8]. A mapping
depending on the slow spatial scale can be applied to transform a heterogeneous microstructure to an
exactly periodic reference configuration [13, 19]. Standard homogenisation can be performed in this
reference configuration before inverting the mapping to obtain the homogenised equations featuring
spatially dependent coefficients which reflect microstructural variation. A similar approach can be used
to treat microstructures with temporal and spatiotemporal variations. Examples of problems using a
prescribed mapping include [3, 6, 21] and the mapping can be coupled to the macroscale variables [18].
When the domain is locally periodic and the unit cell has fixed size, transformation to a reference con-
figuration is no longer required as the slow variable features as a parameter in the microscale problem
[8]. Examples of this approach are found in [7, 11, 20].

When considering problems with a slowly varying domain, care must be taken in converting
Neumann and Robin boundary conditions on microscopic inclusions into multiple scales form.
Typically, a level set function is introduced to define the boundary of the inclusion, with the expan-
sion of the normal to the boundary derived by writing the gradient of the level set function in multiple
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scales form [3, 11, 21]. An alternative approach is to treat the normal as defining the microstructure so
that it does not need to be expanded [12, 16, 17]. However, in that case, the position of the boundary
itself should be expanded, to ensure that the asymptotic expansions are self-consistent. Many authors
do not do this expansion, resulting in homogenised equations which are incorrect. We address this prob-
lem in an Appendix, where we attempt to clear up some of the confusion regarding these contrasting
approaches.

A second extension of the standard method allows for homogenisation of problems featuring integral
constraints [5]. These constraints generally appear as conservation conditions, for example, of charge
or momentum, with applications in modelling nematic crystals, radiation in porous media and bubbly
liquids [2, 5, 22]. Unlike standard multiple scales, where the macroscale coordinate can be assumed to
take a constant value within a given unit cell, it is crucial to account for the small variation in macroscale
coordinate along the integration path, since this variation causes a change in flux which affects the
parameters in the homogenised model.

In the present work, we aim to combine these two extensions, developing an understanding of how to
write integral constraints on a slowly varying domain in multiple scales form. Although this seems like
a routine task, we will see that in fact that the answer is not obvious a priori, and the ‘obvious’ approach
is incorrect. We use as a paradigm the problem of the electric potential in an insulator interspersed with
a periodic array of perfectly dielectric inclusions of slowly varying size. This problem has the advantage
that the perfectly dielectric limit can also be taken after a standard homogenisation procedure so that we
know what the homogenised model should be. Not all integral constraint problems can be recast in this
way.

2. Paradigm problem
We consider the electric potential φ in a dielectric material, which satisfies Poisson’s equation

∇ · (ε∇φ) = −ρ, (2.1)

where ε is the permittivity and ρ is the charge density (which we suppose is given). We consider a
material composite comprising an insulator �ex of constant permittivity εex with an array of inclusions
�in of constant permittivity εin. At the boundary between the two regions

[n · (ε∇φ)]ex
in = 0, (2.2)

[φ]ex
in = 0, (2.3)

where n is the (outward-facing) normal to the boundary of the inclusion, and [ · ]ex
in represents the jump in

the enclosed quantity across the interface. We suppose that the centres of the inclusions are arranged on
a regular square lattice1 of side δ, and that the shape of each inclusion varies slowly with (macroscopic)
position.2 In figure 1, we illustrate the set-up using circular inclusions of slowly varying radius, but our
analysis will be valid for inclusions of any slowly varying shape. We aim to find effective (homogenised)
equations in the limit δ → 0.

In the limit εin → ∞, the inclusions are perfectly dielectric, and the model becomes

∇ · (εex∇φ) = −ρ in �ex, (2.4)
∇φ = 0 in �in, (2.5)

with boundary condition

[φ]ex
in = 0. (2.6)

1Although we use two-dimensional terminology and illustrations, our analysis is of course general and applies in three
dimensions.

2We choose a square unit cell for ease of exposition; it is straightforward to extend our analysis to arbitrary unit cells.
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Figure 1. An example of a 2D composite. Perfectly dielectric inclusions shown in grey lie on a
periodic array within an insulator. The inclusions have a radius a(x) which varies slowly across
the domain. In this example a(x) = 0.3 + 0.1(x1 + x2) so that the boundaries of the inclusions are
|(x1, x2) − δ(n, m)| = δ(0.3 + 0.1x1 + 0.1x2), for n, m ∈Z.

The potential φ is constant on each inclusion but may take different values on different inclusions. To
close the problem, we need to integrate (2.1) over each inclusion and use (2.2) to give the integral
constraint ∫

∂�in

εex n · ∇φ|ex dS = −
∫

�in

ρ dx, (2.7)

where �in is an individual inclusion and |ex denotes the evaluation of the integrand on the exterior side
of the inclusion boundary.

We will approach the limit εin → ∞ in two different ways. We will first homogenise (2.1)–(2.3)
following [3], before taking the limit εin → ∞ in the homogenised model. We will then homogenise
(2.4)–(2.7) directly, which will require us to determine how to cast (2.7) in multiple-scales form when
the domain �in is a function of (slow) position.

2.1 Standard multiple scales

We introduce the fast scale X = x/δ, and suppose that φ = φ(x, X), treating x and X as independent,
with derivatives transforming according to the chain rule

∇ → ∇x + 1

δ
∇X. (2.8)

We remove the indeterminacy that this introduces by imposing that φ is 1-periodic in X. To describe
the inclusions we introduce the function h(x, X), periodic in X with period 1 in each component, such
that the level set h(x, X) = 0 defines the boundary of the inclusions. For example, for the slowly varying
circular inclusions in figure 1, we may take

h(x, X) = |X| − a(x), (2.9)

for X ∈ [−1/2, 1/2]d where d is the dimension, and then extend this function to be periodic in X with
period 1 in each component.3

3In fact, (2.9) defines an inclusion that is elliptical with eccentricity of O(δ). A true circular inclusion would require a correction
term in h of O(δ). We do not expect such small perturbations of the shape of the inclusions to affect the leading-order homogenised
problem. We verify that this is the case in Appendix B.
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The normal to the inclusion can then be written in multiple scales form as

n = ∇h

|∇h| = ∇Xh + δ∇xh

|∇Xh + δ∇xh| = n0 + δn1 + O(δ2), (2.10)

where

n0 = ∇Xh

|∇Xh| , n1 = ∇xh

|∇Xh| − (∇xh · ∇Xh)∇Xh

|∇Xh|3
(2.11)

(see Appendix C). Many authors fail to expand the normal in powers of δ in this way, often leading to
incorrect final homogenised equations [4, 16, 17]. Since this question is tangential to our main question
(that of how to handle integral constraints), we defer a more thorough discussion to Appendix A.

