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This study provides an econometric methodology to test a linear structural rela-
tionship among economic variables. We propose the so-called distance-difference
(DD) test and show that it has omnibus power against arbitrary nonlinear struc-
tural relationships. If the DD-test rejects the linear model hypothesis, a sequential
testing procedure assisted by the DD-test can consistently estimate the degree of a
polynomial function that arbitrarily approximates the nonlinear structural equation.
Using extensive Monte Carlo simulations, we confirm the DD-test’s finite sam-
ple properties and compare its performance with the sequential testing procedure
assisted by the J-test and moment selection criteria. Finally, through investigation,
we empirically illustrate the relationship between the value-added and its production
factors using firm-level data from the United States. We demonstrate that the
production function has exhibited a factor-biased technological change instead of
Hicks-neutral technology presumed by the Cobb–Douglas production function.

1. INTRODUCTION

“To climb steep hills requires a slow pace at first.” — William Shakespeare.

In structural empirical studies, model specification is important because it
affects inference and counterfactual experiments to draw important policy implica-
tions. An important aim of this study is to develop an efficient and yet easy-to-use
method for researchers to test a linear structural relationship between economic
variables. The testing methodology proposed in this study extends the ones already
developed for reduced-form models.
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Studies such as Bierens (1990) and Baek, Cho, and Phillips (2015) developed
a methodology to test a linear model hypothesis against general model misspec-
ification in a reduced-form framework. In particular, Baek et al. (2015) obtained
the null limit distribution of the quasi-likelihood ratio (QLR) test by estimating
the economic variable of interest’s power coefficient, showing that it has omnibus
power. We apply their methodology to the generalized method of moment (GMM)
framework and test a linear structural model hypothesis using a distance-difference
(DD) test as in Baek et al. (2015). Then, we derive the null limit distribution of the
DD-test and show that it has omnibus power against a nonlinear structural model.

Cho and Phillips (2018) further developed a sequential testing procedure using
the QLR-test to consistently estimate a nonlinear reduced-form equation. We apply
the sequential testing procedure to the DD-test as in Cho and Phillips (2018) and
demonstrate that the unknown polynomial structural model can be consistently
estimated using the current approach. In case the structural equation differs from
any polynomial equation, the polynomial equation estimated using finite samples
and our sequential testing approach can be understood as an approximate structural
equation.

We also compare our testing procedure with some widely used ones in the litera-
ture. First, we consider Horowitz’s (2006) and Breunig’s (2015) specifications tests
in addition to Sargan (1958, 1988) and Hansen’s (1982) J-test used for a correctly
specified structural model hypothesis and the validity of instrumental variables
(e.g., Newey, 1985). We conduct extensive simulations to compare the four tests
and find that they can complement each other. In particular, our simulation suggests
that the DD-sequential testing procedure selects the correct model more often
than the J-sequential testing when the sample size is relatively small. Second, we
investigate Andrews’s (1999) procedure of applying the Akaike (1973), Schwarz
(1978), and Hannan and Quinn (1979) information criteria for selecting moment
conditions, and thus introduce a procedure to ensure the number of moment
conditions that identify unknown parameters. We compare the moment selection
criteria (MSCs) with the sequential testing procedure using simulations, finding
that the sequential testing and MSCs can supplement each other.

In the semi/nonparametric literature, studies such as Hong and White (1995),
Ai and Chen (2003), Newey and Powell (2003), and Chen and Pouzo (2015)
investigated how to estimate and test for unknown structural equations using
various semi/nonparametric methods. In contrast to these methods, the DD-test
is fully parametric; thus, its computational simplicity is appealing. Furthermore,
despite its simple structure, it possesses a consistent omnibus power against a
broad range of misspecified models under a mild moment condition, thereby
the drawbacks of semi/nonparametric methods using tuning parameters can be
complemented.

The rest of this paper is structured as follows: Section 2 tests for a nonlinear
structural relationship and discusses its motivation and associated problems. This
section also examines the testing of the linearity condition by formally introducing
the DD-test. The null limit distribution and power properties of the test are
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also examined. The same section also examines the asymptotic size of the DD-
test and the influence of weak instrumental variables to the DD-test. Section
3 extends the linear structure testing to polynomial structures using the same
test. Furthermore, the sequential testing is applied to estimate the polynomial
structural equation. Section 4 reports Monte Carlo simulations and compares
the DD-test with other methodologies, whereas Section 5 presents an empirical
illustration. Finally, Section 6 concludes the paper. Mathematical proofs and other
supplementary information are presented in the Appendix.

Before moving to the next section, we introduce some useful mathematical nota-
tions. For functions f (·) and j = 1,2, . . ., let (dj/djx)f (x̄) denote (dj/dxj)f (x)|x=x̄ for
notational simplicity. We also assume that ι is the n × 1 vector of unity, where n
denotes the sample size throughout the paper.

2. MOTIVATION AND STRUCTURAL LINEARITY TESTING

2.1. Motivation and Heuristics

To motivate this study, we first present a simple model. Assume that Yt and Xt are
dependent and positively valued explanatory variables, respectively, such that for
a unknown function m(·), their structural relationship is

Yt = m(Xt)+Ut. (1)

In (1), let Xt and Ut be correlated. One of the main aims of this study is to test
whether the structural relationship between Yt and Xt, viz., m(·), is linear:

H0 : m(Xt) = ξ0 + ξ1Xt a.s. (2)

Some of the economic applications motivating this study include Mincer’s (1958)
linear model between log wage and education, and Balassa (1964) and Samuel-
son’s (1964) linear structural model between the ratio of purchasing power parity to
exchange rate and the per capita income differentials. As another example, a simple
log-linear production function is linear with respect to log production factors. If
it is subject to input bias problem, the model turns out to contain an endogenous
variable. We detail this in Section 5 for our empirical illustration.

We are motivated to test the null hypothesis from the possibility that the linear
model is arbitrarily misspecified. The following examples specifically illustrate
our motivation. As our first example, the linear relationship between log wage and
education years posited by Mincer (1958) has been questioned in the literature.
Mincer (1997) himself obtained a nonlinear education yield function by assuming
heterogeneous preferences and earnings opportunities for individuals. As another
example, Card and Krueger (1992) obtained a nonlinear return to education along
with the so-called credential effect. In terms of the log-linear production function
model subject to input bias problem, prior literature attempts to explain the recent
large distributional consequences of factor shares by attributing them to the change
of production technology (e.g., Krusell et al., 2000; Antràs, 2004; Karabarbounis
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and Neiman, 2014; Piketty, 2014; Acemoglu and Restrepo, 2018; Raval, 2019;
Oberfield and Raval, 2021). Nevertheless, if the production technology exhibits a
log-linear production function, factor shares always remain constant, so that the
typically assumed Cobb–Douglas technology must be misspecified. In such cases,
estimating linear models using GMM estimation would introduce an asymptotic
bias (e.g., Hall and Inoue, 2003), rendering the asymptotic distribution model
dependent.

We aim to provide a test methodology that consistently detects arbitrary non-
linearity rather well and overcomes the challenges associated with sieve series
estimation, and thus leads to a simple and straightforward testing procedure.
Specifically, we first extend the approach of Bierens (1990) and Baek et al. (2015),
who estimate m(·) when Xt is exogenous.

To this end, we first heuristically describe our testing procedure. We specify the
parametric model for the structural error Ut as follows:

M := {mt(ξ0,δ,β,γ ) := Yt − ξ0 − ξ1Xt −βXγ
t : (ξ0,ξ1,β,γ ) ∈ � ⊂ R

4}.
We then estimate the unknown parameters using the GMM estimation method.
Note that the linear model is nested in M as a special case. If γ∗ = 0,1, or β∗ = 0,
then Yt and Xt would be structurally linear, requiring the linear structure hypothesis
to be jointly tested via the hypotheses on γ∗ and β∗. We apply the likelihood-
ratio (LR) test principle and test the linearity hypothesis. That is, we compare
Sargan (1958, 1988) and Hansen’s (1982) J-tests implied by M and the linear
model, and reject the linearity hypothesis if the difference between the two J-tests
is sufficiently large. We formally define our test below; this is the DD-test.

The DD-test based on M has the following useful properties over other method-
ologies in the literature. First, the DD-test is consistent for general nonlinearity,
because the power transform Xγ

t in M is a sieve basis. Note that a number of
studies in prior literature have tested the linearity condition, and most of them
rely on the semi/nonparametric method. For example, Chen and Pouzo (2015)
estimate m(·) using a penalized semiparametric minimum distance estimation
method and a sieve series under the complete conditional distribution condition of
Xt on instrumental variables. They also demonstrate that m(·) can be consistently
estimated by letting the number of elements in the sieve series increase as n
increases, further introducing a methodology to test the correct model assumption
consistently.1 In any continuous function m(·), including (·)j as regressors with j =
1,2,3, . . . would approximate m(·) arbitrarily well (e.g., Chen and Liao, 2014); this
means that if m(·) is a linear function, adding any sieve basis to the linear function
as regressor would fail to reduce the approximation error measured by the GMM
distance. Here, we propose the DD-test to compare the GMM distances measured
by the linear model andM in parallel with the LR-test. Note that the degree of sieve
basis γ is estimated to obtain the optimum sieve that best improves the DD-test,

1For Xt as an exogenous variable, Hong and White (1995) estimate m(·) using a sieve series estimation method, to
provide an omnibus specification testing.
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instead of including the maximum number of sieve series limited by n. Second,
we compute the DD-test using the GMM estimation method without assuming the
complete conditional probability distribution of Xt on instrumental variables; thus,
we do not consider the penalty function of m(·) in our estimation. Furthermore,
M is a fully parametric model, making the associated inferences straightforward.
Third, the DD-test can play the role of diagnostic test before estimating m(·) using
other methodology. Note that Ai and Chen (2003), Newey and Powell (2003),
and Chen and Pouzo (2015) estimate the unknown structural equation using
the semi/nonparametric minimum distance and nonparametric two-stage least-
squares estimation methods, respectively; these methods can be computationally
demanding. If the DD-test does not reject the linear model assumption, no need
would arise for their estimations.

A popular trend in the literature is to test the linear model assumption using
M or such other models. First, when Xt is an exogenous variable, Bierens (1990)
and Baek et al. (2015) test for the linear model misspecification using the model
similar to M, as mentioned above. Their methodology can be easily applied
even when testing correctly specified structural models by treating the employed
instrumental variables as conditioning variables. Second, Sargan (1958, 1988) and
Hansen’s (1982) J-test typically tests the structurally correct model assumption
and the validity of instrumental variables. Thus, the J-test rejecting the null does
not necessarily imply that the linear structural model is misspecified. It may reject
the null because the instrumental variables are not valid. However, the DD-test
presumes valid instrumental variables and focuses on testing for structural model
misspecification with omnibus power against general nonlinear functions. Third,
Horowitz (2006), Breunig (2015), and Zhu (2020) also provide tests with similar
goals to the DD-test, but their test structures are different from what the DD-test
requires. Their testing methodology is nonparametric and based on conditional
moment restrictions, so that their tests are defined by their own test requirements
such as basic functions and reference measures. In contrast, the DD-test is applied
to a fully parametric model, making it different from the nonparametric tests.
Despite this parametric structure, the DD-test exhibits comparable powers to the
other tests as our simulations demonstrate in Section 4.

2.2. Testing Environment and Assumptions

We now formally discuss the model and data structure of interest by generalizing
M. Assume that {(E′

t,Z
′
t, Ut)

′ := (Xt,D′
t,Z

′
t,Ut)

′ : t = 1,2, . . .} is a strictly stationary
ergodic (SSE) process; Xt is a positively valued endogenous variable; Dt(∈ R

k) is
an exogenous variable; and Zt(∈ R

p) is an instrumental variable with k and p ∈ N.
Given this data generating process (DGP) condition, we also assume that for some
(δ0∗,δ′

∗)′, Yt is structurally associated with other variables by

Yt = ξ0∗ +E′
tδ∗ +m(Xt)+Ut,
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such that for the instrumental variable Zt, E[UtZt] = 0 and the order condition
hold for structural model estimation, viz., Zt ∈ R

p with p > k + 2. For notational
simplicity, we also divide the parameter vector δ∗ into (ξ1∗,η′∗)′ such that E′

tδ∗ =
ξ1∗Xt +D′

tη∗.
We next consider a model specified to test the functional form of m(·). In

particular, we assume that the empirical researcher is interested in testing the linear
structure between Yt and Xt. To address this, we construct a model attached by a
power transform of Xt as follows:

M := {
mt(ω) := Yt − ξ0 −E′

tδ −βXγ
t : ω := (ξ0,δ

′,β,γ )′ ∈ � ⊂ R
k+4

}
and estimate the unknown parameters using the GMM method, assuming the
following quadratic distance function:

dn(ω) := (Y−βX(γ )−Vς)′ZMnZ′(Y−βX(γ )−Vς),

where Y := (Y1, . . . ,Yn)
′; X(γ ) := (Xγ

1 , . . . ,Xγ
n )′; Vt := (1,E′

t)
′; V := [V′

1, . . . ,V
′
n]′;

Z := [Z′
1, . . . ,Z

′
n]′; ς := (ξ0,δ

′)′; and Mn is a weighting matrix. That is, the
GMM estimator is obtained by minimizing the quadratic distance function: ω̂n :=
argminω∈� dn(ω). We also let ω̃n := argminω∈� dn(ω) such that β = 0. If β = 0,
γ is a placeholder, with ω̃n estimating the linear structure between Yt and Xt. Note
that M could be misspecified under a general nonlinear structure between Yt and
Xt. As Hall and Inoue (2003) have pointed out, in such a case, the power function
in M estimated using the GMM method is an approximation for m(·), and so the
limit behavior of the estimated parameter can be different from that of a correctly
specified model. However,M is correctly specified for the linear structure between
Yt and Xt. We therefore impose the following hypothesis:

H0 : E[mt(ξ0,δ,β∗,γ∗)Zt] = 0 for some δ and ξ0, for β∗ = 0 or γ∗ = 0 or 1.

We may further partition H0 into the following subconditions:

H0,1 : β∗ = 0, H0,2 : γ∗ = 0, or H0,3 : γ∗ = 1

to generate a linear structure between Yt and Xt and thus hypothesize the
researcher’s interest. The negation of H0 is an alternative hypothesis: H1 : β∗ �= 0,
γ∗ �= 0, and γ∗ �= 1. For simplicity, we let �0 := {ω ∈ � : β = 0, γ = 0, or γ = 1}
and �1 := �\�0 be the null and alternative parameter spaces, respectively.

Testing the null hypothesis involves nonstandard problems. Null hypothesis H0

is associated with an identification problem. If β∗ = 0, γ∗ is unidentified, and
Davies’s (1977, 1987) identification arises under H0,1. That is, γ∗ is identified
only when β∗ �= 0, and by this, a standard test does not follow a standard chi-
square distribution under H0,1. In general, a Gaussian process is involved with
the null limit distribution when Davies’s (1977, 1987) identification problem
arises. Similarly, if γ∗ = 0, only ξ0∗ + β∗ is identified, implying that ξ0∗ and β∗
are not separately identified, and Davies’s (1977, 1987) identification problem
arises in a different manner under H0,2 from H0,1. Likewise, Davies’s (1977,
1987) identification problem arises under H0,3, implying that neither ξ1∗ nor β∗
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is separately identified. Thus, we find three composite Davies’s (1977, 1987)
identification problems with H0. A proper testing methodology should tackle all
these separate identification problems using a single test. We call this the trifold
identification problem following Baek et al. (2015). By the trifold identification
problem, it becomes challenging to test the linear structure via Wald’s (1943)
test principle. As Baek et al. (2015) pointed out, when a multifold identification
problem is associated with the null hypothesis, the standard Wald-test can have an
unbounded null limit distribution, because a parameter value belonging to the null
parameter space constrained by one of the subnull hypotheses may belong to the
alternative parameter space characterized by another subalternative hypothesis.