Within a given unit cell D we denote the region occupied by the inclusion as Din(x) and that occupied
by the insulator as Dex(x), that is

Din = {X ∈ D : h(x, X) < 0}, Dex = {X ∈ D : h(x, X) > 0}.
Substituting (2.8) and (2.10) into (2.1)–(2.3), expanding

φ ∼ φ0(x, X) + δφ1(x, X) + · · · , (2.12)

and equating coefficients of powers of δ, we find that at leading-order

∇X · (ε∇Xφ0) = 0, (2.13)
[n0 · (ε∇Xφ0)]

ex
in = 0, (2.14)

[φ0]
ex
in = 0, (2.15)

with φ0 1-periodic in X. Thus, φ0 is constant on the fast scale, so that φ0 = φ0(x). At next order, we
find

∇X · (ε∇Xφ1) = 0, (2.16)
[n0 · (ε(∇Xφ1 + ∇xφ0))]

ex
in = 0, (2.17)

[φ1]
ex
in = 0, (2.18)

with φ1 1-periodic in X, where we have used the fast scale independence of the leading-order potential.
The solution is

φ1 = � · ∇xφ0 + φ1, (2.19)

where φ1 is independent of X and � satisfies the cell problem

∇X · (ε∇X�) = 0, (2.20)
[n0 · (ε(∇X� + I))]ex

in = 0, (2.21)
[�]ex

in = 0, (2.22)
with � 1-periodic in X, where I is the identity matrix, and uniqueness is achieved by imposing zero
mean, for example. Finally, equating coefficients of δ0, we find

∇X · (ε(∇Xφ2 + ∇xφ1)) + ∇x · (ε(∇Xφ1 + ∇xφ0)) = −ρ, (2.23)
[n0 · (ε(∇Xφ2 + ∇xφ1))]

ex
in + [n1 · (ε(∇Xφ1 + ∇xφ0))]

ex
in = 0, (2.24)

[φ2]
ex
in = 0. (2.25)

Integrating (2.23) over the unit cell D, applying the divergence theorem to terms involving the fast
divergence, and using (2.24) we find∫

∂Dex

εex (∇Xφ1 + ∇xφ0) · n1dSX −
∫

∂Din

εin (∇Xφ1 + ∇xφ0) · n1dSX

+
∫

Dex

∇x · (εex(∇Xφ1 + ∇xφ0)) dX +
∫

Din

∇x · (εin(∇Xφ1 + ∇xφ0)) dX = −ρeff, (2.26)
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where ∂Din and ∂Dex denote the interior and exterior of the inclusion boundary in the unit cell
respectively, and the effective charge is given by

ρeff =
∫

D

ρ dX. (2.27)

Taking the slow divergence outside the integral using the Reynolds transport theorem, we find∫
∂Dex

εex (∇Xφ1 + ∇xφ0) · n1 dSX −
∫

∂Din

εin (∇Xφ1 + ∇xφ0) · n1 dSX

+
∫

∂Dex

εex (∇Xφ1 + ∇xφ0) · V · n0 dSX −
∫

∂Din

εin (∇Xφ1 + ∇xφ0) · V · n0 dSX

+ ∇x ·
∫

Dex

(εex(∇Xφ1 + ∇xφ0)) dX + ∇x ·
∫

Din

(εin(∇Xφ1 + ∇xφ0)) dX = −ρeff, (2.28)

where the matrix V is the ‘velocity’ of the boundary, i.e. the derivative of position on the boundary with
respect to x. Differentiating the equation h = 0 with respect to x gives

V · ∇Xh + ∇xh = 0,

so that

V · n0 = − ∇xh

|∇Xh| , V · n0 + n1 = − (∇xh · ∇Xh)∇Xh

|∇Xh|3
= − (∇xh · ∇Xh)

|∇Xh|2
n0. (2.29)

Thus, using (2.17), the surface integrals cancel in (2.28), leaving

∇x ·
∫

Dex

(εex(∇Xφ1 + ∇xφ0)) dX + ∇x ·
∫

Din

(εin(∇Xφ1 + ∇xφ0)) dX = −ρeff. (2.30)

Substituting (2.19), gives, finally, the homogenised problem

∇x · (εeff∇xφ0) = −ρeff, (2.31)

where the effective permittivity εeff is given by

εeff =
∫

D

ε (I + ∇X�) dX. (2.32)

2.1.1 The limit εin → ∞
As εin → ∞ in the cell problem (2.20)–(2.22) we find

∇2
X� = 0 in D, (2.33)

n0 · (∇X� + I) = 0 on ∂Din, (2.34)

[�]ex
in = 0. (2.35)

Thus � = −X+ constant in Din, where the constant must be chosen so that � has zero mean. In the
effective permittivity (2.32) this gives zero times infinity in the inclusion, so we must manipulate this
expression into something more suitable before we take the limit. Switching to index notation, using
(2.21), the divergence theorem, and (2.33), we find
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εeff ij =
∫

D

εδij dX +
∫

D

ε
∂

∂Xk

(
Xj

∂�i

∂Xk

)
dX

=
∫

Din

εinδij dX +
∫

Dex

εexδij dX +
∫

∂Din

εinXj

∂�i

∂Xk

nk dSX

−
∫

∂Dex

εexXj

∂�i

∂Xk

nk dSX +
∫

∂D

εexXj

∂�i

∂Xk

nk dSX

=
∫

Din

εinδij dX +
∫

Dex

εexδij dX −
∫

∂Din

εinXjni dSX

+
∫

∂Dex

εexXjni dSX +
∫

∂D

εexXj

∂�i

∂Xk

nk dSX

= εex

(
δij +

∫
∂D

Xj

∂�i

∂Xk

nk dSX

)
, (2.36)

where ∂D is the boundary of D, i.e. the boundary of the unit cell on which periodic conditions were
imposed. We can now safely take the limit εin → ∞.