However, we apply the LR-test principle to overcome the multiple identification
parameter problem. Specifically, we compare the GMM distances obtained under
H0 and H1 to test the linearity hypothesis. The DD-test statistic is defined as
follows:

Dn := n−1 {dn(ω̃n)−dn(ω̂n)} .

Note that M approximates the unknown functional form of m(·) by the power
transform, and the DD-test exploits this approximation to gain the test-statistic
marginal power; this is exactly the same motivation as that of the QLR-test. The
DD- and QLR-tests are defined similarly but have different features. The GMM
distance is defined by the weighted distance of the orthogonality conditions, and
not by the prediction error, to obtain a null limit distribution different from that of
the QLR-test.

Before examining the asymptotic behaviors of the DD-test under the different
hypotheses, we formalize the above DGP and model conditions along with others
as collected in the following assumption.

Assumption 1. (i) {(E′
t,Z

′
t,Ut)

′ := (Xt,D′
t,Z

′
t,Ut)

′ ∈ R
2+k+p : t = 1,2, . . .} (k

and p ∈ N and p > k +2) is an SSE sequence such that Xt has a positive value
with probability 1;

(ii) for each j, {Zt,jUt,Ft} is an adapted mixingale of size −1, where Zt,j

is the jth-row element, and Ft is the smallest σ -field generated by
{Ut,Zt,Et,Ut−1,Zt−1,Et−1, . . .};

(iii) (a) for each j, E[Z4
t,j] < ∞ and E[U4

t ] < ∞;
(b) for each j, E[D2

t,j] < ∞ and E[m2(Xt)] < ∞, where Dt,j is the jth-row
element of Dt;

(iv) (a) var(n−1/2Z′U) converges to � as n → ∞;
(b) var(n−1/2Z′U) is positive definite (PD) uniformly in n, and � is finite and

PD;
(v) (a) Mn converges to M0, as n → ∞;

(b) Mn is symmetric and PD uniformly in n, and M0 is finite and PD.

Assumption 2. (i) The structure between Yt and Et is specified as M :=
{mt(ω) := Yt − ξ0 − E′

tδ − βXγ
t : ω := (ξ0,δ

′,β,γ )′ ∈ � ⊂ R
k+4}, where

� := 	 × 
 × B × � such that 	, 
, B, and � := [γ,γ ] are convex and
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compact in R, Rk+1, R, and R, respectively; 0 is an interior element of B; and
0 and 1 are interior elements of �;

(ii) for the measurable functions m(·) and (ξ0∗,δ′
∗)′ ∈ R

2+k, Yt = ξ0∗ + E′
tδ∗ +

m(Xt)+Ut;
(iii) E[VtZ′

t] and
∑n

t=1 VtZ′
t have full row ranks uniformly in n, where Vt :=

(1,E′
t)

′.

Assumption 3. An SSE sequence {Mt} exists such that:

(i) E[M4
t ] < ∞ and supγ∈� |Xγ

t | ≤ Mt;
(ii) E[X4

t ] < ∞ and E[L4
t ] < ∞, where Lt := log(Xt).

Assumption 4. (i) For all ε > 0,E[Gt(·)Z′
t]M0E[ZtGt(·)′] is PD uniformly on

�(ε), where Gt(γ ) := (Xγ
t ,V′

t)
′ and �c(ε) := {γ ∈ � : |γ | ≥ ε or |γ −1| ≥ ε};

(ii) E[Gt,0Z′
t]M0E[ZtG′

t,0] is PD, where Gt,0 := (Lt,V′
t)

′;
(iii) E[Gt,1Z′

t]M0E[ZtG′
t,1] is PD, where Gt,1 := (XtLt,V′

t)
′.

Remarks. (a) Assumptions 1–3 impose the DGP, model, and moment condi-
tions, respectively. Assumption 1 is considered throughout this study, whereas
Assumptions 2 and 3 are considered only when extending the linear structure
testing to polynomial structures. In addition, Assumption 4 lets ω̂n be asymp-
totically nondegenerate even under H0.

(b) As a diagnostic procedure to check the nonsingular matrix condition in
Assumption 4, we can apply rank tests available in the literature (e.g., Bartlett,
1947; Cragg and Donald, 1996; Robin and Smith, 2000). For example, for
each γ ∈ �c(ε) if we let rank(E[Gt(γ )Z′

t]) = 2 + k be the null hypothesis of
Bartlett’s (1947) test and the null is rejected for every γ ∈ �c(ε), it becomes
a signal to satisfy Assumption 4(i). Likewise, we can check Assumptions 4(ii
and iii) by applying this diagnostic procedure.

(c) The DGP and moment conditions are not sufficient to apply the functional
central limit theorem (FCLT) as in Baek et al. (2015). However, the DGP and
moment conditions of this study are regular conditions to apply Scott’s (1973)
mixingale central limit theorem (CLT) to n−1/2 ∑ZtUt. We can obtain the DD-
test statistic null limit distribution by applying the CLT differently from Baek
et al. (2015), as detailed below.

(d) The DGP condition allows for a dynamic misspecification. If {Ut,Ft} forms a
martingale different array, var(n−1/2Z′U) would be identical uniformly in n.

(e) For power transformation, Xt needs to be positive. Otherwise, Xt would be
transformed to other positive variables, but we can allow them to be Xt here.
Since this transformation does not substantially modify our theory, we simply
assume that Xt has a positive value.

(f) Although M supposes a fixed form of model, the model condition can be
flexibly modified without difficulty. As an example, if the intercept term is
not needed for model construction, we can simply remove it from M, and the
DD-test can be applied in parallel to the presence of the intercept term. For
such a case, the rank condition needs to be modified to p > k +1.
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(g) The interior parameter condition for β∗ in Assumption 2 removes the asymp-
totic chance for ω̂n to exist as a set. If zero is on the boundary of the parameter
space, β̂n can be asymptotically zero with nonnegligible probability under the
null. For such a case, any γ ∈ � becomes γ̂n as it is a placeholder, so that ω̂n can
exist as a set. Instead, we impose the zero interior parameter space condition to
make β̂n be zero with probability converging to zero and remove the asymptotic
probability for ω̂n to exist as a set. Similarly, we do not impose the parameter
space condition for γ so that γ̂n is 0 or 1 with probability converging to zero
by the same rationale.

(h) Although we here focus on testing the structural linearity, our methodology
can be used to test the linearity hypothesis of the exogenous variable. Instead
of βXγ

t , we may modify M by introducing the power transformation of
the exogenous variable and test its linearity hypothesis by the methodology
described in Section 2.3.

2.3. Testing Structural Linearity

We now examine how the trifold identification problem is associated with the
null limit distribution. For this purpose, we first define three tests denoted below
as D(β=0)

n (ε), D(γ=0)
n , and D(γ=1)

n that test the three subconditions H0,1, H0,2,
and H0,3, respectively; and we next derive their limit approximations under their
respective subcondition. We finally demonstrate how the null approximations are
interrelated with each other, that we exploit to obtain the limit distribution of Dn

under H0.
In our first step, we examine the limit approximation under H0,1 : β∗ = 0. Note

that since γ∗ is not identified under H0,1, we conduct GMM optimization with
respect to γ in a later stage compared to for any other parameter. That is, we obtain
minγ minβ minς dn(ω). If we let Q1 := Z̈(I−Z̈′V(V′Z̈Z̈′V)−1V′Z̈)Z̈′, Z̈ := ZM1/2

n ,
and U := (U1, . . . ,Un)

′, then it follows that

D(β=0)
n (ε) := −infγ∈�c(ε)infβn−1{dn(β;γ )−dn(0;γ )}

= supγ∈�c(ε)

1

n

{X(γ )′Q1U}2

X(γ )′Q1X(γ )
, (3)

where D(β=0)
n (ε) denotes the DD-test testing H0,1. Here, the γ space is modified

from � to �c(ε) and excludes 0 and 1. If γ = 0 or 1, the model would introduce
the identification problems under H0,2 and H0,3 and complicate the derivation.
We relax this restriction, as demonstrated below, to derive the limit distribution
under H0.

Thus far, we provide the limit distribution of D(β=0)
n (ε) under H0,1.

LEMMA 1. Given Assumptions 1–4, and H0,1, for each ε > 0, we have
D(β=0)

n (ε) ⇒ supγ∈�c(ε)Z2
1 (γ ), where for each ε > 0, {Z1(γ ) : γ ∈ �c(ε)} is a

zero-mean Gaussian process such that for each pair (γ,γ ′), E[Z1(γ )Z1(γ
′)] =
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ρ1(γ,γ ′) := κ1(γ,γ ′)/{σ 2
1 (γ )σ 2

1 (γ ′)}1/2, κ1(γ,γ ′) := E[Xγ
t Z̃′

t]J1�̃J1E[Z̃tX
γ ′
t ],

σ 2
1 (γ ) := E[Xγ

t Z̃′
t]J1E[Z̃tX

γ
t ], Z̃t := M1/2

0 Zt, �̃ := M1/2
0 �M1/2

0 , and J1 := I −
E[Z̃tV′

t](E[VtZ̃′
t]E[Z̃tV′

t])
−1
E[VtZ̃′

t].

Remarks. (a) Although Lemma 1 represents the null limit distribution as
a Gaussian stochastic process function, the associated Gaussian process is
essentially the product of a deterministic γ function and a multivariate nor-
mal random variable. If for each γ , Z̃1(γ ) := π1(γ )′U , where π1(γ ) :=
J1E[Z̃tX

γ
t ]/σ 2

1 (γ )1/2 and U ∼ N(0,�̃), then the covariance kernel structure
of Z̃1(·) is identical to that of Z1(·), implying that the nonlinearity of Z1(·)
stems from π1(·).

(b) The covariance kernel of Z1(·) depends on the form of Mn. If Mn consistently

estimates �−1, then �̃ = I and κ1(γ,γ ′) = E[Xγ
t Z̃′

t]J1E[Z̃tX
γ ′
t ], because J1 is

an idempotent matrix, and so for each γ , ρ1(γ,γ ) = 1, and

ρ1(γ,γ ′) = κ1(γ,γ ′)√
κ1(γ,γ )

√
κ1(γ ′,γ ′)

.

(c) The rank condition in Assumption 2(iii) should be linked to J1. If E[VtZ′
t] had

been a square matrix with k = p, J1 = 0, so that we cannot test the hypothesis
by the DD-test statistic. The condition on the relationship between p and k in
Assumption 1(i), i.e., p > k+2, implies that the DD-test statistic is applicable
only to overidentified models.

We next examine the limit distribution of Dn under H0,2 if γ∗ = 0, ξ0∗ and β∗
are not separately identifiable. We therefore first assume that β∗ is unidentified,
to obtain the null approximation, then reverse the order by allowing ξ0∗ to be
unidentified, and finally compare them under H0,2. Since β∗ (resp. ξ0∗) is not
identified, we optimize dn(·) with respect to β (resp. ξ0) in a later stage compared
to any other parameter, to obtain

D(γ=0;β)
n := − inf

β
inf
γ

n−1{dn(γ ;β)−dn(0;β)} = sup
β

1

n

{C′
0Q1U}2

C′
0Q1C0

+oP(1), (4)

D(γ=0;ξ0)
n := − inf

ξ0
inf
γ

n−1{dn(γ ;ξ0)−dn(0;ξ0)} = sup
ξ0

1

n

{C′
0Q1U}2

C′
0Q1C0

+oP(1) (5)

by applying a second-order Taylor expansion, where C0 := [L1, . . . ,Ln]′, and
D(γ=0;β)

n (resp. D(γ=0;ξ0)
n ) denotes the DD-test designed to test H0,2 by treating β∗

(resp. ξ0∗) as an unidentified parameter. Here, the distance functions dn(·;β) and
dn(·;ξ0) in (4) and (5) are interpreted as functions of γ when optimizing them with
respect to γ while keeping β and ξ0 as nuisance parameters, respectively. In addi-
tion, the right-hand side (RHS) parameters of (4) and (5) are asymptotically free
of β and ξ0, respectively, under our regularity conditions. Thus, the maximization
with respect to β and ξ0 in (4) and (5), respectively, is an innocuous process relative
to the null limit distribution. Furthermore, the same asymptotic approximations in
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(4) and (5) imply the uniquely determined limit distribution of Dn irrespective of
the optimization order. We let D(γ=0)

n denote the DD-test designed to test H0,2 and
contain the null limit distribution in the following lemma.

LEMMA 2. Given Assumptions 1–4, andH0,2,D(γ=0)
n ={C′

0Q1U}2/{nC′
0Q1C0}

+ oP(1)
A∼ Z2

0 , where Z0
A∼ N(0,κ2

0 ) and κ2
0 := E[LtZ̃′

t]J1�̃J1E[Z̃tLt]/
E[LtZ̃′

t]J1E[Z̃tLt].

Remarks. (a) The null limit distribution in Lemma 2 is a noncentral chi-square
distribution, unlike the limit distribution underH0,1. This is mainly because the
null limit approximations in (4) and (5) are free of nuisance parameters β and
ξ0, respectively.

(b) As for the case under H0,1, if M0 = �−1, then κ2
0 = 1, and so D(γ=0)

n
A∼ X 2

1
under H0,2.

(c) The weak limits of the DD-test statistic under H0,1 and H0,2 are not indepen-
dent. We below examine their joint distribution along with the weak limits
under H0,3.

Next, we examine the limit distribution of Dn under H0,3 : γ∗ = 1. The process
is parallel to that under H0,2. That is, if γ∗ = 1, ξ1∗ and β∗ are not separately
identifiable. We therefore treat one of them as unidentified and identify the other
one similarly to that under H0,2. If we treat β∗ or ξ1∗ as the unidentified parameter,
the corresponding null approximation is obtained as

D(γ=1;β)
n := − inf

β
inf
γ∈�

n−1{dn(γ ;β)−dn(1;β)} = sup
β

1

n

{C′
1Q1U}2

C′
1Q1C1

+oP(1), (6)

D(γ=1;ξ1)
n := − inf

ξ1
inf
γ

n−1{dn(γ ;ξ1)−dn(1;ξ1)} = sup
ξ0

1

n

{C′
1Q1U}2

C′
1Q1C1

+oP(1) (7)

by applying a second-order Taylor approximation to dn(·), where for j = 1,2, . . .,
we let Cj := [Xj

tL1, . . ., Xj
nLn]. Here, D(γ=1;β)

n (resp. D(γ=1;ξ1)
n ) denotes the DD-

test designed to test H0,3 obtained by treating β∗ (resp. ξ1∗) as the unidentified
parameter, letting dn(·) be optimized with respect to β (resp. ξ1) in the final
stage, and interpreting dn(·;β) and dn(·;ξ1) in (6) and (7) as functions of γ when
optimizing them with respect to γ while keeping β and ξ1 as nuisance parameters,
respectively. As earlier, the RHS parameters of (6) and (7) are asymptotically free
of β and ξ1, respectively, under our regularity conditions, so that maximization
with respect to β and ξ0 in (6) and (7), respectively, becomes innocuous in
obtaining the null limit distribution. Furthermore, the null approximation in (6) is
identical to that in (7), implying that the limit distribution under H0,3 is uniquely
obtained irrespective of the optimization order. We let D(γ=1)

n denote the DD-test
designed to test H0,3 and contain its null limit distribution in the following lemma.
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LEMMA 3. Given Assumptions 1–4, andH0,3,D(γ=1)
n ={C′

1Q1U}2/{nC′
1Q1C1}

+ oP(1)
A∼ Z2

1 , where Z1 ∼ N(0,κ2
1 ) and κ2

1 := E[CtZ̃′
t]J1�̃J1E[Z̃tCt]/

E[CtZ̃′
t]J1E[Z̃tCt].

Finally, we derive the limit distribution of Dn under H0 using all the three
null approximations under H0,1, H0,2, and H0,3. Note that regular relationships
exist among the null approximations. For this examination, we first assume that
Nn(γ ) := {X(γ )′Q1U}2 and Dn(γ ) := nX(γ )′Q1X(γ ). These are the numerator
and denominator of (3), respectively, and we examine the probability limits when
γ converges to 0 or 1, to thereby remove the restriction to � by ε. Note that
plimγ→0Nn(γ ) = 0 and plimγ→0Dn(γ ) = 0, because γ → 0, implying that the
probability limit of the ratio must be obtained by the L’Hôpital rule. We observe the
same aspect when γ converges to 1. The following lemma contains the probability
limits of N(j)

n := (∂ j/∂γ j)Nn(γ ) and D(j)
n := (∂ j/∂γ j) Dn(γ ) for j = 1 and 2.

LEMMA 4. Given Assumptions 1 and 2,

(i) plimγ→0N(1)
n (γ ) = 0 and plimγ→0D(1)

n (γ ) = 0;
(ii) plimγ→1N(1)

n (γ ) = 0 and plimγ→1D(1)
n (γ ) = 0;

(iii) plimγ→0N(2)
n (γ ) = 2{C′

0Q1U}2 and plimγ→0D(2)
n (γ ) = 2nC′

0Q1C0;
(iv) plimγ→1N(2)

n (γ ) = 2{C′
1Q1U}2 and plimγ→1D(2)

n (γ ) = 2nC′
1Q1C1.

By Lemma 4, the L’Hôpital rule must be applied twice for the ratio probability
limits. That is,

plimγ→0
Nn(γ )

Dn(γ )
= {C′

0Q1U}2

nC′
0Q1C0

and plimγ→1
Nn(γ )

Dn(γ )
= {C′

1Q1U}2

nC′
1Q1C1

, (8)

that are in fact the null limit approximations given in Lemmas 2 and 3. This also
implies that

D(β=0)
n := sup

γ∈�

1

n

{X(γ )′Q1U}2

X(γ )′Q1X(γ )
≥ max

[ {C′
0Q1U}2

nC′
0Q1C0

,
{C′

1Q1U}2

nC′
1Q1C1

]
= max

[
D(γ=0)

n ,D(γ=1)
n

]+oP(1).

Therefore, the biggest GMM distance is obtained under H0,1 without restricting
� by ε. This implies that the limit distribution of the DD-test under H0 must be
represented as a functional of Z1(·) derived under H0,1. We summarize the key
result in the following theorem.

THEOREM 1. Given Assumptions 1–4, and H0, Dn ⇒ supγ∈� Z2
1 (γ ), where

Z1(0) and Z1(1) are defined as the limits of D(γ=0)
n and D(γ=1)

n , respectively.

If γ is restricted to either 0 or 1 in M, it becomes a linear model, so that the DD-
test becomes zero, implying that the null limit distribution of the DD-test without
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the restriction cannot be achieved by letting γ = 0 or 1, mainly because the DD-test
must be always greater than zero. We therefore simply let Z2

1 (0) and Z2
1 (1) be the

weak limits obtained from the right sides of (8) so that the null limit distribution
of the DD-test is not affected by this selection and Z2

1 (·) becomes continuous on
�, enabling us to apply the maximal principle for the existence of supγ∈� Z2

1 (γ ).
The null limit distribution of the DD-test can be obtained through simulation.

If π̂n,1(·) and �̂n consistently estimate π1(·) and �̃, respectively, the limit
distribution of supγ∈�(π̂n,1(γ )′Û)2 would estimate the null limit distribution of
Dn, provided that Û ∼ N(0,�̂n). Therefore, the empirical researcher can apply
Hansen’s (1996) weighted bootstrap and obtain the asymptotic critical values
as detailed in Section 4 (see also Cho, Cheong, and White, 2011). Here, when
computing supγ∈�(π̂n,1(γ )′Û)2, it would be more straightforward to apply the grid
search method than applying an optimization algorithm, because the dimension of
γ is 1.

2.4. Testing for Structural Nonlinearity

The DD-test has a consistent and nontrivial local power against general nonlin-
earity when valid instrumental variables are employed, to lead to omnibus power.
To examine this omnibus power, we assume the possibility of no (β,γ ) such that
m(Xt) = βXγ

t with probability 1, and examine the omnibus power property.
For this, we first derive the GMM distance limits under the null and alternative

models and then examine their difference. We examine the null distance at the
limit, that we denote as d0 := plimn→∞n−2dn(ω̃n), and obtain it by the ergodic
theorem:

d0 = min
ς

E[(Yt −V′
tς)Z′

t]M0E[(Yt −V′
tς)Zt] = E[m(Xt)Z̃′

t]J1E[Z̃tm(Xt)].

Here, if ς0 is the argument for d0, then ς0 = ς∗ + (E[VtZ̃′
t]E[Z̃tV′

t])
−1
E[VtZ̃′

t]
E[Z̃tm(Xt)], implying that the GMM estimator is asymptotically biased, as pointed
out by Hall and Inoue (2003). We then derive the alternative GMM distance at the
limit: for each γ , if d(γ ) := minς,β plimn→∞n−2dn(ς,β,γ ),

d(γ ) = min
ς,β

E[(Yt −V′
tς −βXγ

t )Z′
t]M0E[Zt(Yt −V′

tς −βXγ
t )]

= E[m(Xt)Z̃′
t]J1(γ )E[Z̃tm(Xt)],

where for each γ ∈ �, J1(γ ) := I − E[Z̃tVt(γ )′](E[Vt(γ )Z̃′
t]E[Z̃tVt(γ )′])−1

E[Vt(γ )Z̃′
t], and Vt(γ ) := (V′

t,X
γ
t ) = (1,E′

t,X
γ
t ), so that we obtain

d0 −d(γ ) = {E[m(Xt)Z̃′
t]J1E[Z̃tX

γ
t ]}2

E[Xγ
t Z̃′

t]J1E[Z̃tX
γ
t ]

(9)

by some tedious algebra. Note that J1E[Z̃tX
γ
t ] is the projection error of E[Z̃tX

γ
t ]

againstE[VtZ̃′
t], and J1 is an idempotent matrix, so that {E[m(Xt)Z̃′

t]J1E[Z̃tX
γ
t ]}2 >

0, unless E[m(Xt)Z̃t] and E[Xγ
t Z̃t] are subvectors of E[VtZ̃t]. Therefore, for each
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γ , d0 − d(γ ) > 0. Here, even for γ = 0 or 1, d0 − d(γ ) > 0. If γ = 0 or 1, then
J1E[Z̃tX

γ
t ] = 0, because E[Xγ

t Z̃t] is a subvector of E[VtZ̃t], so that the RHS of (9)
is obtained by the L’Hôpital rule for γ = 0 or 1. Therefore,

plim
γ→0

d0 −d(γ ) = {E[m(Xt)Z̃′
t]J1E[Z̃tLt]}2

E[LtZ̃′
t]J1E[Z̃tLt]

and

plim
γ→1

d0 −d(γ ) = {E[m(Xt)Z̃′
t]J1E[Z̃tCt]}2

E[CtZ̃′
t]J1E[Z̃tCt]

.

Note that the two limits are still strictly positive.
The DD-test gains its power from the difference between d0 and d(·). Note that

n−1Dn = d0 − infγ∈� d(γ )+oP(1) = supγ∈� μ2
1(γ )+oP(1), where

μ2
1(·) := ρ2(h,g(·)) · (h′h) := {h′g(·)}2

{h′h} · {g(·)′g(·)} · (h′h)

and h := J1E[Z̃tm(Xt)] and g(γ ) := J1E[Z̃tX
γ
t ]. Indeed, supγ∈� μ2

1(γ ) is strictly
positive, to obtain a consistent power for the DD-test statistic. We include this
result in the following theorem.

THEOREM 2. Given Assumptions 1–4,

(i) if J1E[Z̃tm(Xt)] �= 0 and there is no (β,γ ) such that m(Xt) = βXγ
t with

probability 1, then for some γ̃ ∈ �, d(γ̃ ) ∈ (0,d0) and n−1Dn = d0 − d(γ̃ )+
oP(1);

(ii) if for the measurable function s(·), m(Xt) = n−1/2s(Xt) with probability
1, J1E[Z̃ts(Xt)] �= 0, and there is no (β,γ ) such that s(Xt) = βXγ

t

with probability 1, then Dn ⇒ supγ∈�{Z1(γ ) + ν1(γ )}2, where ν1(·) :=
E[X(·)

t Z̃t]J1E[Z̃ts(Xt)]/σ1(·).

Remarks. (a) For a consistent power, we need to select valid instrumental
variables for J1E[Z̃tm(Xt)] �= 0, as presumed for the proper application of the
DD-test. Note that the relationship between p and k and the rank condition
in Assumptions 1(i) and 2(iii), respectively, imply J1 �= 0 as remarked below
Lemma 1, from which E[Z̃tm(Xt)] �= 0 is virtually imposed by the nonzero
condition in Theorem 2(i).

(b) The DD-test draws its consistent power from a factor different from that for
the J-test, that directly tests whether or not E[Z̃tm(Xt)] = 0 and asymptotically
rejects the linear structure condition if the instrumental variables are not valid.
In contrast, the DD-test draws its power from the uncentered correlation
between h and g(·); this implies that the J- and DD-tests supplement each other.
If the J-test rejects the null but the DD-test does not, the rejection is highly
related to E[Z̃tm(Xt)] �= 0.

(c) From Theorem 2(i), the DD-test has a consistent power even when the power
transform misspecifies the functional form of m(·). If the power transformation
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correctly specifies the functional form of m(·), the power obtained consistently
is trivial. That is, if for some γ∗ ∈ � \ {0,1}, m(Xt) = β∗Xγ∗

t , then n−1Dn =
β2∗E[Xγ∗

t Z̃′
t]J1E[Z̃tX

γ∗
t ] + oP(1); this is strictly positive at the limit, implying

that Dn has nontrivial asymptotic power.
(d) For an intuitive proof of Theorem 2(i), note that the DD-test does not have an

asymptotic power if and only if ρ(g(·),h) ≡ 0, but this condition is contradic-
tory to the provided condition. Suppose that, for each γ , E[Z̃tX

γ
t ] = 0, and this

implies that E[Z̃t|Xt] = 0 from the fact that E[Z̃tX
γ
t ] = ∇τE[exp(γ log (Xt)+

τ ′Z̃t)]|τ=0 and E[exp(γ log(Xt) + τ ′Z̃t)] is a moment generating function of
(log(Xt),Z̃′

t)
′, so that if E[Z̃tX

γ
t ] = 0, then E[Z̃t| log(Xt)] = 0. Here, log(·)

is a measure-preserving transformation, so that E[Z̃t| log(Xt)] = E[Z̃t|Xt].
Therefore, E[Z̃tm(Xt)] = 0 is implied by the law of iterated expectation. Note
that it is contradictory to the requirement that J1E[Z̃tm(Xt)] �= 0, leading to a
nonzero correlation coefficient between h and g(γ ) for some γ .

(e) The intuition of the power property in Theorem 2(i) should be straightforward.
The DD-test may be comparable to the specification test in Bierens (1990)
that first computes an infinite number of moment conditions and next chooses
the worst moment condition to gain the power. Differently from this, the DD-
test first computes the infinite number of moments given by J1E[Z̃tm(Xt)] and
J1E[Z̃tX

(·)
t ] and next gains the power by choosing γ of J1E[Z̃tX

γ
t ] that best

approximates J1E[Z̃tm(Xt)] in terms of the uncentered correlation coefficient.
(f) From Theorem 2(ii), the DD-test has a nontrivial power against a local

alternative converging to zero at the rate of n−1/2. Note that the asymptotic
local power can be gained by shifting the locality parameter of Z1(·) by ν1(·),
that is different from 0, as implied by Theorem 2(i).

2.5. Asymptotic Uniform Inference

The null limit distribution in Theorem 1 can be used to implement the DD-test
uniformly on the parameter space. In this section, we examine this feature by inves-
tigating whether the asymptotic size defined as limsupn→∞ supω∗∈�Pω∗(Dn >

cvn(α)) is less than or equal to α as examined by Andrews and Cheng (2015)
and Elliott, Müller, and Watson (2015) in their frameworks.

Testing linearity by the DD-test can be applied to testing different hypotheses.
Note that Theorem 1 implies that the null limit distribution is determined by that
testing H0,1 : β∗ = 0. Due to this aspect, we focus on the hypothesis H′

0 : β∗ = β0

for the asymptotic size, where β0 is not necessarily equal to zero. We first note that
the DD-test can be written as

Dn = sup
γ∈�

n−1{dn(̃ξ0,n,̃δn,β0,γ̃n)−dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ )},

where (̂ξ0,n(γ ),̂δn(γ ),β̂n(γ )) := arg infξ0,δ,β
dn(ω) and (̃ξ0,n,̃δn,γ̃n) := arg infξ0,δ,γ

dn(ω) subject to β∗ = β0. Note that γ̃n is a placehold if β0 = 0, but it must be
estimated, otherwise.
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The null limit distribution of the DD-test is obtained under some mild regularity
conditions. For this derivation, we further suppose the following conditions along
with the earlier ones.

Assumption 5. (i) {ω ∈ � : E[mt(ω)Zt] = 0} has a unique element as an
interior element of �, provided that β∗ �= 0 or γ∗ �= 0, 1.

(ii) For all ε > 0, E[Gt,2(·)Z′
t]M0E[ZtGt,2(·)′] is PD uniformly on �(ε), where

Gt,2(γ ) := (Xγ
t ,Xγ

t Lt,V′
t)

′.