2.2 Multiple scales with integral constraints

We now apply the method of multiple scales directly to the problem (2.4)–(2.7), hoping to retrieve
(2.31) with (2.36). Substituting (2.8) into (2.4)–(2.6), expanding as in (2.12), and equating coefficients
of powers of δ we find that at leading-order

∇X · (εex∇Xφ0) = 0 in Dex, (2.37)
∇Xφ0 = 0 in Din, (2.38)
[φ0]

ex
in = 0, (2.39)

with φ0 1-periodic in X. Thus, as before, φ0 = φ0(x). At first-order, we find

∇X · (εex∇Xφ1) = 0 in Dex, (2.40)

∇Xφ1 + ∇xφ0 = 0 in Din, (2.41)

[φ1]
ex
in = 0, (2.42)

with φ1 1-periodic in X. As in section 2.1, the solution is φ1 = � · ∇xφ0 + φ1 where φ1 is independent
of X and

∇X · (εex∇X�) = 0 in Dex, (2.43)

∇X� + I = 0 in Din, (2.44)

[�]ex
in = 0, (2.45)

with � 1-periodic in X, and we impose ∫
D

� dX = 0. (2.46)

Equating coefficients of δ0 we find

∇X · (εex(∇Xφ2 + ∇xφ1)) + ∇x · (εex(∇Xφ1 + ∇xφ0)) = −ρ in Dex, (2.47)

∇Xφ2 + ∇xφ1 = 0 in Din, (2.48)

[φ2]
ex
in = 0. (2.49)
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Integrating (2.47) over the exterior region and applying the divergence theorem to the first term gives

−
∫

∂Dex

εex(∇Xφ2 + ∇xφ1) · n0 dSX +
∫

Dex

∇x · (εex(∇Xφ1 + ∇xφ0)) dX = −
∫

Dex

ρ dX, (2.50)

where the integral over the exterior boundary of the unit cell ∂D vanishes due to periodicity. To evaluate
the surface integral in (2.50), we need to use the integral constraint (2.7).

2.2.1 Dealing with the integral
As discussed in [5], it seems natural to write (2.7) in multiple scales form as

δ2

∫
∂�in

εex n ·
(

∇xφ + 1

δ
∇Xφ

)
dSX = −δ3

∫
�in

ρ dX,

but this is incorrect, as it neglects the small variation in the slow variable x around the boundary of the
inclusion, which turns out to be crucial. Writing Q = ∇φ, the approach taken in [5] was to recognise that
on the interface x = x̂ + δX, where x̂ is the position of the centre of the unit cell and X ∈ [−1/2, 1/2]d,
expanding

Q(x, X) = Q(x̂ + δX, X) = Q(x̂, X) + δX · ∇xQ(x̂, X) + · · · (2.51)

in the integrand of (2.7). But how should we proceed when the domain and the normal, as well as the
integrand, depend on the slow variable x?

A plausible but incorrect approach

A plausible way to write the integral constraint on a slowly varying domain in multiple scales form
seems to be to combine the normal expansion (2.10) with the expansion of the integrand given in (2.51)
by writing∫

∂�in

Q · n dS → δ2

∫
∂�in

(Q0 + δ(Q1 + X · ∇xQ0) + . . .) · (n0 + δn1 + . . . ) dSX. (2.52)

This is the approach taken in [2, 9] (on much more complicated problems).4 However, it is not correct,
as we now highlight. Writing (2.47) in terms of the flux Q, and integrating over the exterior region, we
find ∫

Dex

∇X · Q1 dX +
∫

Dex

∇x · Q0 dX = −
∫

Dex

ρ dX. (2.53)

Applying the divergence theorem to the first term and using the integral constraint, we find∫
∂Dex

Q0 · n1 dSX +
∫

∂Dex

X · ∇xQ0 · n0 dSX +
∫

Dex

∇x · Q0 dX = −
∫

Dex

ρ dX −
∫

Din

ρ dX. (2.54)

Applying the flux transport theorem to the second term and Reynolds transport theorem to the final term
of (2.54), we obtain ∫

∂Dex

Q0 · n1 dSX + ∇x · (εeff∇xφ0) = −ρeff, (2.55)

after simplification, where we have defined the effective charge as in (2.27). In comparison to (2.31), we
have an additional boundary integral, which should not be there.

The correct approach

In identifying the multiple scales form of integral constraints on a periodic domain, the integrand
was expanded about a fixed slow position as in (2.51). When the microstructure slowly varies, we must

4It would have led to an incorrect equation in [9], but a compensating error in application of a transport theorem leads the rogue
terms to cancel. In [2], the algebraic details are not given.
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Ωδ(x̂)

Γ(x̂)

Γ(x̂ + δX)

∂Ω(x̂)

∂Ω(x̂ + δX)

n

n

Figure 2. Schematic of the open surface ∂� changing with slow coordinate.

also expand the boundary position about a fixed slow position. Thus, given a slowly varying surface ∂�,
we look to expand ∫

∂�

Q · n dS = δ2

∫
∂�(x̂+δX)

Q(x̂ + δX, X) · n dSX (2.56)

For generality (and for ease of illustration in figure 2), we allow the surface ∂� to be open, though it
will usually be the boundary of an inclusion. Expanding the integrand as in [5], we find∫

∂�

Q · n dS = δ2

∫
∂�(x̂+δX)

(
Q(x̂, X) + δX · ∇xQ(x̂, X))

) · n dSX + · · · . (2.57)

To project the boundary onto that at x̂, we take a similar approach to heuristic derivations of the flux
transport theorem, see, for example, [10]. We apply the divergence theorem to the volume �δ swept out
by the surface as we move from x̂ to x̂ + δX (illustrated schematically in figure 2), writing∫

∂�(x̂+δX)

Q(x̂, X) · n dSX =
∫

�δ (x̂)

∇X · Q(x̂, X)dX +
∫

∂�(x̂)

Q(x̂, X) · n dSX

−
∫

∂�δ (x̂)

Q(x̂, X) · n dSX, (2.58)

where ∂�δ(x̂) is the surface of �δ excluding the ends ∂�(x̂) and ∂�(x̂ + δX). Note that in the integral
over ∂�(x̂), the vector n is the inward normal to �δ(x̂) (see figure 2), which is the reason this term appears
with a plus rather than a minus. In the limit δ → 0, we can write the volume and surface elements as
dX = δX · V · n dSX and ndSX = −δX · V × ds, respectively, where V is the ‘velocity’ of the boundary
as before, and ds is the line element of 	(x̂). Substituting the form for the volume element of �δ and
area element of ∂�δ into (2.58), we have∫

∂�(x̂+δX)

Q(x̂, X) · n dSX =
∫

∂�(x̂)

δ(∇X · Q)X · V · n dSX

+
∫

∂�(x̂)

Q · n dSX +
∫

	(x̂)

δQ · (X · V) × ds, (2.59)

Combining (2.59) with (2.57), we obtain the multiple scales form for integral constraints on a slowly
varying domain∫

∂�

Q · n dS → δ2

∫
∂�

(Q + δX · ∇xQ + δ(∇X · Q)X · V) · n dSX + δ2

∫
	

δQ · (X · V) × ds. (2.60)

In (2.60), n is the normal to the boundary at fixed x̂; in the example of inclusions with a slowly varying
radius, this is given by n0. Note that, unlike in section 2.1 when approximating (2.2), and perhaps counter-
intuitively, we do not need to expand the normal to introduce n1, or to apply the operator X · ∇x to n0:
the perturbation to the normal is already accounted for by the term involving V. An expansion of the

https://doi.org/10.1017/S0956792525000142 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000142


European Journal of Applied Mathematics 9

normal will only appear in (2.60) when the function h defining the boundary through its level sets is
itself a function of δ (as in Appendix B, for example).