By Assumption 5(i), the model is identified unless H0 is supposed.
The derivation of the null limit distribution is facilitated by exploiting the

structure of the DD-test. We first note that

dn(̃ξ0,n,̃δn,β0,γ̃n) = inf
γ∈�

[U−β∗(X(γ )−X(γ∗))]′Q1[U−β∗(X(γ )−X(γ∗))]

(10)

under H′
0 and

dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ )

= [U−β∗(X(γ )−X(γ∗))]′P(γ )[U−β∗(X(γ )−X(γ∗))], (11)

where P(γ ) := Q1 − Q1X(γ )(X(γ )′Q1X(γ ))−1X(γ )′Q1. The RHSs of (10) and
(11) are obtained by first concentrating the GMM distance with respect to (ξ0,δ)

and (ξ0,δ,β), respectively. If we further let H(γ ) := J1 −g(γ )(g(γ )′g(γ ))−1g(γ )′
and d(γ ) := J1E[Z̃tX

γ
t log(Xt)] and suppose that n−1/2U′Z̈ ⇒ U ∼ N(0,�̃) by

applying Assumption 1, it now follows that

Dn ⇒ inf
s

[U −β∗sd(γ∗)]′J1[U −β∗sd(γ∗)]

− inf
s

[U −β∗sd(γ∗)]′H(γ∗)[U −β∗sd(γ∗)]

= Z2
2 (γ∗) := {g(γ∗)′K(γ∗)U}2

g(γ∗)′K(γ∗)g(γ∗)

under H′
0, provided that β0 �= 0, for γ∗ �= 0, 1. Here, to obtain the weak limit,

we used the fact that X(γ ) − X(γ∗) = D(γ∗)(γ − γ∗) + oP((γ − γ∗)) and J1 is
idempotent, where we let K(γ∗) := I − d(γ∗)(d(γ∗)′d(γ∗))−1d(γ∗)′, D(γ∗) :=
[D1(γ∗). . . ,Dn(γ∗)]′ with Dt(γ∗) := Xγ∗

t Lt, and s captures the asymptotic distance
measured by

√
n(γ − γ∗). Note that the null limit distribution is free of β∗. In

contrast, if β0 = 0 and/or γ∗ = 0, 1,

Dn = n−1U′Q1U− inf
γ∈�

n−1U′P(γ )U = sup
γ∈�

1

n

{X(γ )′Q1U}2

X(γ )′Q1X(γ )
⇒ sup

γ∈�

{g(γ )′U}2

g(γ )′g(γ )

under H′
0. By letting π1(·) := {g(·)′g(·)}−1/2g(·), note that the consequent limit

becomes the same weak limit as given in Theorem 1. We contain these null limit
distributions in the following theorem.

https://doi.org/10.1017/S026646662200038X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200038X


114 JAEDO CHOI ET AL.

THEOREM 3. Given Assumptions 1–5, and H′
0 : β∗ = β0,

(i) if β0 = 0 and/or γ∗ = 0, 1, Dn ⇒ supγ∈� Z2
1 (γ );

(ii) if β0 �= 0 and γ∗ �= 0, 1, Dn ⇒ Z2
2 (γ∗) such that Z2(γ∗) ∼ N(0,κ2

2 (γ∗)) and
κ2

2 (γ∗) := g(γ∗)′K(γ∗)�̃K(γ∗) g(γ∗)/g(γ∗)′K(γ∗)g(γ∗).

As a remark to Theorem 3, the null limit distribution in Theorem 3(ii) can also
be derived by using the following null approximation:

Dn = 1

n

{X(γ∗)′(Q1 −Q1D(γ∗)(D(γ∗)′Q1D(γ∗))−1D(γ∗)′Q1)U}2

X(γ∗)′(Q1 −Q1D(γ∗)(D(γ∗)′Q1D(γ∗))−1D(γ∗)′Q1)X(γ∗)
+oP(1).

(12)

If we apply the CLT or ergodic theorem to the relevant quantities on the RHS of
(12), the same null limit distribution is also obtained as given in Theorem 3(ii).

The null limit distributions in Theorem 3 are obtained by fixing the unknown
parameter value, but we can exploit them to examine the asymptotic size. Note
that the GMM distances given by (10) and (11) are influenced by only β∗ and γ∗,
so that we can focus on its parameter space for the asymptotic uniform inference.
We separate the parameter space into two subsets by noting that the null limit
distribution depends on whether the model is identified or not. That is, for every
ε > 0, we let B(ε) := {β ∈ B : |β| < ε} and Bc(ε) := B \ B(ε). Likewise, we let
�(ε) := {γ ∈ � : |γ | < ε or |γ −1| < ε} and �c(ε) := � \�(ε). Note that ϒ0 :=
limε↓0 B(ε) × �(ε) collects the null parameter values for (β∗,γ∗) when the null
model is not identified, so that the null limit distribution in Theorem 3(i) is obtained
for (β∗,γ∗) ∈ ϒ0. On the other hand, if (β∗,γ∗) ∈ ϒc(ε) := Bc(ε)×�c(ε), the null
limit distribution in Theorem 3(ii) applies, so that we can handle the identified
model case by Assumption 5(ii). We now provide the results on the asymptotic
size in the following theorem.

THEOREM 4. Given Assumptions 1–5, and H′
0 : β∗ = β0,

(i) limsupn→∞ sup(β∗,γ∗)∈ϒ0
Pω∗(Dn > cv1(α)) = α, where cv1(α) := inf{x ∈

R
+ : F1(x) ≥ 1−α} and for every x ≥ 0, F1(x) := P(supγ∈� Z2

1 (γ ) ≤ x);
(ii) for any ε > 0, limsupn→∞ sup(β∗,γ∗)∈ϒc(ε)Pω∗(Dn > cv2(α)) = α, where

cv2(α) := inf{x ∈ R
+ : F2(x) ≥ 1 − α} and for every x ≥ 0, F2(x) :=

P(Z2
2 (γ∗) ≤ x);

(iii) limsupn→∞ sup(β∗,γ∗)∈B×� Pω∗(Dn > cv(α)) ≤ α, where cv(α) := cv1(α) if
(β∗,γ∗) ∈ ϒ0; and cv(α) := cv2(α), otherwise.

Remarks. (a) Theorem 4(i) directly follows from Theorem 3(i) as all parameter
values in ϒ0 characterize the linear model and Theorem 4(i) obtains the null
limit distribution under the linear model assumption.

(b) We prove Theorem 4(ii) in the Appendix by proving that Theorem 3(ii) holds
uniformly on �c(ε) for any ε > 0, and from this, we derive the null weak limit
of the DD-test indexed by β∗ and γ∗ as a functional of a Gaussian process
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defined on the parameter space, so that for each ω∗, it follows that Pω∗(Dn >

cv2(α)) = α.
(c) Despite the asymptotic result in Theorem 4(ii), it does not necessarily imply

that the empirical rejection rate of the DD-test is equally performing irrespec-
tive of the value of (β∗,γ∗). In Section 4.2, we demonstrate by simulation that
for finite n, the empirical rejection rate of the DD-test can be different from α,
depending on whether β∗ is close to 0 and/or γ∗ is close to 0 or 1.

(d) Theorem 4(iii) is obtained by combining the results in Theorem 4(i and ii).

2.6. Weak Instrumental Variables

Many empirical studies often estimate the model using both strong and weak
instrumental variables (e.g., Angrist and Krueger, 1991). In this section, we
examine the influence of weak instrumental variables to the DD-test. As it turns
out, the null limit distribution of the DD-test is virtually determined by strong
instrumental variables.

For this examination, we slightly generalize the earlier assumption. We first
partition the instrumental variable Zt into St ∈ R

ps and Wt ∈ R
pw such that Zt ≡

(S′
t,W

′
t)

′ and p ≡ ps + pw. Here, St and Wt denote strong and weak instrumental
variables, respectively. The earlier discussion in Section 2.3 assumes that pw = 0,
so that Zt = St. Due to the presence of the weak instrumental variable Wt, it is
not valid to suppose Assumption 2(iii) any longer. We therefore modify it into the
following assumption.

Assumption 6. (i) Zt ≡ (S′
t,W

′
t)

′, where St ∈ R
ps and Wt ∈ R

pw ;
(ii) E[VtS′

t] and
∑n

t=1 VtS′
t have full column ranks uniformly in n, respectively;

(iii) Wt = n−1/2μw +W0t such that
∑n

t=1 W0tVt = OP(
√

n).

Note that Assumption 6(iii) implies that E[VtW′
t] = n−1/2

E[Vt]μ′
w, so that the

influence of Wt to Vt reduces to zero as n tends to infinity at the rate of n−1/2, by
which we desire to capture the feature of a weak instrumental variable.

Given this, we derive the null limit distribution in parallel to the null limit
distribution in Theorem 1. Note that the finite sample analog of the DD-test is
given as

Dn = sup
γ∈�

1

n

{X(γ )′Q1U}2

X(γ )′Q1X(γ )

under H0. Each component on the right side has the following limit behavior:

(i) n−1X(·)′Z̈ = n−1[X(·)′S̈,X(·)′Ẅ] = [E[X(·)
t S̃t],0′

1×pw
] + oP(1) uniformly on

�, where S̈ and S̃t are such that [S̈,Ẅ] = [S,W]M1/2
n and [̃S′

t,W̃
′
t]

′ :=
M1/2

0 [S′
t,W

′
t]

′;
(ii) n−1/2U′Z̈ = n−1/2[U′S̈,U′Ẅ] ⇒ [U ′

s,U ′
w] =:U ′, where U s and Uw denote the

weak limits of n−1/2U′Z̈ driven by the strong and weak instrumental variables,
respectively;
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(iii) n−1V′Z̈ = n−1[V′S̈,V′Ẅ] = [E[Vt̃S′
t],0(2+k)×pw ]+oP(1).

As proving these is elementary, we do not separately derive these limits in the
Appendix.

The null limit distribution can be obtained by combining the separately obtained
limits according to the sample analog of the DD-test. We contain it in the following
theorem.

THEOREM 5. Given Assumptions 1, 2(i, ii), 3, 4, and 6, and H0, if ps >

2 + k, Dn ⇒ supγ∈� Z2
s (γ ), where Zs(·) := π s(·)′U s, π s(·) := JsE[X(·)

t S̃t]/

{E[X(·)
t S̃′

t]JsE[̃StX
(·)
t ]}1/2 with Js := Ips −E[̃StV′

t](E[Vt̃S′
t]E[̃StV′

t])
−1
E[Vt̃S′

t].

Remarks. (a) Theorem 5 implies that the null limit distribution of the DD-
test is virtually determined by the strong instrumental variables. The weak
instrumental variables may affect the null limit distribution through Mn if the
empirical researcher selects the weighting matrix to influence M0 through the
weak instrumental variables. Otherwise, the null limit distribution is identical
to that given in Theorem 1.

(b) Note that Js is not well defined if E[Vt̃S′
t]E[̃StV′

t] is singular. Given that
E[VtS′

t] is a full-column rank matrix, Theorem 5 avoids having this singular
matrix problem by supposing that ps > 2+k. From this aspect, the DD-test can
still be successfully exploited if the number of strong instrumental variables is
greater than the number of explanatory variables.

3. EXTENSION TO TESTING THE POLYNOMIAL MODEL
HYPOTHESIS

3.1. Motivation and Model

We believe that the empirical researcher would approximate the unknown func-
tional form of m(·) using the polynomial model specified as

Mq :=
{

mt,q(ω
(q)) := Yt −X′

t,qξ
(q) −D′

tη−βXγ
t : ω(q) ∈ �(q) ⊂ R

k+q+3
}
,

where ω(q) := (ξ (q)′,η′,β,γ )′, Xt,q := (1,Xt,X2
t , . . . ,X

q
t )

′, ξ (q) := (ξ0,ξ1, . . . ,ξq)
′,

and k and q ∈ N. As earlier, we assume that for some ω
(q)
∗ ∈ �(q), Yt = X′

t,qξ
(q)
∗ +

D′
tη∗ + m(Xt) + Ut such that E[ZtUt] = 0, and Xt and Dt are endogenous and

exogenous variables respectively. Note that this structure generalizes the linear
structure in Section 2. If q = 1, then Mq is identical to M, whereas the structural
equation is possibly nonlinear for q > 1.

In this section, we extend the linear structure testing condition to testing a
polynomial structure. Here, a sequential testing procedure can be used to estimate
a nonlinear polynomial structure consistently.
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The main aim of sequential testing is to estimate a parsimonious structural
model. Note that semi/nonparametric sieve estimation exploits as many sieve bases
as the sample size allows and leads to possibly unnecessary estimation errors
for the estimator. A sequential testing procedure is a machinery process to avoid
unnecessary estimation error.

The motivation of Mq comes from estimating a reduced-form equation through
sieve approximation. Each polynomial term forms a sieve basis, with the unknown
reduced-form equation well known to be approximated arbitrarily well through
a polynomial function by increasing its degree. Another standard method is to
estimate the unknown sieve estimation degree using information criteria (e.g.,
Chen and Liao, 2014). Cho and Phillips (2018) apply the sequential testing
procedure based on the QLR-test statistic to the polynomial model and find that it
can consistently estimate the nonlinear reduced-form equation.

We apply the sequential testing procedure in Cho and Phillips (2018) to
the nonlinear structure using the DD-test. Since the structural form of m(·) is
unknown, the sieve estimation motivates to approximate m(·) using a higher-degree
polynomial function. If the DD-test does not reject the high-degree polynomial
model, the sequential testing procedure would take it as m(·) or its close approxi-
mation, enabling the researcher to develop an economic theory consistent with the
empirical estimate obtained using the sequential testing procedure.

Another motivation to use sequential testing stems from the MSC developed
by Andrews (1999). We discuss this motivation by focusing on the Bayesian-
type MSC among others and relating it to the sequential testing procedure. The
Bayesian-type MSC is defined as BCn,q := J̄n,q − (p− k −q−1) log(n)/n, where
J̄n,q := n−1Jn,q and Jn,q is the J-test statistic designed to test the qth-degree
polynomial structural equation such that q = 1,2, . . . ,q̄ < ∞. The MSC selects the
polynomial model with the smallest value of BCn,q for q = 1,2, . . . ,q̄. If q∗ < q̄,
Andrews (1999) shows that the Bayesian-type MSC asymptotically selects the
q∗th-degree polynomial model. The same result can be rephrased in terms of

BCn,q := BCn,q+1 −BCn,q = J̄n,q+1 − J̄n,q + 1

n
log(n)

under some regularity conditions. If q ≥ q∗, plimn→∞BCn,q = 0, because
the probability limits of J̄n,q+1 and J̄n,q are identical since the qth-degree
polynomial model is nested in a higher-degree polynomial model. Thus, if
limn→∞P(BCn,q < 0) = 1 for every q < q∗, then q∗ must be the smallest
q among the qs, such that plimn→∞BCn,q is zero. From this feature, we can
consistently estimate q∗ by sequentially testing whether plimn→∞BCn,q is less
than or equal to 0 from q = 1 to q = q̄ until we cannot reject the hypothesis that
plimn→∞BCn,q = 0.

We design our sequential testing procedure to ensure the undergoing supposi-
tion. The procedure using BCn,q would work properly if limn→∞P(BCn,q <

0) < 1 holds for every q < q∗. Otherwise, the procedure would fail to esti-
mate q∗ consistently. We thus avoid this fallacy by replacing BCn,q with the

https://doi.org/10.1017/S026646662200038X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200038X


118 JAEDO CHOI ET AL.

DD-test statistic. The DD-test has omnibus power, implying that for every q < q∗,
limn→∞P(Dn,q < 0) < 1, where we let Dn,q be the DD-test statistic testing the qth
degree polynomial hypothesis, as formally defined below. Therefore, the fallacy
probability becomes negligible as n increases.

The sequential testing procedure also tackles the data snooping bias that arises
from testing multiple hypotheses. As pointed out by Hosoya (1989) and Cho and
Phillips (2018) among others, a sequential testing procedure needs to test from
the smallest hypothesis to bigger ones. Otherwise, it fails to control type-I error
consistently, leading to a data snooping bias. We therefore start from testing a linear
model hypothesis and increase the polynomial degree to the second degree in case
we reject the linear model. In this manner, we continue increasing the degree one by
one until we fail to reject the null model, enabling us to test the polynomial model
hypothesis in an inclusive manner, and by this, we can eliminate a data snooping
bias asymptotically. In addition, we also design our testing procedure to estimate q∗
consistently by letting the level of significance depend on n. If a sequential testing
procedure is combined with a constant level of significance, α say, it estimates q∗
inconsistently with an asymptotic probability for the estimated polynomial degree
to differ from q∗ being equal to α. We instead let the level of significance level
converge to zero as n increases, that lets the estimated degree converge to q∗ in
probability. We discuss this more specifically below. For this, we first examine
the qth-degree polynomial model testing and then apply the sequential testing
procedure to estimate the polynomial structure.

3.2. Inference Using the DD-Test

We assume that the empirical researcher is testing whether the qth-degree polyno-
mial model is adequate or not for the nonlinear structure by letting the null model
be the qth-degree polynomial function.

The testing procedure using Mq is similar to that using M. Note that Mq can
be transformed into the qth-degree polynomial model in q + 2 different ways, as
with the linear model:

H′′
0,1 : β∗ = 0, H′′

0,2 : γ∗ = 0, · · · , H′′
0,q+1 : γ∗ = q−1, or H′′

0,q+2 : γ∗ = q.

Since any of these hypotheses would generate the qth-degree polynomial model,
we treat them as the subhypotheses of H′′

0 := ∪q+2
s=1H′′

0,s, that is now the null hypoth-
esis of this section. Each subhypothesis has its own identification problem: γ∗ is not
identified under H′′

0,1; for s = 0,1, . . . ,q, β∗ and ξs,∗ are not separately identified
under H′′

0,s+2. This forms a multifold identification problem that generalizes the
trifold identification problem in Section 2.3.

We then use the DD-test to overcome the multifold identification problem. For
this, we define the DD-test as

Dn,q := n−1{dn(ω̃
(q)
n )−dn(ω̂

(q)
n )},
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where ω̃(q)
n := argminω(q)∈�(q) dn(ω

(q)), subject to β = 0, ω̂(q)
n := argminω(q)∈�(q)

dn(ω
(q)), and

dn(ω
(q)) := (Y−βX(γ )−Vqς

(q))ZMnZ′(Y−βX(γ )−Vqς
(q)).

Here, we assume that Vq := [V′
1,q, . . . ,V

′
n,q]′, Vt,q := (1,E′

t,q)
′ := (1,X′

t,q,D
′
t)

′, and

ς (q) := (ξ (q)′,η′)′, so that ω(q) = (ς (q)′,β,γ )′. Note that if q = 1, Vq and Vt,q would
be identical to V and Vt in Section 2.3, respectively, so that Dn,1 = Dn.

We now obtain the null limit distribution of the DD-test as for the linear model
case. For this, we extend the earlier model and moment conditions, to have the
following assumption.

Assumption 7. (i) The structure between Yt and Et is specified as Mq :=
{mt,q(ω

(q)) := Yt − X′
t,qξ

(q) − D′
tη − βXγ

t : ω(q) ∈ �(q) ⊂ R
k+q+3}, where

�(q) := 	(q) × 
 × B × �(q) such that 	(q), 
, B, and �(q) := [γ,γ ] are
convex and compact in R

q, Rk+1, R, and R, respectively; 0, 1, . . ., and q
are interior elements of �(q);

(ii) for the measurable functions m(·) and (ξ0∗,δ(q)′
∗ )′ ∈ R

1+k+q, Yt = ξ0∗ +
E′

t,qδ
(q)
∗ + m(Xt) + Ut, where Et,q := (1,X′

t,q,D
′
t)

′ and Xt,q :=
(1,Xt,X2

t , . . . ,X
q
t )

′;
(iii) E[Vt,qZ′

t] and V′
qZ have full row ranks uniformly in n, where Vt,q = (1,E′

t,q)
′

and Vq := [V′
1,q, . . . ,V

′
n,q]′;

(iv) an SSE sequence {Mt} exists such that E[M4
t ] < ∞ and supγ∈�(q) |Xγ

t | ≤ Mt;

(v) E[X4q
t ] < ∞ and E[L4

t ] < ∞;
(vi) E[Gt(·)Z′

t]M0E[ZtGt(·)′] is PD uniformly on �, where Gt(γ ) := (Xγ
t ,V′

t,q)
′;

(vii) for j = 1,2, . . . ,q, E[Gt,jZ′
t]M0E[ZtG′

t,j] is PD, where Gt,j :=
(Xj

t log(Xt),V′
t,q)

′.

Remarks. (a) The parameter space condition in Assumption 2 is modified to
include 0,1, . . . ,q as interior elements of �(q).

(b) Note that if q = 1, Assumption 7 would imply Assumptions 2–4.

Under the above conditions, we can obtain the properties of the DD-test as for
the linearity testing. For this, we follow the approach of the linear model case. Let

D(β=0)
n,q := −infγ∈�(q,c)(ε)infβn−1{dn(β;γ )−dn(0;γ )} = sup

γ∈�(q)

1

n

{X(γ )′QqU}2

X(γ )′QqX(γ )
,

to obtain the null limit distribution of the DD-test under H′′
0,1, where dn(β;γ ) :=

minς (q) dn(ω
(q)), and Qq := Z̈{I − Z̈′Vq(V′

qZ̈Z̈′V′
q)

−1V′
qZ̈}Z̈′. Next, as for the

linear model case, for each s = 0,1, . . . ,q, let

D(γ=s)
n,q := max[D(γ=s;ξs)

n,q ,D(γ=s;β)
n,q ],

https://doi.org/10.1017/S026646662200038X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200038X


120 JAEDO CHOI ET AL.

to obtain the null limit distribution of the DD-test under H′′
0,2+s, where

D(γ=s;β)
n,q := −infβ infγ n−1{dn(γ ;β)−dn(1;β)} and

D(γ=s;ξs)
n,q := −infξs infγ n−1{dn(γ ;ξs)−dn(1;ξs)}

with dn(γ ;β) := minς (q) dn(ω
(q)), dn(γ ;ξs) := min

ξ
(q)
−s,η,β

dn(ω
(q)), and ξ

(q)
−s :=

(ξ0, . . . ,ξs−1,ξs+1, . . . , ξq)
′. We obtain all these statistics by optimizing the GMM

distance function with regard to the unidentified parameters under each subnull
hypothesis H′′

0,2+s in the final stage. The null limit approximation of the DD-test
is obtained as their maximum, as for the linear model case. That is, if we let

D̃n,q := max[D(β=0)
n,q ,D(γ=0)

n,q ,D(γ=1)
n,q , . . . ,D(γ=q)

n,q ],

then the DD-test Dn,q would be asymptotically equivalent to D̃n,q and D̃n,q =
D(β=0)

n,q +oP(1) under H′′
0 by analogy, so that Dn,q = D(β=0)

n,q +oP(1) under H′′
0.

The omnibus power of the DD-test is also obtained as for the linear model
case. For the desired properties, we assume that for the measurable function
m(·), Yt = X′

t,qξ
(q)
∗ + D′

tη∗ + m(Xt) + Ut such that E[UtZt] = 0, with possibly
no (β,γ ), such that m(Xt) = βXγ

t with probability 1. Given this, it follows that
plimn→∞n−2{dn(ω̃

(q)
n )−dn(̂ς

(q)
n (γ ),γ )} = supγ∈�(q) μ2

q(γ ) by applying the ergodic

theorem, where ς̂ (q)
n (γ ) := argminς dn(ς,γ ), ς (q) := (ξ (q)′,η′)′, and for each γ ∈

�(q),

μq(γ ) := E[m(Xt)Z̃′
t]JqE[Z̃tX

γ
t ]

{E[Xγ
t Z̃′

t]JqE[Z̃tX
γ
t ]}1/2

.

Here, Jq := I − E[Z̃tV′
t,q](E[Vt,qZ̃′

t] E[Z̃tV′
t,q])−1

E[Vt,qZ̃′
t]. From this, if

supγ∈�(q) μ2
q(γ ) > 0, the DD-test would have a consistent power.

We collect these null and alternative limit properties, to obtain the following
corollary.

COROLLARY 1. Given Assumptions 1 and 7,

(i) Dn,q ⇒ supγ∈�(q) Z2
q (γ ) under H′′

0 , where {Zq(γ ) : γ ∈ �(q)} is a zero-
mean Gaussian process such that for each pair (γ,γ ′), E[Zq(γ )Zq(γ

′)] =
ρq(γ,γ ′) := κq(γ,γ ′)/{σ 2

q (γ )σ 2
q (γ ′)}1/2, κq(γ,γ ′) := E[Xγ

t Z̃′
t]Jq�̃Jq

E[Z̃tX
γ ′
t ], σ 2

q (γ ) := E[Xγ
t Z̃′

t]JqE[Z̃tX
γ
t ], and for each j = 0,1, . . . ,q, Z2

q (j) is

the limit of D(γ=j)
n,q ;

(ii) if JqE[Z̃tm(Xt)] �= 0, and possibly there is no (β,γ ) such that m(Xt) = βXγ
t

with probability 1, then for some γ̃ ∈ �(q), n−1Dn,q = μ2
q(γ̃ )+oP(1) such that

μ2
q(γ̃ ) > 0;

(iii) if for a measurable function s(·), m(Xt) = n−1/2s(Xt) with probability 1,
J1E[Z̃ts(Xt)] �= 0, and possibly there is no (β,γ ) such that s(Xt) = βXγ

t
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with probability 1, then Dn,q ⇒ supγ∈�(q){Zq(γ ) + νq(γ )}2, where νq(·) :=
E[X(·)

t Z̃t]JqE[Z̃ts(Xt)]/σ1(·).

Remarks. (a) Corollary 1 generalizes the consequences in Theorems 1 and
2 to the polynomial model case; we can prove them by iterating the proofs
of Theorems 1 and 2. We summarize the proof as follows: first, for each
ε > 0, it follows that D(β=0)

n,q (ε) ⇒ supγ∈�(q,c)(ε)Z2
q (γ ) under H′′

0,1 by extend-

ing Lemma 1, where �(q,c)(ε) := �(q) \ ∪q
j=0(j − ε,j + ε); second, for each

s = 0,1, . . . ,q, it follows that D(γ=s)
n,q = {C′

sQqU}2/{nC′
sQqCs}+ oP(1) under

H′′
0,s+2 : γ∗ = s; finally, if we assume that Nn,q(γ ) := {X(γ )′QqU}2 and

Dn,q(γ ) := nX(γ )′QqX(γ ), then for each s = 0,1,2, . . . ,q,

plimγ→s
Nn,q(γ )

Dn,q(γ )
= 1

n

{C′
sQqU}2

C′
sQqCs

= D(γ=s)
n,q +oP(1);

this implies that the GMM distance obtained under H′′
0,1 becomes larger than

those obtained under H′′
0,s with s = 2,3, . . . ,q+2. Thus, Dn,q =D(β=0)

n,q +oP(1)

underH′′
0, as for the linear model case. Since this proof slightly generalizes that

condition already demonstrated for the linearity, we do not repeat this same
proof in the Appendix.

(b) Note that the covariance kernel of Zq(·) is different from that of ρ1(·,·) in
Lemma 1. This depends on both the model and DGP conditions. For the
same DGP, different polynomial models provide different covariance kernels.
Likewise, for the same model, different DGPs provide different covariance
kernels. Furthermore, the null limit distribution of the DD-test depends on �(q).
We obtain different null limit distributions with different �(q).

(c) Despite the different properties between Zq(·) and Z1(·), the asymptotic
critical values can be obtained similarly to Z1(·). Under mild regularity
conditions, we can estimate πq(·) := JqE[Z̃tX

(·)
t ]/σ 2

q (·)1/2 consistently by its

sample analog, letting Z̃q(·) := πq(·)U and simulating supγ∈�(q) Z̃2
q (γ ), where

U ∼ N(0,�̃) as before.
(d) Corollaries 1(ii and iii) extend the properties of Theorem 2 under the fixed and

local alternative hypotheses, respectively.

3.3. Sequentially Estimating Correct Polynomial Model

Corollary 1 provides a system basis for sequential testing using polynomial
models. By applying the sequential testing procedure to Corollary 1, we can
estimate the unknown degree of the polynomial model consistently. For this, we
assume that q̄ is the maximum degree of the polynomial models considered, and
I(q̄) := {1,2, . . . ,q̄} is a set of model indices, so that q̄ number of models are
considered here in total. We also assume that �(q̄) includes the elements of I(q̄) as
interior elements and �(q̄) is identical to �(q) in Mq for each q ∈ I(q̄). We further
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assume that q∗ is the minimum degree polynomial model correctly specified. Note
that if the qth-degree polynomial model is correctly specified, every polynomial
model with a degree higher than q is also correctly specified. The goal of the
sequential testing procedure is to estimate q∗ to derive the most parsimonious and
correctly specified model. If q∗ /∈ I(q̄), every model is misspecified.

Our sequential testing procedure is performed in the following order:

• Step 1: We compute Dn using M and compare it with the critical value cv1(αn)

in Corollary 1 at the level of αn. If Dn is less than or equal to cv1(αn), we stop
this sequential testing procedure and conclude that the structural relationship is
linear. Otherwise, we move to the next step.

• Step 2: For q = 2,3, . . . ,q̄, compute Dn,q and iterate the same testing procedure
using the critical value cvq(αn) implied by the same level of significance αn

as in given Step 1 and the null limit distribution in Corollary 1. If there is any
q ∈ I(q̄) such thatDn,q is less than or equal to cvq(αn), we let the degree estimator
be q̂n := min{q ∈ I(q̄) : Dn,q ≤ cvq(αn)}.

• Step 3: If there is no q ∈ I(q̄) such that Dn,q is less than or equal to cvq(αn), we
conclude that M(q̄) := {Mq : q ∈ I(q̄)} is not adequate to capture the structural
nonlinearity between Yt and Xt.

Here, the level of significance αn is set to depend on n. The degree estimation
error due to the sequential testing procedure would not vanish if it were fixed at a
certain level. Therefore, we allow it to converge to zero gradually as n increases.
Thus, the degree estimation error vanishes as n increases (e.g., Cho and Phillips,
2018). Theorem 6 discusses how to choose αn in order to estimate q∗ consistently.

THEOREM 6. Given that for each q ∈ I(q̄), Assumptions 1 and 7 hold with �(q)

being �(q̄):

(i) if for each α ∈ (0,1), αn = α and q∗ ∈ I(q̄), then for each ε > 0,
limn→∞P(|̂qn −q∗| > ε) = α;

(ii) if for each q ∈ I(q̄), (a) P(supγ∈�(q̄) Zq(γ ) ≥ aq) ≤ 1/2 for some aq, (b)
limn→∞ αn = 0, and (c) limn→∞ log (αn)/n = 0, then for any ε > 0,
limn→∞P(|̂qn −q∗| > ε) = 0.

Remarks. (a) From Theorem 6(i), if αn does not converge to zero as n tends to
infinity, the degree estimator does not vanish to zero. Theorem 6(ii) provides
the conditions for αn to converge to zero so that the degree estimation error
converges to zero. Note that the possibility of estimating a degree less than q∗
gets smaller as n increases because of the omnibus power of the DD-test for
q < q∗.

(b) The regularity conditions in Theorem 6(ii) are weaker than those in Theorem 2
of Cho and Phillips (2018), because they presume a locally stationary Gaussian
process with covariance structure dominated by that of the standardized Zq(·).
However, Theorem 6(ii) does not assume such a Gaussian process.
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(c) Since the proof of Theorem 6(i) is straightforward from Corollary 1, we do not
include it in the Appendix. Theorem 6(ii) can be proved by applying Borel’s
theorem on the upper probability bound of an extreme Gaussian stochastic
process (e.g., Piterbarg, 1996, p. 13).

4. SIMULATION

In this section, we simulate the DD-test and compare its performance with other
tests and MSCs. We first compare their empirical sizes and powers and next their
capability of estimating the unknown degree of the polynomial model. Finally, we
examine the asymptotic size of the DD-test.