Returning to our problem of dielectric inclusions, the integral constraint (2.7), in multiple scales
form, is ∫

∂Dex

(Q + δX · ∇xQ + δ(∇X · Q)X · V) · n0 dSX = −δ

∫
Din

ρ dX, (2.61)

where

Q = 1

δ
∇Xφ + ∇xφ

and the surface integral is over the exterior surface of the inclusion. Using the expansion (2.12) in (2.61),
we find at leading-order that ∫

∂Dex

∇Xφ0 · n0 dSX = 0, (2.62)

consistent with φ0 = φ0(x). At first-order, we find∫
∂Dex

Q0 · n0 dSX = 0, Q0 = ∇Xφ1 + ∇xφ0, (2.63)

which is consistent with (2.40). Finally, equating coefficients of δ, and noting that ∇X · Q0 = 0, we obtain

∫
∂Dex

(Q1 + X · ∇xQ0) · n0 dSX = −
∫

Din

ρ dX, Q1 = ∇Xφ2 + ∇xφ1. (2.64)

Substituting into (2.50) gives∫
∂Dex

εexX · ∇xQ0 · n0 dSX +
∫

Dex

∇x · Q0 dX = −ρeff, (2.65)

where

ρeff =
∫

D

ρ dX (2.66)

is the effective charge as before. Using the transport theorem to take the slow derivatives outside the
integral gives ∫

∂Din

(X · ∇x)Q0 · n0 dSX =
∫

∂Din

Xi

∂Q0,j

∂xi

n0,j dSX

= ∂

∂xi

∫
∂Din

XiQ0,jn0,j dSX −
∫

∂Din

Q0,iVijn0,j dSX

= ∇x ·
∫

∂Din

X(Q0 · n0) dSX −
∫

∂Din

Q0 · V · n0 dSX,

while ∫
Dex

∇x · (εexQ0) dX = ∇x ·
∫

Dex

εexQ0 dX +
∫

∂Din

Q0 · V · n0 dSX

(since n0 is the outward normal to Din). Thus the two surface integrals cancel. Simplifying now as we
did to obtain (2.36), we find that (2.65) becomes

∇x· (εeff∇xφ0) = −ρeff, (2.67)

where the effective permittivity tensor is

εeff ij = εex

(
δij +

∫
∂D

Xi

∂�j

∂Xk

nk dSX

)
(2.68)

in agreement with (2.36).
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3. Paradigm problem: another limit
In section 2, we illustrated how to treat the multiple-scales problem with integral constraints considered
in [5] when the domain slowly varies. In that example ∇X · Q0 = 0, so that the extra term we took so
much care to get correct in (2.61) actually vanishes. In order to provide further validation of (2.61), we
construct now a problem in which this term is non-zero by considering the case in which

∫
D

ρ dX = 0. (3.1)

Then ρeff in (2.67) is zero, and (given homogeneous boundary conditions on φ0) the solution is simply
φ0 ≡ 0, indicating that the scaling balance between ρ and φ is not correct. Rescaling φ → δφ leads to

∇ · (ε∇φ) = −ρ

δ
, (3.2)

(with φ, ρ of O(1)) which we can think of as a problem with a large charge density for which the average
charge over a unit cell is zero. Boundary conditions (2.2) and (2.3) are unchanged.

In the limit of perfectly dielectric inclusions, where εin → ∞, we have

∇ · (εex∇φ) = −ρ

δ
in �ex, (3.3)

∇φ = 0 in �in, (3.4)

with continuity (2.6) at the inclusion boundary. The rescaled integral constraint becomes
∫

∂�in

εex n · ∇φ|ex dS = −1

δ

∫
�in

ρ dx. (3.5)

We perform a similar analysis to section 2: first we take the limit εin → ∞ in the standard multiple scales
problem before comparing it with the problem formulated with an integral condition.

3.1 Standard multiple scales

We substitute the multiple scales expansion (2.12) into (3.2) and compare coefficients at each order of
δ. At leading-order, we find that φ0 is independent of the fast scale. At next order, we have

∇X · (ε∇Xφ1) = −ρ in D, (3.6)
[n0 · (ε(∇Xφ1 + ∇xφ0))]

ex
in = 0, (3.7)

[φ1]
ex
in = 0, (3.8)

with φ1 1-periodic in X. We write

φ1 = � · ∇xφ0 + ξ + φ1, (3.9)

with φ1 = φ1(x), where � takes care of the inhomogeneity due to ∇xφ0 and ξ takes care of the inhomo-
geneity due to ρ. We thus obtain two microscale problems: � satisfies (2.20)–(2.22) as before, while ξ

satisfies

∇X · (ε∇Xξ) = −ρ in D, (3.10)
[n0 · ε∇Xξ ]ex

in = 0, (3.11)
[ξ ]ex

in = 0, (3.12)
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with ∫
D

ξ dX = 0. (3.13)

Note that a solution for ξ exists because of (3.1). Equating coefficients of δ0, we find
∇X · (ε(∇Xφ2 + ∇xφ1)) + ∇x · (ε(∇Xφ1 + ∇xφ0)) = 0 in D, (3.14)

[n0 · (ε(∇Xφ2 + ∇xφ1))]
ex
in + [n1 · (ε(∇Xφ1 + ∇xφ0))]ex

in = 0, (3.15)
[φ2]

ex
in = 0. (3.16)

We integrate (3.14) over the unit cell D, applying the divergence theorem to terms involving the fast
divergence, the Reynolds transport theorem and use (3.15). Following similar analysis to section 2.1,
we obtain the homogenised problem

∇x · (εeff∇xφ0) = −ρeff, (3.17)
with effective permittivity εeff given by (2.32) and effective charge density,

ρeff = ∇x·
∫

D

ε∇XξdX. (3.18)

3.1.1 Taking the limit εin → ∞
In the limit of perfectly dielectric inclusions, the effective permittivity takes the form (2.36). In the limit
εin → ∞, the cell problem for ξ becomes

∇X · (εex∇Xξ ) = −ρ in Dex, (3.19)
∇Xξ = 0 in Din, (3.20)

n0· ∇Xξ = 0 on ∂Din, (3.21)
[ξ ]ex

in = 0, (3.22)

with ξ 1-periodic in X. We switch to index notation to establish the form of the effective charge ρeff in
the limit εin → ∞,

ρeff = ∂

∂xi

∫
D

ε
∂ξ

∂Xi

dX

= ∂

∂xi

∫
D

ε
∂

∂Xj

(
Xi

∂ξ

∂Xj

)
dX − ∂

∂xi

∫
D

εXi

∂2ξ

∂Xj∂Xj

dX

= ∂

∂xi

∫
∂D

εexXi

∂ξ

∂Xj

njdS − ∂

∂xi

∫
D

εXi

∂2ξ

∂Xj∂Xj

dX

= ∂

∂xi

∫
∂D

εexXi

∂ξ

∂Xj

njdS + ∂

∂xi

∫
Dex

XiρdX, (3.23)

where we have used (3.11) in going from the second to third line and (3.19)–(3.20) in the third to fourth
line.

3.2 Multiple scales with integral constraints

In this section we treat (3.3)–(3.5) directly, writing (3.5) in multiple scales form using (2.60).
Substituting (2.12) into (3.3)–(3.5) written in multiple scales form, we find that φ0 = φ0(x) at leading-
order. At first-order, we find

∇X · (εex∇Xφ1) = −ρ in Dex, (3.24)
∇Xφ1 + ∇xφ0 = 0 in Din, (3.25)

[φ1]
ex
in = 0, (3.26)∫

∂Dex

εex(∇Xφ1 + ∇xφ0)· n0dSX = −
∫

Din

ρdX, (3.27)
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with φ1 1-periodic in X. As in section 3.1, we write φ1 = � · ∇xφ0 + ξ + φ1 where φ1 = φ1(x) and � is
the solution to (2.43)–(2.45). The second cell function ξ satisfies

∇X · (εex∇Xξ ) = −ρ in Dex, (3.28)
∇Xξ = 0 in Din, (3.29)
[ξ ]ex

in = 0, (3.30)
with ∫

D

ξdX = 0. (3.31)

Equating coefficients at next order, we have

∇X · (εex(∇Xφ2 + ∇xφ1)) + ∇x · (εex(∇Xφ1 + ∇xφ0)) = 0 in Dex, (3.32)
∇Xφ2 + ∇xφ1 = 0 in Din, (3.33)

[φ2]ex
in = 0, (3.34)

with ∫
∂Dex

εex(∇Xφ2 + ∇xφ1)· n0dSX +
∫

∂Dex

εexX· ∇x(∇Xφ1 + ∇xφ0)· n0dSX

+
∫

∂Dex

εex∇X· (∇Xφ1 + ∇xφ0)X · V· n0dSX = 0. (3.35)

Integrating (3.32) over the exterior region, applying the divergence theorem to the first term and
substituting (3.35), we have∫

∂Dex

εexX· ∇x(∇Xφ1 + ∇xφ0)· n0dSX +
∫

∂Dex

εex∇X· (∇Xφ1 + ∇xφ0)X · V· n0dSX

+
∫

Dex

∇x · (εex(∇Xφ1 + ∇xφ0)) dX = 0.

Applying the transport theorem to the first and final integrals gives

∇x·
∫

∂Dex

εexX(∇Xφ1 + ∇xφ0)· n0dSX −
∫

∂Dex

εex∇X· (X(∇Xφ1 + ∇xφ0))· V· n0dSX

+
∫

∂Dex

εex∇X· (∇Xφ1 + ∇xφ0)X · V· n0dSX + ∇x ·
∫

Dex

(εex(∇Xφ1 + ∇xφ0)) dX

+
∫

∂Dex

εex(∇Xφ1 + ∇xφ0)· V· n0dSX = 0.

Expanding the divergence in the second integral, we find some of the boundary terms cancel, leaving

∇x·
∫

∂Dex

εexX(∇Xφ1 + ∇xφ0)· n0dSX + ∇x ·
∫

Dex

(εex(∇Xφ1 + ∇xφ0)) dX = 0. (3.36)

We substitute (3.9), using the divergence theorem to take the first integral into the exterior region and
use (3.28)–(3.30) to obtain

∇x · (εeff∇xφ0) = −ρeff (3.37)

where

εeffij = εex

(
δij +

∫
∂D

Xi

∂�j

∂Xk

n0kdSX

)
. (3.38)

The effective charge is given by

ρeff = ∇x·
(∫

Dex

ρXdX +
∫

∂D

εexX∇Xξ · n0dSX

)
. (3.39)

Thus, we have recovered (3.17) in the limit of perfectly dielectric inclusions, providing further evidence
that the divergence term present in (2.61) is correct.
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4. Discussion
We have outlined how to combine integral constraints with a slowly varying microstructure, when per-
forming asymptotic homogenisation using the method of multiple scales. Our main result is equation
(2.60), which shows how to write an integral constraint in multiple scales form when the (fast) domain
of the integral is a function of the slow scale. Essentially, the rest of the manuscript is a justification
of this equation, showing that it leads to the correct homogenised model for an example in which
that model can be identified using a more standard approach. Some problems involving integral con-
straints, especially those in which different physics holds in the inclusions, do not arise as a limit of a
more standard problem, and such an approach is not available. These problems can be handled using
equation (2.60).
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Appendix A. Perturbations of the normal

There are two main ways of describing the microstructure which are prevalent in the literature. Either
the position vector of interface is given, so that the interface is described by an equation of the form

X = r(x, s) (A.1)

say, where s parameterises the interface, or the interface is given implicitly as the zero-level set of a
given function,

h(x, X) = 0, (A.2)

say [8, 21]. In fact often the former is written as [12]

X = r(x, X),

but this is an implicit equation for the interface and is really just the latter with

h(x, X) = X − r(x, X).

Since the functions r or h are given and independent of δ, many authors suppose that the normal to the
microstructure interface n is also independent of δ [4, 12, 16, 17]. However, this is a mistake. This is
due to the fact that (using the definition x = δX), the microstructure depends on δ even though h and
r do not, and is illustrated in our calculation in Appendix C, and the example which follows. This is a
subtle point, which perhaps explains why this is such a common mistake.

Whether the microstructure is described by a parameterised boundary (A.1) or using a level set func-
tion (A.2) is irrelevant – if handled correctly the two approaches will give the same answer. If the
microstructure is exactly periodic, so that the geometry of the unit cell does not vary with the macroscale,
then the normal n is independent of the macroscale, and can be taken to be independent of δ. But when
the microstructure varies with macroscopic position the normal will generically depend on δ and it is
crucial to expand it in powers of δ. The level-set approach was developed to facilitate this expansion.