4.1. Empirical Size and Power

We suppose two simple DGPs and estimate the unknown parameters by GMM, to
examine the empirical size properties of the DD-test. We proceed in the following
steps:

• Step 1: We first generate data as follows:

Yt = β1∗Xt +β2∗m(Xt)+Ut,

where Xt := ∑4
j=1 Ztj + U2

t 1(|Ut| ≤ bd) such that Ut ∼ IID N(0,1), Zt1 ∼ IID
U(0,1), Zt2 and Zt3 ∼ IID Beta(5,5), and Zt1 ∼ IID Beta(5,3). Here, 1(·) is the
indicator function, and Ut is bounded between [−bd,bd] when defining Xt. The
unspecified β1∗, β2∗, m(·), and bd are going to be given below to characterize
the null and alternative hypotheses. We denote this as DGP A. As our next DGP,
we let Xt := ∑4

j=1 Ztj + U2
t such that Ut ∼ IID N(0,1), Zt1 ∼ IID Half-N(0,1),

Zt2 ∼ IID Beta(5,5), and Zt3 ∼ IID Beta(5,3), and Zt3 ∼ IID X 2
1 . We denote this

as DGP B. For both DGPs, each of Zt1, . . . ,Zt4, and Ut is independently drawn.
Note that Xt is always positively valued and correlated with Ut, whereas Ut is
not correlated with Zt1, . . ., Zt4.

• Step 2: We estimate the unknown parameters by GMM by letting

Mo
1 := {

mt(ω) := Yt −Xtξ −βXγ
t : ω ∈ � ⊂ R

3
}
,

so that Vt := Xt. Here, we let γ ∈ � := [−0.25,2.25], and this lets a quadratic
model in Xt be nested in the Mo

1. The other parameters are not restricted. We
also let Zt := (Zt1, . . . ,Zt4)

′ and Mn := (n−1Z′Z)−1. Here, we do not contain
unity in Vt and Zt, because the PD matrix condition in Assumption 2(iv) does
not hold by this. Here, we obtain the empirical size and power of the DD-test by
applying Hansen’s (1996) weighted bootstrap. Specifically, after estimating ω∗
by GMM, we let Ût := mt(ω̂n) and compute

Ĝ2
b := sup

γ∈�

(
1√
n
π̂n(γ )′

n∑
t=1

ZtÛtG
(b)
t

)2

,
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for b = 1,2, . . . ,B, where, for each b, G(b)
t is independently drawn from N(0,1).

Here, π̂n(·) is the sample analog of π1(·) defined in the remark below Theorem
1, and n−1/2 ∑n

t=1 ZtÛtG
(b)
t corresponds to Û . Instead of Ût, we can also use the

residual generated by ω̃n. We finally compute the empirical p-value by p̂n :=
B−1 ∑B

b=1 1(Ĝ2
b > Dn) and reject the linearity hypothesis of p̂n < α, where α is

the level of significance.
• Step 3: We also apply other tests in the literature for comparison purposes. First,

we apply Horowitz’s (2006) test that requires that explanatory and instrumental
variables must be constrained on the unit interval. Furthermore, the number of
instrumental variables must be the same as that of the explanatory variables.
So, the DGP and model conditions of our simulated data need to be modified
accordingly. We redefine the instrumental variable by scaling down the sum of
instrumental variables by the maximum value, viz., X̃t := Xt/max[X1, . . . ,Xn]
and Z̃t := ∑4

j=1 Ztj/max[
∑4

j=1 Z1j, . . . ,
∑4

j=1 Znj]. Using them, we estimate the
null model by GMM and apply his test. Following his recommendation, we
estimate 25 largest eigenvalues of the covariance matrix estimator, to obtain the
null limit distribution of his test. We let Hn denote his test. Second, we apply
Breunig’s (2015) test. Out of his two tests used for the simulation, we employ
the second test.2 We obtain the null limit distribution of his test by estimating
200 largest eigenvalues of the covariance matrix estimator following him, letting
Bn denote his test. Finally, we apply the J-test as defined by Sargan (1958, 1988)
and Hansen (1982). Note that the J-test can also be used to test correct model
specification because the null hypothesis of the J-test does not hold unless the
model is correctly specified. We denote it by Jn.

We now report the size properties of the tests. For this purpose, we let β∗ = (1,0)′
in DGP A so that a linear structural relationship holds between Yt and Xt. We
let bd = 1. The simulation results are reported in the first panel of Table 1. The
total number of experiments and B are 5,000 and 500, respectively. The simulation
results are summarized as follows:

(a) For every n of consideration, the DD-test exhibits empirical rejection rates
more or less similar to the nominal significance levels, affirming Theorem 1.
This aspect also implies that the DD-test controls type-I errors efficiently.

(b) Horowitz, Breunig, and Sargan’s tests also control type-I errors efficiently.
Although Bn suffers from size distortion for high levels of significance, it is
not substantial.

We next examine the empirical size under DGP B. We let β∗ = (1,0)′ and contain
the simulation results in the second panel of Table 1. The simulation results are
summarized as follows:

(a) The DD-test exhibits empirical rejection rates more or less similar to the
nominal significance levels. When n is small, the empirical rejection rates are

2His second test outperforms the first test under our simulation environment.
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Table 1. Empirical rejection rates under the null (in percentage).

DGP Test stat. α \ n 100 200 300 400 500

A Dn 1% 0.52 1.02 1.12 1.08 0.98

5% 3.54 4.20 5.08 4.74 4.96

10% 8.64 9.14 9.86 10.08 10.12

Hn 1% 0.72 1.14 1.30 1.06 1.26

5% 4.80 5.50 5.18 5.34 5.72

10% 10.06 10.26 10.52 10.36 10.44

Bn 1% 0.90 1.28 1.22 1.22 1.08

5% 4.90 5.38 5.38 5.40 5.08

10% 9.34 10.30 10.06 10.46 11.12

Jn 1% 0.72 0.88 0.90 0.96 1.08

5% 4.80 5.04 4.76 4.58 4.62

10% 9.62 9.94 9.68 9.66 9.60

B Dn 1% 2.14 1.96 1.90 1.62 1.52

5% 7.50 6.64 7.04 5.94 6.26

10% 12.90 11.76 11.82 11.42 10.76

Hn 1% 1.06 1.06 1.12 1.20 1.36

5% 5.10 4.90 4.78 5.30 5.08

10% 10.30 10.26 9.72 9.88 10.58

Bn 1% 1.42 1.18 1.42 1.24 1.04

5% 5.76 5.60 5.70 5.32 5.36

10% 10.54 10.94 10.92 10.74 10.44

Jn 1% 0.92 0.80 0.92 1.04 0.96

5% 5.06 4.88 5.28 4.58 4.42

10% 9.90 9.84 9.82 9.48 9.28

Notes: Number of replications: 5,000. This table shows the empirical rejection rates of the DD- and the
other test statistics under the null hypothesis. DGP A: Yt = Xt +Ut and Xt :=∑4

j=1 Ztj +U2
t ·1(|Ut| ≤ 1)

such that Ut ∼ IID N(0,1), Zt1 ∼ IID U(0,1), Zt2 and Zt3 ∼ IID Beta(5,5), and Zt1 ∼ IID Beta(5,3); and
DGP B: Yt = Xt +Ut and Xt := ∑4

j=1 Ztj +U2
t such that Ut ∼ IID N(0,1), Zt1 ∼ IID Half-N(0,1), Zt2 ∼

IID Beta(5,5), and Zt3 ∼ IID Beta(5,3), and Zt3 ∼ IIDX 2
1 . Each of Zt1, . . . ,Zt4, and Ut is independently

distributed. Model: Mo
1 := {mt(ω) := Yt − Xtξ − βXγ

t : ω ∈ � ⊂ R
3} with � := [−0.25,2.25].

Estimation: GMM estimation with Vt := Xt , Zt := (Zt1, . . . ,Zt4)
′, and Mn := (n−1Z′Z)−1 for Dn

and Hn; and GMM estimation with Vt := X̃t , Zt := Z̃t , and Mn := (n−1 ∑n
t=1 Z̃2

t )−1 for Hn, where
X̃t := Xt/max[X1, . . . ,Xn] and Z̃t := ∑4

j=1 Ztj/max[
∑4

j=1 Z1j, . . . ,
∑4

j=1 Znj]. The weighted bootstrap
is applied to Dn, and the bootstrap number is 300.

slightly different from the nominal levels, but the size distortion disappears
soon as n increases.

(b) Horowitz, Breunig, and Sargan’s tests control type-I errors efficiently.

We next examine the empirical power properties. For this purpose, we first
generate data according to the following two plans:
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• DGP A′: β∗ = (1, −0.4)′, m(Xt) = X2
t , and bd = 1;

• DGP A′′: β∗ = (1, −0.4)′, m(Xt) = X2
t , and bd = 3.

The explanatory variables and instrumental variables are generated according to
DGP A. Note that Mo

1 is correctly specified for both DGPs A′ and A′′. The
simulation results are reported in the first two panels of Table 2. They are obtained
by letting the total number of experiments and B be 3,000 and 500, respectively.
The simulation results are summarized as follows:

(a) The DD-test shows consistent power, that is the same for the other tests.
(b) The DD-test has a comparable power against the other tests. When bd = 1

(DGP A′), Hn is the most powerful and Jn is least favored, but this relationship
is modified if bd increases to 3 (DGP A′′). That is, Dn becomes most powerful,
but Jn is still least favored. This aspect implies that the power ranking among
the tests depends on the size of bd.

We next examine the empirical power under DGP B under the same simulation
environment as for the previous one. For this, we generated data according to the
following two DGPs:

• DGP B′: β∗ = (1,1)′ and m(Xt) = tanh(−Xt/2);
• DGP B′′: β∗ = (1,2)′ and m(Xt) = 2|sin(−Xt/5)|.
The explanatory variables and instrumental variables are generated according to
DGP B. Note that Mo

1 is misspecified for both DGPs B′ and B′′ contrary to the
earlier simulation. The simulation results are reported in the final two panels of
Table 2. We summarize the simulation results as follows:

(a) The DD-test shows consistent power, that is the same for the other tests. This
is consistent with Theorem 2.

(b) The DD-test is most powerful, and Bn is least powerful for both DGPs B′
and B′′.

In addition to the power examinations in Table 2, we conducted power sim-
ulations using data obtained by different DGPs and models. We describe our
experiences as follows: First, when Mo

1 is misspecified, if � is selected to be
too narrow, the overall power of the DD-test is not so great as that with a bigger
�. Unless the DD-test suffers from size distortion, it is recommended to select
a moderately wide interval for �. Second, for different DGPs, we could observe
power rankings different from that in Table 2. Under different DGP conditions,
any of the four test statistics could be most powerful. It is challenging to rank
the powers of the tests under a generic DGP condition. Third, the regularity
conditions of the four tests are different. For example, the DD-test requires Xt to
be positive, and further that the rank condition needs to be satisfied. In contrast,
Horowitz’s (2006) test requires the number of the explanatory variables is identical
to that of the instrumental variables, and further that they are defined on the unit
interval. Similarly, Breunig’s (2015) test performs depending on the supports of
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Table 2. Empirical rejection rates under the alternatives (in percentage)

DGP Test stat. α \ n 100 200 300 400 500

A′ Dn 1% 26.63 52.20 70.07 83.53 91.40

5% 46.47 72.70 84.97 93.60 97.23

10% 57.73 81.77 89.57 96.83 98.63

Hn 1% 69.97 97.37 99.87 100.00 100.00

5% 87.73 99.47 100.00 100.00 100.00

10% 93.73 99.87 100.00 100.00 100.00

Bn 1% 25.07 59.40 81.37 92.93 98.40

5% 49.17 80.93 93.33 97.87 99.87

10% 62.00 88.90 96.43 99.27 99.97

Jn 1% 7.72 22.44 40.26 57.58 72.30

5% 22.30 46.12 64.72 78.74 88.12

10% 34.20 59.60 75.56 86.50 93.68

A′′ Dn 1% 76.83 78.17 79.93 82.90 84.20

5% 83.87 85.37 86.50 88.60 89.83

10% 87.67 88.30 90.03 91.13 91.43

Hn 1% 12.27 24.37 35.47 45.27 55.50

5% 28.80 44.30 57.90 67.27 75.83

10% 40.77 56.13 68.47 77.43 83.50

Bn 1% 1.73 4.40 6.57 10.10 14.17

5% 8.90 15.63 20.90 27.80 33.33

10% 17.20 26.60 32.80 40.97 46.47

Jn 1% 1.32 2.34 3.28 4.16 6.12

5% 7.98 10.00 11.78 14.80 19.10

10% 14.22 17.92 20.02 25.10 30.52

B′ Dn 1% 50.57 82.03 94.43 98.73 99.77

5% 70.23 93.70 98.53 99.83 99.97

10% 79.87 96.07 99.40 99.93 100.00

Hn 1% 38.17 79.07 94.43 98.97 99.83

5% 65.93 92.97 98.90 99.87 100.00

10% 78.37 96.37 99.80 99.97 100.00

Bn 1% 1.43 3.00 2.97 3.23 4.10

5% 6.10 8.87 8.70 10.33 12.43

10% 11.97 14.57 15.70 17.50 19.27

Jn 1% 24.20 62.13 84.90 94.77 98.57

5% 47.80 80.27 95.00 98.83 99.80

10% 60.70 88.30 97.53 99.50 99.90

(continued)
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Table 2. (continued)

DGP Test stat. α \ n 100 200 300 400 500

B′′ Dn 1% 41.73 65.93 83.27 89.43 95.93

5% 57.87 80.77 91.87 95.87 98.80

10% 65.90 87.40 95.47 97.73 99.20

Hn 1% 14.20 35.50 58.73 74.50 87.90

5% 35.43 65.60 83.77 91.80 97.40

10% 50.97 79.50 91.70 96.33 98.73

Bn 1% 1.17 1.33 1.77 2.10 1.87

5% 5.87 5.73 6.17 7.00 6.83

10% 10.90 11.23 12.07 12.40 12.40

Jn 1% 21.30 46.17 66.40 80.90 89.13

5% 38.33 65.37 82.47 90.27 95.87

10% 49.17 74.80 88.50 93.73 97.90

Notes: Number of replications: 3,000. This table shows the empirical rejection rates of the DD- and
the other test statistics under the alternatives. DGP A′: Yt = Xt − 0.4X2

t + Ut with bd = 1; DGP
A′′: Yt = Xt − 0.4X2

t + Ut with bd = 3, where Xt := ∑4
j=1 Ztj + U2

t · 1(|Ut| ≤ bd) such that Ut ∼
IID N(0,1), Zt1 ∼ IID U(0,1), Zt2 and Zt3 ∼ IID Beta(5,5), and Zt4 ∼ IID Beta(5,3); DGP B′:
Yt = Xt + tanh(−Xt/2) + Ut; DGP B′′: Yt = Xt + 2|sin(−Xt/5)| + Ut , where Xt := ∑4

j=1 Ztj + U2
t

such that Ut ∼ IID N(0,1), Zt1 ∼ IID Half-N(0,1), Zt2 ∼ IID Beta(5,5), and Zt3 ∼ IID Beta(5,3),
and Zt3 ∼ IID X 2

1 . Each of Zt1, . . . ,Zt4, and Ut is independently distributed. Model: Mo
1 := {mt(ω) :=

Yt − Xtξ −βXγ
t : ω ∈ � ⊂ R

3} with � := [−0.25,2.25]. Estimation: GMM estimation with Vt := Xt ,
Zt := (Zt1, . . . ,Zt4)

′, and Mn := (n−1Z′Z)−1 for Dn and Hn; and GMM estimation with Vt :=
X̃t , Zt := Z̃t , and Mn := (n−1 ∑n

t=1 Z̃2
t )−1 for Hn, where X̃t := Xt/max[X1, . . . ,Xn] and Z̃t :=∑4

j=1 Ztj/max[
∑4

j=1 Z1j, . . . ,
∑4

j=1 Znj]. The weighted bootstrap is applied to Dn, and the bootstrap
number is 300.

the explanatory variables and instrumental variables. These aspects suggest that
they can supplement each other.