Both approaches above treat the microstructure (i.e. the shape of the inclusion) to be given, and then n
to be derived from this shape. Anytime that a quantity is derived rather than given as part of the problem,
it should be expanded in powers of δ. An alternative point of view is to not describe the microstructure,
but treat the normal n as the given function, rather than deriving it from h or r. In this case n can
indeed be taken to be independent of δ. But if n is to be given, then the shape of the microstructure
has to be derived. If n is assumed independent of δ, then the position of the interface r (or the level
set function h) must be expanded in powers of δ, with higher-order terms chosen to be consistent with
n being independent of δ. Then all boundary conditions should be expanded onto the leading-order
interface, as we do in Appendix B. This is a painful process, and nowhere is it done in any literature
we could find, and certainly not in [12, 16, 17]. These references all assume that both n and the shape
of the microstructure can be chosen to be independent of δ, which is a mistake. In section B.3 we show
that fixing n and expanding h in the present problem leads to the same homogenised equations as those
found by fixing h and expanding n, albeit with considerably more work.

To illustrate the discussion above with an example, let us consider in two dimensions a microstructure
comprising an array of circles with macroscopically varying radius.

A.1 Example: slowly varying circular inclusions
Using (A.1), for circular inclusions of slowly varying radius a(x) we have

r(s) = a(x)( cos s, sin s), (A.3)
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where s parameterises the surface. It is crucial to remember here that x depends on s also. Then the
tangent vector is proportional to

r′(s) = a(x)( − sin s, cos s) + x′(s) · ∇xa( cos s, sin s)

= ( − a sin s + x′(s) · ∇xa cos s, a cos s + x′(s) · ∇xa sin s).

Thus the normal is

n = (a cos s + x′(s) · ∇xa sin s, a sin s − x′(s) · ∇xa cos s)

|(a cos s + x′(s) · ∇xa sin s, a sin s − x′(s) · ∇xa cos s)| .

Now since x = δX, x′(s) = δa( − sin s, cos s) + O(δ2). Then

|(a cos s + x′(s) · ∇xa sin s, a sin s − x′(s) · ∇xa cos s)| = a + O(δ2).

Thus

n = ( cos s, sin s) + δ(( − sin s, cos s) · ∇xa)( sin s, − cos s). (A.4)

The correction to the normal is minus the projection of ∇xa onto the tangent ( − sin s, cos s).
Now let us do the same thing via the level set method (A.2). We have

h = |X| − a(x).

Then

n = ∇Xh

|∇Xh| + δ

( ∇xh

|∇Xh| − (∇xh · ∇Xh)∇Xh

|∇Xh|3

)
+ O(δ2).

Now

∇Xh = X
|X| = X

a
, ∇xh = −∇xa,

giving

n = X
a

+ δ

(
−∇xa +

(
∇xa · X

a

) X
a

)
+ O(δ2).

The correction is −∇xa minus its projection onto the normal, which is the same as the projection onto
the tangent. Evaluating explicitly on X = a( cos s, sin s) gives

n = ( cos s, sin s) + δ(( − sin s, cos s) · ∇xa)( sin s, − cos s)

in agreement with (A.4).
If, in contrast, we assume that the normal is given and independent of δ, then, using (A.1) and

expanding r as

r(s) = a(x)( cos s, sin s) + δr1(s) + · · · ,

we have

r′(s) = a(x)( − sin s, cos s) + δa (( − sin s, cos s) · ∇xa) ( cos s, sin s) + δr′
1(s) + O(δ2).

For the normal to have no O(δ) correction, we require

r′
1(s) + a (( − sin s, cos s) · ∇xa) ( cos s, sin s)

to be parallel to ( − sin s, cos s), i.e.

( cos s, sin s) · r′
1(s) = −a( − sin s, cos s) · ∇xa.

In fact, this correction to the interface is exactly what is needed if the inclusions are exactly circles,
rather than the approximate circles described by (A.3). However, this perturbation to the position of the
boundary must be taken into account when asymptotically expanding variables in powers of δ to develop
a homogenised model, as we do in Appendix B. This is quite a complicated process; the approach of
fixing the microstructure and expanding the normal is far easier.
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A.2 Implication of this mistake
In many published works, the failure to expand either the position of the interface or the normal to it in
powers of δ when the microstructure varies with macroscopic position leads to erroneous homogenised
equations containing spurious terms.

Let us illustrate by re-examining the classical work of [4]. It is not unambiguously clear whether
Burridge and Keller intend for their analysis to be valid when the microstructure varies macroscopi-
cally. They certainly intend the microscopic properties to vary macroscopically, but whether they intend
geometry to be included as such a property could be open to debate. They do, however, take the char-
acteristic function χs of the solid domain to be a function of both the slow and fast scales, which leads
us to believe that they were considering slowly varying domains; certainly, this is how the manuscript is
usually interpreted, with many authors applying their results (erroneously) to macroscopically varying
microstructures.

Let us see how to correct the work so that it does apply to slowly varying microstructures. The
normal appears only in equation (6e) of [4], which expresses continuity of stress across the fluid/solid
interface:

n · σ − n · τ = 0, on ∂Df = ∂Ds, (6e)

At leading order, this gives

n0 · σ0 − n0 · τ0 = 0, on ∂Df = ∂Ds, (8b)

but at first order, the equation should be

n0 · σ1 − n0 · τ1 + n1 · σ0 − n1 · τ0 = 0, on ∂Df = ∂Ds; (9e)

Burridge and Keller [4] miss out on the terms proportional to n1. For a microstructure periodic on the
fast scale, with a unit volume unit cell (so that Vf = ∫

Df
dy is still the volume fraction of fluid), their

equation (20) is

∇x · σ0 + Vf ω
2ρf u0 + ω2ρf w̄ = −

∫
∂Df

σ1 · n0 dy (20)

where we have not substituted ∇x · σ0 = Vf ∇x · σ0 as in [4]. Their equation (21) is

∇x · τ0 + ω2ρ̄su0 =
∫

∂Ds

τ1 · n0 dy. (21)

Adding these equations [4] claims that the surface integrals cancel, but in fact, this is not the case.
Correcting their equation (27) gives, instead

−ω2ρ̄su0 − ω2ρf w̄ = ∇x · τ0 + ∇x · σ0 −
∫

Df

σ0 · n1 dy +
∫

∂Ds

τ0 · n1 dy. (27)

Now

∇x · τ0 = ∇x · τ0 −
∫

∂Ds

τ0 · V · n0 dSy, ∇x · σ0 = ∇x · σ0 +
∫

∂Df

σ0 · V · n0 dSy.

Thus (27) becomes

−ω2ρ̄su0 − ω2ρf w̄ =∇x · τ0 +
∫

∂Ds

τ0 · V · n0 dSy + ∇x · σ0

−
∫

∂Df

σ0 · V · n0 dSy −
∫

Df

σ0 · n1 dy +
∫

∂Ds

τ0 · n1 dy. (A.5)

As we have seen,

V · n0 + n1 = −∇xh · ∇yh

|∇yh|2
n0.
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Since σ0 · n0 = τ0 · n0 the remaining surface integrals cancel, leaving

−ω2ρ̄su0 − ω2ρf w̄ = ∇x · τ0 + ∇x · σ0 = ∇x · τ0 − ∇x(Vf p0). (A.6)

Note that (4) do not ever attempt to write ∇x · τ0 in terms of ∇x · τ0 except for the macroscopically uniform
case, so that their final system of equations (35)–(36) is not closed. If they did so, using Reynold’s
transport theorem, then there would be additional surface integral terms in their homogenised equation
which should not be present, as written explicitly in equations (5.47)–(5.48) of (16), for example. Note
also that correctly writing ∇x · τ0 in terms of ∇x · τ0 brings Vf inside the gradient in the last term. This
might look strange to those familiar with two-phase flow (it appears that a uniform pressure in the fluid
can generate stress gradients in the solid), but remember that τ0 is a superficial average rather than a
phase average – a static problem with a uniform pressure within the fluid would generate the same
uniform pressure within the solid, for which τ0 = −(1 − Vf )p0I.

Appendix B. Perturbations of the boundary
In section 2–3, we illustrated the theory with an example in which the boundaries of the inclusions were
defined by the level sets of (2.9). With this definition of the boundary, the inclusions are approximately
circular, but not exactly circular: as the slow coordinate varies over a given inclusion, the radius of the
inclusion a(x) varies by an amount O(δ), so that these inclusions are actually elliptical, but with an
eccentricity of O(δ). We would not expect such a small perturbation of the shape to affect the leading-
order homogenised problem, which is why so many authors treat circular inclusions in this way. On the
other hand, an O(δ) perturbation to h would introduce new terms into n1, and it is not obvious a priori
that these would not appear in the homogenised model. In this appendix, we verify that O(δ) corrections
to h do not affect the leading-order homogenised problem.

We return to the problem of a dielectric composite considered in section 2, which we restate for
convenience

∇ · (ε∇φ) = −ρ, (B.1)

with

[n · (ε∇φ)]ex
in = 0, (B.2)

[φ]ex
in = 0. (B.3)

We suppose that the boundary of the inclusion is given by the level set of h(X, x), but this time we
suppose that h depends on δ also, so that

h(X, x) = h0(X, x) + δh1(X, x) + · · · .

The expansion of the normal is then

n = ∇Xh0

|∇Xh0| + δ

(∇Xh1 + ∇xh0

|∇Xh0| − ∇Xh0 · (∇Xh1 + ∇xh0)
∇Xh0

|∇Xh0|3

)
+ O(δ2). (B.4)

B.1 Expansion onto the leading-order domain
In addition to performing a multiple scales expansion, we must expand (B.2)–(B.3) onto the leading-
order boundary position. We suppose that the boundary perturbation is such that positions X(s) on
the boundary may be expanded as X(s) = X0(s) + δR(s). To expand a quantity onto the leading-order
boundary, we then write

Q(x, X0 + δR) = Q0(x,X0) + δ (Q1(x, X0) + (R · ∇X)Q0(x, X0)) + · · · . (B.5)
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Note that when we write the normal in terms of h as in (B.4), all these terms are evaluated on X(s) =
X0(s) + δR. Expanding again to evaluate the leading-order boundary gives

n = n0 + δn1 + · · · , (B.6)

with

n0 = ∇Xh0

|∇Xh0| , (B.7)

n1 = (R · ∇X)
∇Xh0

|∇Xh0| +
(∇Xh1 + ∇xh0

|∇Xh0| − ∇Xh0 · (∇Xh1 + ∇xh0)
∇Xh0

|∇Xh0|3

)
, (B.8)

where all terms are now evaluated at X0. Finally, we need to relate R to h. Since h(x, X) = h(x, X0 +
δR) = 0, expanding and equating coefficients at O(δ) gives h1 = −R · ∇Xh0.

B.2 Homogenisation
Combining the multiple scales expansion (2.12) with the normal expansion (B.6) and boundary
expansion, we find at leading-order

∇X· (ε∇Xφ0) = 0 in D, (B.9)
[n0 · (ε∇Xφ0)]

ex
in = 0, (B.10)

[φ0]ex
in = 0, (B.11)

with φ0 1-periodic in X, where the jump is across the leading-order boundary. Thus, at leading-order,
we have a potential which is independent of the fast-scale. At next order, we obtain

∇X · (ε∇Xφ1) = 0 in D, (B.12)
[n0 · (ε(∇Xφ1 + ∇xφ0))]

ex
in = 0, (B.13)

[φ1]
ex
in = 0. (B.14)

Writing φ1 = � · ∇xφ0 + φ1 for φ1 independent of X, we find that � satisfies the cell problem given by
(2.20)–(2.22). At O(δ2), we find

∇X · Q1 + ∇x · Q0 = −ρ in D, (B.15)
[n0 · Q1 + n1 · Q0 + n0 · (R · ∇X)Q0]ex

in = 0, (B.16)
[φ2 + R · ∇Xφ1]ex

in = 0. (B.17)

where

Q0 = ∇Xφ1 + ∇xφ0, Q1 = ∇Xφ2 + ∇xφ1.

Integrating (B.15) over the unit cell, we have∫
D

∇X · Q1 dX +
∫

D

∇x · Q0 dX = −ρeff, (B.18)

where ρeff is given by (2.27). Using the divergence theorem in the first term, we obtain

−
∫

∂Dex

Q1 · n0 dSX +
∫

∂Din

Q1 · n0 dSX +
∫

D

∇x · Q0 dX = −ρeff. (B.19)

Using periodicity to eliminate the integral over the boundary of the unit cell in ∂Dex, and substituting
(B.16), we find∫

∂Din

[
n0 · (R · ∇X)Q0

]ex

in
dSX +

∫
∂Din

[
Q0 · n1

]ex

in
dSX +

∫
D

∇x · Q0 dX = −ρeff. (B.20)
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Applying the Reynolds transport theorem to the final integral, we obtain∫
∂Din

[
n0 · (R · ∇X)Q0

]ex

in
dSX +

∫
∂Din

[
Q0 · n1 + Q0 · V0 · n0

]ex

in
dSX + ∇x ·

∫
D

Q0 dX = −ρeff. (B.21)

The analogue of (2.29) is

V0 · n0 + n1 = (R · ∇X)
∇Xh0

|∇Xh0| + ∇Xh1

|∇Xh0| − ∇Xh0· (∇Xh1 + ∇xh0)

|∇Xh0|2
n0. (B.22)

From (B.13), Q0 · n0 is continuous, which leaves
∫

∂Din

[
n0 · (R · ∇X)Q0 + Q0 · (R · ∇X)

∇Xh0

|∇Xh0| + ∇Xh1

|∇Xh0| · Q0

]ex

in

dSX + ∇x ·
∫

D

Q0 dX = −ρeff. (B.23)

Now

∇X × (R × Q0) = R∇X · Q0 − Q0∇X · R + (R · ∇X)Q0 − (Q0 · ∇X)R.