4.2. Application to the Sequential Testing Procedure

We next examine the DD-test and its application to the sequential testing procedure
by simulation and compare it with the J-test and MSCs.

We conduct simulations according to the DGP and model conditions as given in
the following plan:

• Step 1: We assume that (Dt,Ut)
′ ∼ IID N(0,I2) and generate the following 11

instrumental variables: Zt1 ∼ IID U(0,1), Zt2 and Zt3 ∼ IID X 2
1 , Zt4 and Zt5 ∼

IID Rayleigh(1), Zt6 and Z7t ∼ IID Half-N(0,1), Zt8 and Zt9 ∼ IID Beta(5,3),
and Zt10 and Zt11 ∼ IID Beta(5,5). Each of Dt, Ut, Zt1, . . ., Zt11 is independently
distributed, and all of Zt1, . . ., Zt11 are positively valued. We further let Xt :=∑11

j=1 Ztj +U2
t , so that Xt is also positively valued with probability 1, and Xt and

Ut are correlated, but Ut is not correlated with Zt1, . . ., Zt10, and Zt11.
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• Step 2: We consider the following structural equation:

Yt := β1∗Dt +β2∗Xt +β3∗X2
t +Ut,

so that if we let β∗ = (1,1,0.005)′, Yt is quadratically associated with Xt.
• Step 3: We estimate β∗ by GMM. For this, we let our models be specified as

follows: for each q ∈ I(3) := {1,2,3},
M′

q := {
mt,q(ω

(q)) :=Yt −Dtη−Xtξ1 −·· ·−Xq
t ξq −βXγ

t :ω(q) ∈�(q) ⊂R
3+q

}
,

where ω(q) := (ξ1, . . . ,ξq,η,β,γ )′, and �(q) is the parameter space of ω(q). In
particular, we assume that the parameter space of γ is � = [0.50,3.50], so
that the third-degree polynomial model is nested in M′

q for q = 2,3. The
other parameter spaces are not restricted. Given this model assumption, we
also let Zt := (Dt,Zt1,Zt2, . . . ,Zt11)

′, Mn = (n−1Z′Z)−1, and for each q ∈ I(3),
Vt,q := (Dt,Xt, . . . ,X

q
t ). The GMM estimator is obtained by minimizing the

GMM distance for each q ∈ I(3).

Note that M′
2 and M′

3 are correctly specified models, and M′
2 is the most

parsimonious model. Therefore, the main goal of the sequential testing procedure
is achieved when q∗ = 2 is consistently estimated.

Given the DGP and model conditions, we perform our simulations in the
following three steps:

• Step 1: Using the DD-test, we test whether the structural model is correctly
specified. Here, we apply Hansen’s (1996) weighted bootstrap as in Section 4.1.
The bootstrap iteration B is 300, and we fix the significant level at 10%, 5%, and
1%. We also apply the J-test.

• Step 2: By letting the significance level decrease as n increases, we can apply
Theorem 6(ii). Specifically, we let αn = 1/n1/2, 1/n3/4, and 1/n and examine
how the degree estimation error is formed. Note that the significance levels
converge to zero by these level plans, but the convergence rate of αn = 1/n
is faster than the others. We also apply the sequential testing procedure to the
J-test. We call them the DD- and J-sequential testing procedures, respectively.

• Step 3: Finally, we apply the MSCs in Andrews (1999). We examine three
MSCs, the Akaike-type model MSC, Bayesian-type MSC, and Hannan–Quinn-
type MSC; specifically, they are

AIC-MSC := J̄n,q −2(p−q−1)/n,

Bayesian-MSC := J̄n,q − log(n)(p−q−1)/n,

Hannan–Quinn-MSC := J̄n,q −κ log(log(n))(p−q−1)/n,

respectively, where J̄n,q := n−1Jn,q; and we let κ be 2.01 following Andrews
(1999). The model performing best is the one with the smallest MSC.

We iteratively perform this three-step simulations and report the simulation
results in Tables 3 and 4. Table 3 presents the results obtained through Step 1, and
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Table 3. Estimated polynomial degree by the DD- and J-test statistics (in percentage)

α Test stat. q \ n 100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

10% Dn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 89.83 93.07 92.80 93.13 91.77 91.50 91.60 89.90 90.53 91.40

3 9.27 6.60 6.83 6.57 8.03 8.20 8.13 9.80 9.10 8.43

≥ 4 0.90 0.33 0.37 0.30 0.20 0.30 0.27 0.30 0.37 0.17

Jn 1 86.00 51.30 16.60 3.83 1.03 0.13 0.00 0.00 0.00 0.00

2∗ 7.90 41.80 76.97 90.67 92.60 93.10 93.23 93.47 93.17 93.33

3 2.47 1.80 1.70 1.33 1.57 1.77 1.87 1.60 1.33 1.90

≥ 4 3.63 5.10 4.73 4.17 4.80 5.00 4.90 4.93 5.50 4.77

5% Dn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 95.23 97.57 96.43 97.00 96.77 96.53 96.50 95.53 96.07 95.90

3 4.47 2.43 3.57 2.97 3.20 3.43 3.47 4.43 3.93 4.00

≥ 4 0.30 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.00 0.10

Jn 1 93.23 62.90 25.93 7.73 2.20 0.40 0.03 0.00 0.00 0.00

2∗ 4.10 33.90 71.27 89.60 94.87 96.10 97.13 96.93 97.07 97.00

3 1.17 1.07 0.73 0.83 0.77 1.07 0.70 0.63 0.83 0.90

≥ 4 1.50 2.13 2.07 1.83 2.17 2.43 2.13 2.43 2.10 2.10

(continued)
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Table 3. (continued)

α Test stat. q \ n 100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

1% Dn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 99.10 99.83 99.70 99.53 99.47 99.40 99.40 99.20 99.20 99.40

3 0.90 0.17 0.30 0.47 0.53 0.60 0.60 0.80 0.80 0.60

≥ 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jn 1 98.30 81.37 47.07 19.13 6.50 1.70 0.37 0.10 0.03 0.00

2∗ 1.30 18.20 52.40 80.33 93.13 97.50 99.03 99.27 99.37 99.47

3 0.13 0.13 0.17 0.33 0.20 0.30 0.20 0.30 0.27 0.20

≥ 4 0.27 0.30 0.37 0.20 0.17 0.50 0.40 0.33 0.33 0.33

Notes: Number of replications: 3,000. This table shows the estimated polynomial degrees by sequentially applying the DD- and J-tests when the significance level
(α) is fixed. The true polynomial equation degree is 2, as indicated by the asterisks (*). DGP: Yt = Dt + Xt + 0.005X2

t + Ut , Xt := ∑11
j=1 Ztj + U2

t , (Dt,Ut)
′ ∼ IID

N(0,I2), Zt1 ∼ IID U(0,1), Zt2 and Zt3 ∼ IID X 2
1 , Zt4 and Zt5 ∼ IID Rayleigh(1), Zt6 and Z7t ∼ IID Half N(0,1), Zt8 and Zt9 ∼ IID Beta(5,3), and Zt10 and Zt11 ∼ IID

Beta(5,5). Each of Dt , Ut , Zt1, . . ., Zt11 is independently distributed. Model: M′
q := {mt,q(ω

(q)) := Yt −Dtη−Xtξ1 −·· ·−Xq
t ξq −βXγ

t : ω(q) ∈ �(q)} with q ∈ I(3),

ω(q) := (ξ1, . . . ,ξq,η,β,γ )′, and � := [0.50,3.50]. Estimation: GMM estimation by letting Zt := (Dt,Zt1, . . . ,Zt11)
′ and Vt,q := (Dt,Xt, . . . ,X

q
t )′.
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Table 4. Precision rates of the sequential testing procedures and MSCs (in percentage)

Methods Test stat. q \ n 100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

Dn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 89.83 97.87 97.97 98.60 98.93 98.57 98.73 98.50 98.60 98.90

3 9.27 2.13 2.03 1.40 1.07 1.43 1.27 1.50 1.40 1.10

Seq. est. ≥ 4 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

with Jn 1 86.00 64.53 31.67 11.83 3.87 1.07 0.17 0.07 0.00 0.00

αn = n−1/2 2∗ 7.90 32.70 66.77 86.87 94.93 97.33 98.80 98.67 99.00 99.10

3 2.47 0.80 0.47 0.43 0.40 0.67 0.30 0.63 0.33 0.27

≥ 4 3.63 1.97 1.10 0.87 0.80 0.93 0.73 0.63 0.67 0.63

(Hypo. rate) 90.00 95.53 96.84 97.42 97.76 98.00 98.17 98.31 98.42 98.51

Dn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 96.90 99.83 99.83 99.60 99.73 99.67 99.87 99.70 99.73 99.83

3 3.03 0.17 0.17 0.40 0.27 0.33 0.13 0.30 0.27 0.17

Seq. est. ≥ 4 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

with Jn 1 95.23 81.90 55.03 27.37 11.93 3.77 1.50 0.33 0.13 0.03

αn = n−3/4 2∗ 3.23 17.77 44.70 72.43 87.87 96.03 98.43 99.60 99.80 99.97

3 0.70 0.10 0.07 0.07 0.07 0.10 0.03 0.00 0.00 0.00

≥ 4 0.83 0.23 0.20 0.13 0.13 0.10 0.03 0.07 0.07 0.00

(Hypo. rate) 96.84 99.05 99.44 99.59 99.67 99.72 99.75 99.78 99.80 99.82

(continued)
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Table 4. (continued)

Methods Test stat. q \ n 100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

Dn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2∗ 99.10 99.87 99.87 99.80 99.87 99.67 99.87 99.70 99.73 99.83

3 0.90 0.13 0.13 0.20 0.13 0.33 0.13 0.30 0.27 0.17

Seq. est. ≥ 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

with Jn 1 98.30 92.30 73.70 44.87 25.00 10.30 3.63 1.30 0.40 0.20

αn = n−1 2∗ 1.30 7.60 26.23 55.07 74.97 89.70 96.37 98.70 99.60 99.80

3 0.13 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

≥ 4 0.27 0.10 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00

(Hypo. rate) 99.00 99.80 99.90 99.93 99.95 99.96 99.97 99.97 99.98 99.98

1 49.80 7.36 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Akaike 2 32.94 72.50 80.52 83.10 83.00 83.08 83.28 81.48 82.04 83.50

3 17.26 20.14 19.06 16.90 17.00 16.92 16.72 18.52 17.96 16.50

1 78.98 23.58 2.82 0.30 0.00 0.00 0.00 0.00 0.00 0.00

MSC Hannan–Quinn 2 17.56 71.12 92.16 95.94 95.98 95.78 96.44 95.84 96.22 96.42

3 3.46 5.30 5.02 3.76 4.02 4.22 3.56 4.16 3.78 3.58

1 95.86 57.60 15.88 3.44 0.60 0.10 0.00 0.00 0.00 0.00

Bayesian 2 4.02 42.16 83.82 96.16 99.10 99.30 99.78 99.64 99.74 99.76

3 0.12 0.24 0.30 0.40 0.30 0.60 0.22 0.36 0.26 0.24

Notes: Number of replications: 3,000. This table shows the estimated polynomial degrees by sequentially applying the DD- and J-tests when the significance level
depends on the sample size: αn = n−1/2, n−3/4, or n−1. The true polynomial equation degree is 2, as indicated by the asterisks (*). DGP: Yt = Dt +Xt +0.005X2

t +Ut ,
Xt := ∑11

j=1 Ztj +U2
t , (Dt,Ut)

′ ∼ IID N(0,I2), Zt1 ∼ IID U(0,1), Zt2 and Zt3 ∼ IID X 2
1 , Zt4 and Zt5 ∼ IID Rayleigh(1), Zt6 and Z7t ∼ IID Half N(0,1), Zt8 and Zt9 ∼

IID Beta(5,3), and Zt10 and Zt11 ∼ IID Beta(5,5). Each of Dt , Ut , Zt1, . . ., Zt11 is independently distributed. Model: M′
q := {mt,q(ω

(q)) := Yt − Dtη − Xtξ1 −·· ·−
Xq

t ξq − βXγ
t : ω(q) ∈ �(q)} with q ∈ I(3), ω(q) := (ξ1, . . . ,ξq,η,β,γ )′, and � := [0.50,3.50]. Estimation: GMM estimation by letting Zt := (Dt,Zt1, . . . ,Zt11)

′ and
Vt,q := (Dt,Xt, . . . ,X

q
t )′.
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Table 4 reports the results obtained by Steps 2 and 3. Specifically, they report the
precision rate of each method. For example, if q̂n,r denotes the degree estimated by
the rth simulation, the precision rate is computed by R−1 ∑R

r=1 I(̂qn,r = q∗)×100,
where R is the total number of experiments. We let R be 3,000.

The simulation results in Table 3 are summarized as follows:

(a) When the significance level is fixed, the degree estimator obtained by the DD-
sequential testing procedure yields the results predicted by Theorem 6(i). If
the significance level is fixed at α, the estimated precision rate converges to
(1−α)×100 for q = 2 as n increases.

(b) Similar results are obtained for the J-sequential testing procedure. Neverthe-
less, we also note that the J-sequential testing procedure is asymptotically
more conservative than the DD-sequential testing procedure. For example,
when n = 4,500 and α = 10%, the J-sequential testing procedure produces
more precise estimation results than the DD-sequential testing procedure. It
is mainly because the J-test is more conservative than the DD-test. In other
words, it is more difficult to control type-I error.

We now examine the sequential testing procedures obtained by letting the
significance levels depend on n. Table 4 reports the simulation results of each
estimation method when αn = n−1/2, n−3/4, and n−1. We summarize the simulation
results as follows:

(a) As n increases, the estimation errors decrease by applying the DD-sequential
testing procedure. Furthermore, for any significance level, smaller estimation
errors are observed for the datasets with larger n, so that the degree estimation
errors based on αn = n−1 are smaller than the others.

(b) Likewise, the J-sequential testing procedure also estimates q∗ consistently.
Nevertheless, we note that the DD-sequential testing procedure better controls
the precision rate. Here, the hypothetical rate defined as (1−αn)×100 denotes
the precision rate desired by each sequential testing procedure. Nevertheless,
note that the precision rates produced by the DD-sequential testing procedure
are closer to the hypothetical rates than the J-sequential testing procedure.

(c) As n increases, the estimation errors of using MSCs also decrease. The
Bayesian-type MSC estimates q∗ more efficiently than the other two MSCs.

(d) For a small n, the DD-sequential testing procedure performs better than the
J-sequential testing procedure, but this is not true for every α and n. For
example, for αn = n−1/2, if n increases, the J-sequential testing procedure
estimates q∗ more precisely than the DD-test. It is mainly because the J-test is
more conservative than the DD-test. However, for αn = n−1, this dominance
relationship is reversed as n increases. The DD-test is better controlled, so
that the estimation error from the DD-sequential testing procedure shows more
precise rates than the J-sequential testing procedure.

These simulations prove that we can efficiently estimate the most parsimonious
and correctly specified polynomial structures using the DD-sequential testing
procedure.
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In addition to the reported simulations, we also conducted different simulations
using different DGP and model conditions, producing different simulation results
depending on the choice of significance level. In all these simulations, the DD-test
remains appealing in its performance, as in Tables 3 and 4.