Thus, using that Q0 · n0 is continuous, ∇ · Q0 = 0, and Stokes’ theorem,∫
∂Din

[
n0 · (R · ∇X)Q0

]ex

in
dSX =

∫
∂Din

[
n0 · (Q0 · ∇X)R

]ex

in
dSX

leaving, after substituting for h1, and writing n0 in terms of h0,∫
∂Din

[ ∇Xh0

|∇Xh0| · (Q0 · ∇X)R + Q0 · (R · ∇X)
∇Xh0

|∇Xh0| − ∇X(R · ∇Xh0)

|∇Xh0| · Q0

]ex

in

dSX + ∇x ·
∫

D

Q0 dX = −ρeff.

In index notation, with Q0 = (Q1, Q2, Q3), R = (R1, R2, R3),

∇Xh0

|∇Xh0| · (Q0 · ∇X)R + Q0 · (R · ∇X)
∇Xh0

|∇Xh0| − ∇X(R · ∇Xh0)

|∇Xh0| · Q0

= 1

|∇Xh0|
∂h0

∂Xi

(
Qj

∂Ri

∂Xj

)
+ QjRi

∂

∂Xi

(
∂h0

∂Xj

1

|∇Xh0|
)

− 1

|∇Xh0|Qj

∂

∂Xj

(
Ri

∂h0

∂Xi

)

= QjRi

∂h0

∂Xj

∂

∂Xi

(
1

|∇Xh0|
)

= −(Q0 · n0)(R · ∇X)|∇Xh0|.

Since Q0 · n0 is continuous, we are left with

∇x ·
∫

D

Q0 dX = −ρeff

as expected.

B.3 Homogenisation with n independent of δ

The calculation in section B.2 can be used to show that the alternative approach of fixing the normal n
to be independent of δ gives the same homogenised problem providing the geometry (through h or r) is
expanded in powers of δ.

To see this explicitly, suppose now that h1 is such that n1 = 0. As usual, we find at leading-order

∇X· (ε∇Xφ0) = 0 in D, (B.24)
[n0 · (ε∇Xφ0)]

ex
in = 0, (B.25)

[φ0]ex
in = 0, (B.26)
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with φ0 1-periodic in X, where the jump is across the leading-order boundary, and we have continued
to use the symbol n0 even though n is now independent of δ. Thus, as usual, φ0 is independent of X. At
next order, we obtain

∇X · (ε∇Xφ1) = 0 in D, (B.27)
[n0 · (ε(∇Xφ1 + ∇xφ0))]

ex
in = 0, (B.28)

[φ1]
ex
in = 0. (B.29)

Writing φ1 = � · ∇xφ0 + φ1 for φ1 independent of X, we find that � satisfies the usual cell problem
(2.20)–(2.22). At O(δ2), we find

∇X · Q1 + ∇x · Q0 = −ρ in D, (B.30)
[n0 · Q1 + n0 · (R · ∇X)Q0]ex

in = 0, (B.31)
[φ2 + R · ∇Xφ1]

ex
in = 0. (B.32)

where

Q0 = ∇Xφ1 + ∇xφ0, Q1 = ∇Xφ2 + ∇xφ1.

The terms involving R here are usually (mistakenly) omitted in the literature [12, 16, 17].
Integrating (B.30) over the unit cell, we have∫

D

∇X · Q1 dX +
∫

D

∇x · Q0 dX = −ρeff, (B.33)

where ρeff is given by (2.27). Using the divergence theorem in the first term, we obtain

−
∫

∂Dex

Q1 · n0 dSX +
∫

∂Din

Q1 · n0 dSX +
∫

D

∇x · Q0 dX = −ρeff. (B.34)

Using periodicity to eliminate the integral over the boundary of the unit cell in ∂Dex, and substituting
(B.31), we find ∫

∂Din

[
n0 · (R · ∇X)Q0

]ex

in
dSX +

∫
D

∇x · Q0 dX = −ρeff. (B.35)

Applying the Reynolds transport theorem to the final integral, we obtain∫
∂Din

[
n0 · (R · ∇X)Q0

]ex

in
dSX +

∫
∂Din

[
Q0 · V0 · n0

]ex

in
dSX + ∇x ·

∫
D

Q0 dX = −ρeff. (B.36)

Now, with n1 = 0, (B.8) implies R is such that

V0 · n0 = − ∇xh0

|∇Xh0| = (R · ∇X)
∇Xh0

|∇Xh0| + ∇Xh1

|∇Xh0| − ∇Xh0· (∇Xh1 + ∇xh0)

|∇Xh0|2
n0. (B.37)

The same arguments as in section B.2 then show that the surface integral vanishes, leaving

∇x ·
∫

D

Q0 dX = −ρeff

as expected.
If we did not include the perturbation to the boundary, assuming that both h and n are independent

of δ, then (B.36) would become∫
∂Din

[
Q0 · V0 · n0

]ex

in
dSX + ∇x ·

∫
D

Q0 dX = −ρeff. (B.38)

Since

V0 · n0 = − ∇xh0

|∇Xh0| , (B.39)

the surface integral does not vanish (unless ∇Xh is parallel to ∇xh) and is an extra term, which should
not be present.
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Appendix C. Derivation of (2.11)
Here, we explicitly derive (2.11) from (2.10). We have

n = ∇h

|∇h| = ∇Xh + δ∇xh

|∇Xh + δ∇xh| = ∇Xh + δ∇xh

((∇Xh + δ∇xh) · (∇Xh + δ∇xh))1/2

= ∇Xh + δ∇xh

(|∇Xh|2 + 2δ∇xh · ∇Xh + δ2|∇xh|2)1/2

= ∇Xh + δ∇xh

|∇Xh|
(

1 + 2δ∇xh · ∇Xh + δ2|∇xh|2

|∇Xh|2

)−1/2

= ∇Xh + δ∇xh

|∇Xh|
(

1 − δ∇xh · ∇Xh

|∇Xh|2
+ O(δ2)

)

= ∇Xh

|∇Xh| + δ

( ∇xh

|∇Xh| − (∇xh · ∇Xh)∇Xh

|∇Xh|3

)
+ O(δ2).
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