4.3. Asymptotic Uniform Inference

In this section, we examine the asymptotic size of the DD-test by simulation.
Specifically, we provide simulation evidence that

lim
n→∞sup

ω∗
Pω∗ [Dn > cvn(α)] = lim

n→∞ inf
ω∗

Pω∗[Dn > cvn(α)] = α

under H′
0 : β∗ = β0 against H′

1 : β∗ �= β0, when the model M in Section 2.2 is
specified.

We proceed with our simulations in the following steps:

• Step 1: We generate data according to the following DGP condition:

Yt = ξ∗Xt +β∗Xγ∗
t +Ut,

where Xt := ∏12
j=1 Ztj

∑12
j=1 Ztj +U2

t such that Zt1 and Zt2 ∼ IID U[0,1], Zt3 and
Zt4 ∼ IID Beta[5,3], Zt5 and Zt6 ∼ IID Beta[5,5], Zt7 and Zt8 ∼ IID X 2

1 , and
Zt9, . . . ,Zt12 ∼ Half-N(0,1). Each of Zt1, . . . ,Zt12, and Ut is independently drawn,
and all of Zt1, . . . ,Zt12 are positively valued.

• Step 2: Given the DGP condition, we let our model be defined as follows:

M′′ := {mt,q(ω := Yt −Xtξ −βXγ
t : ω ∈ �}

with ω := (ξ,β,γ )′, and � := [0.50,3.50]. We also let Zt and Mn be
(Zt1, . . . ,Zt12) and (n−1Z′Z)−1, respectively. Here, the parameter values are
specified as ξ∗ = 1, β∗ ∈ {−0.75, − 0.5,0.25,0.00,0.25,0.50,0.75} and γ∗ ∈
{0.50,0.75,1.00,1.25,1.50}.

• Step 3: We compute the empirical rejection rates of the DD-test under H′
0 : β∗ =

β0 using the above data. For this computation, we separately consider the models
with and without the identification problem. If β∗ = 0.00 or γ∗ = 1.00, the model
M′′ is not identified. We therefore test the linear model hypothesis by using the
null limit distribution in Theorem 1 and by applying Hansen’s (1996) weighted
bootstrap described in Section 4.1. That is, we obtain the asymptotic critical
value by cvn(α) := inf{x ≥ 0 : F̂B(x) ≥ 1 − α}, where F̂B(·) is the empirical
distribution of {Ĝ2

1, . . . ,Ĝ2
B}. On the other hand, for β∗ �= 0 and γ∗ �= 1, the model

M′′ is now identified. Thus, we approximate the DD-test as (12) and we next
apply Hansen’s (1996) weighted bootstrap similarly to testing the linear model
hypothesis. Specifically, for b = 1, . . . ,B, we first let

Ĝ2
b = 1

n

{X(γ̂n)
′(Q1 −Q1D(γ̂n)(D(γ̂n)

′Q1D(γ̂n))
−1D(γ̂n)

′Q1)Üb}2

X(γ̂n)′(Q1 −Q1D(γ̂n)(D(γ̂n)′Q1D)−1D(γ̂n)′Q1)X(γ̂n)
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Table 5. Empirical rejection rates (in percent)

n = 500

γ∗ \β∗ −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

0.50 6.13 4.57 1.57 4.63 1.83 4.17 5.27

0.75 3.43 2.53 0.80 4.63 0.93 2.13 3.57

1.00 4.73 4.90 4.10 4.63 4.63 4.63 4.63

1.25 4.17 3.13 1.77 4.63 1.53 3.80 4.67

1.50 5.23 6.00 4.53 4.63 4.60 5.37 4.77

n = 5,000

γ∗ \β∗ −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

0.50 6.33 6.30 5.20 4.73 4.90 5.77 5.77

0.75 5.83 5.43 2.13 4.73 2.00 6.00 6.27

1.00 4.00 4.53 4.17 4.73 4.07 4.33 4.00

1.25 5.73 5.93 5.00 4.73 5.10 5.33 6.47

1.50 5.03 4.77 5.47 4.73 5.13 5.30 5.30

Notes: This table shows the empirical rejection rates of the DD-test statistic for n = 500 and
n = 5,000. The level of significance α is 5%. When β∗ = 0.00 or γ∗ = 1.00, we apply the
critical values obtained by applying Hansen’s (1996) weighted bootstrap to Theorem 1. For
the other cases, the critical values are obtained by applying the weighted bootstrap to the null
approximation given in Theorem 4. When n = 10,000, the empirical rejection rates of the DD-
test are modified to 3.40 and 4.40 for (β∗,γ∗) = (−0.25,0.75) and (0.25,0.75), respectively.
The number of experiments is 3,000, and the bootstrap iteration is 300.

by following (12), where Üb := [Ũ1G(b)
1 , . . . ,ŨnG(b)

n ]′, Ũt := m(ω̃n), and G(b)
t is

independently drawn from N(0,1) with respect to t and b. From this, we obtain
the asymptotic critical value as for the linearity testing case.

Table 5 reports the simulation results that are obtained from the data with
each combination of ξ∗, β∗, and γ∗. The first and second panels are obtained by
letting n = 500 and 5,000, respectively. The level of significance is α = 5%. The
simulation results are summarized as follows:

(a) For n = 500, it is not quite clear that the empirical rejection rate is close to
5% uniformly on the parameter space of consideration. It is evident that the
empirical rejection rate is close to 5% when β∗ = 0.00 or γ∗ = 1.00 or when
(β∗,γ∗) is quite different from (0.00,1.00). On the contrary, if β∗ or γ∗ is
close to 0.00 or 1.00, respectively, the empirical rejection rate is quite different
from 5%. For example, if (β∗,γ∗) = (0.75,1.25), the empirical rejection rate
is obtained as 4.67, whereas if (β∗,γ∗) = (0.25,1.25), the empirical rejection
rate is obtained as 1.53. This aspect implies that the DD-test can have a finite
sample size distortion when the parameters are close to ϒ0.

(b) For n = 5,000, the size distortion of the DD-test substantially reduces. Most
empirical rejection rates are close to 5%, and this feature is observable even for
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the parameters close to the linear model. For example, if (β∗,γ∗) = (0.25,1.25),
the empirical rejection rate is obtained as 5.10, that is quite different from n =
500. The only exceptional cases are (β∗,γ∗) = (−0.25,0.75) and (0.25,0.75)

as their empirical rejection rates are 2.13 and 2.00, respectively, but their
respective empirical rejection rates are 3.40 and 4.40 when n = 10,000,
implying that the finite sample size distortion further reduces as n further
increases. For the other significance levels 1% and 10%, we could obtain
similar results.

(c) For finite n, the DD-test can be usefully exploited if the researcher wishes
a conservative test. It is mainly because of the unidentified model feature
and the fact that the DD-test is constructed by the LR-test principle. The
intuition is straightforward. If we concentrate dn(ω) with respect to (ξ0,δ)

to obtain the concentrated GMM estimator (̂ξ0,n(β,γ ),̂δn(β,γ )) and draw
dn(β,γ ) := dn(̂ξ0,n(β,γ ),̂δn(β,γ ),β,γ ) as a function of (β,γ ), it becomes a
very flat function on the space of (β,γ ) under the null of linearity, that is a
consequence of the multifold identification problem. This fact is still effective
even if (β∗,γ∗) is close to ϒ0 without belonging to ϒ0. That is, dn(·,·) is still
quite a flat function, although it is minimized at (β∗,γ∗) at the limit. This flat
function implies that dn(·,·) is poorly approximated by a quadratic function for
finite n, so that when testingH′

0 : β∗ = β0( �= 0), the DD-test statistic measuring
the distance of two GMM distances is likely to be smaller than the asymptotic
critical value obtained by approximating dn(·,·) through Taylor’s expansion,
so that P(β∗,γ∗)(Dn > cvn(α)) ≤ α, as revealed by the current simulation. Note
that for n = 500, the empirical rejection rates of the DD-test are less than 5%
for most (β∗,γ∗)’s around (0.00,1.00) but get to close 5% from below as n
increases to 5,000. That is, if n is finite, the type-I error can be controlled at
a level less than or equal to α around ϒ0. This is certainly an advantage of
using the current methodology. In contrast, if a simple polynomial model is
instead specified without the power transform to test linear versus quadratic
models say, the unidentified model feature cannot be exploited any longer to
test the coefficient of the quadratic term, implying that if the coefficient is
close to zero, the finite sample type-I error can be quite different from α in an
unexpected way as Leeb and Pötscher (2005) illustrate using a simple linear
model example.

These results provide simulation evidence that Hansen’s (1996) weighted boot-
strap is useful for the DD-test to become a valid testing procedure uniformly on
the assumed parameter space.

5. PRODUCTION FUNCTION ESTIMATION USING FIRM-LEVEL DATA

Recently, the literature has seen large distributional consequences of shares across
different factors of production. For example, there was a large rise in wage
inequality between skilled and unskilled workers and also a decline in labor
shares over capital shares. Karabarbounis and Neiman (2014) and Piketty (2014)
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empirically examine the decline of the labor share, whereas Krusell et al. (2000)
and Acemoglu and Restrepo (2018) report wage inequality between skilled and
unskilled workers.

The distributional consequence of factor shares is attributed to the factor-
biased technological change. The studies mentioned above argue that the recent
technological changes have favored some factors over others, resulting in the
recently discovered large distributional consequence across factors. For example,
Krusell et al. (2000) attribute the increase in wage inequality between skilled and
unskilled workers to the skill bias technological change.

Behind the factor-biased technological change, the key assumption lies in the
fact that the production function is log-nonlinear in factors, that cannot be related to
the typically assumed Cobb–Douglas production technology. The Cobb–Douglas
function implicitly assumes that any technological change is Hicks-neutral instead
of being factor-biased.3 Therefore, any technological change under the Cobb–
Douglas technology leads to a proportional increase in the output obtained from
any combination of inputs, so that the technological change cannot be related to
the distributional consequence. Meanwhile, the factor-biased technological change
affects the effective unit of one factor disproportionately relative to other factors,
resulting in the large distributional consequence follows across factors. Therefore,
it is important to affirm whether the production technology is well approximated
by a Cobb–Douglas function or not when evaluating the prior studies in terms of
the factor-biased technological change.

The DD-test can be usefully exploited for this purpose. Note that the DD-test
can easily test the log-linearity of the Cobb–Douglas production function. If the
Cobb–Douglas production technology cannot be rejected, the recent studies need
to be revisited carefully as they may incorrectly attribute the recent rise in wage
inequality and decline in labor shares to the factor-biased technological change.
Otherwise, we cannot reject the factor-biased technological change as a potential
explanation of the recently discovered distributional consequence of factor shares.

We consider the following Cobb–Douglas production function with labor and
capital:

log(Yt) = βl∗ log(Lt)+βk∗ log(Kt)+ log(At), (13)

where Yt is the output of firm t measured by value-added, Lt is the labor input,
Kt is the capital stock, and At is the productivity shock. We test that the output is
produced according to the log-linear technology in labor and capital. Our null and
alternative hypotheses are stated as follows:

H†
0 : Production function is log-linear in factors, viz., Cobb–Douglas. vs.

H†
1 : Production function is not log-linear.

3Production function F(L,K,A) is said to exhibit labor-augmenting (resp. capital-augmenting) technology if
∂
∂A

(
∂F(L,K,A)/∂L
∂F(L,K,A)/∂K

)
> (resp. <) 0 (e.g., Acemoglu, 2008), where L, K, and A are labor, capital, and technology shock,

respectively. The log-linearity property of the Cobb–Douglas function implies that ∂
∂A

(
∂F(L,K,A)/∂L
∂F(L,K,A)/∂K

)
= 0.
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Note that (13) suffers from the fundamental endogeneity issue, that is well known
since Griliches and Mairesse (1995). The endogeneity problem arises because Lt

and Kt are endogenously selected by firm t based on At which is unobservable to
the empirical researcher, although it is observable to the firm. The literature calls
this the input bias problem. As detailed below, it is standard in prior literature to
treat Kt as a dynamic input, because it is predetermined in the current period by a
preexisting investment plan that makes estimating the coefficient of log capital free
from the input bias problem (e.g., Olley and Pakes, 1996; Levinsohn and Petrin,
2003; Ackerberg, Caves, and Frazer, 2015).

There are prior empirical studies for the same purpose, and we employ a
different approach when using the DD-test. Most prior studies directly estimate
a prespecified production function that treats the Cobb–Douglas technology as a
special case. For example, Antràs (2004), Raval (2019), and Oberfield and Raval
(2021) draw empirical economic implications by estimating the constant elasticity
substitution (CES) production technology. Note that the CES production function
is log-nonlinear and nests the Cobb–Douglas production technology as a special
case by letting the elasticity of substitution converge to zero, extending the model
scope assumed by the Cobb–Douglas function. Nevertheless, it is also possible
that the assumed CES model is still misspecified, letting the misspecification
play a certain role in testing the Cobb–Douglas production technology. The DD-
test approach is different from the prior empirical studies. Note that the DD-
test can detect any log-nonlinearity without imposing a specific structure on the
production function because of its omnibus power against arbitrary nonlinearity.
We further apply the sequential testing procedure based on the DD-test and
estimate the production function supported by empirical data. We also attempt to
draw economic implications from this empirical analysis.

We specifically apply the DD-test to the control function approach to estimate
the production function (e.g., Olley and Pakes, 1996; Levinsohn and Petrin,
2003). For this purpose, we impose more structural assumptions on the production
function in (13) to estimate the following production function: for each firm t,

log(Yt) = βl∗ log(Lt)+βk∗ log(Kt)+Ut such that Ut := Wt +Vt. (14)

The error term Ut has two components. First, we let Vt be an IID error term to
which the firm does not respond by supposing that it captures measurement or
specification error. Next, Wt is a firm-specific time-varying productivity shock that
is observable to the firm but unavailable information to the empirical researcher.
We let Wt introduce the estimation bias by supposing that the firm chooses its
static inputs labor Lt after observing Wt, that in turn makes log(Lt) be correlated
with the error term. We assume that Wt follows the first-order Markov process,
viz., Wt = E[Wt|W(−1)

t ] + εt, where εt is an innovation in the current period and
the superscript “(−1)” is used to denote the first-lagged Wt. For example, for j =
1,2, . . ., W(−j)

t denotes the j-lagged Wt with respect to time index. We also suppose
that Kt is a dynamic input that is adjusted with one-period lag by noting that the
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investment made in the previous period increases the capital stock in the current
period. We also assume that εt is realized after the firm first makes its investment
decision in the previous period. From this supposition, log(Kt) is uncorrelated with
εt, whereas it is correlated with Wt mainly because the firm makes the investment
decision in the previous period based on its anticipation of Wt conditional on W(−1)

t ,
viz., E[Wt|W(−1)

t ].
Using the control function approach, the input bias problem can be resolved.

Following Levinsohn and Petrin (2003), we assume that log material input log(Mt)

is a proxy variable for Wt, implying that the material input can be written as
log(Mt) = m(Wt, log(Kt)) such that m(·) is strictly increasing with respect to Wt

for each value of log(Kt). Given the strict monotonicity of m(·) with respect to Wt,
it is not difficult to show that for some function g(·), Wt = g(log(Mt), log(Kt)), so
that Wt can be written as a function of the observables log(Mt) and log(Kt). As Wt

follows the first-order Markov process, we can express E[Wt|W(−1)
t ] as follows:

for some function f (·),

E[Wt|W(−1)
t ] = f (W(−1)

t ) = f (g(log(M(−1)
t ), log(K(−1)

t )))

=: h(log(M(−1)
t ), log(K(−1)

t )), (15)

where M(−1)
t and K(−1)

t denote the first-lagged Mt and Kt, respectively. By
substituting (15) into (14), we can rewrite the production function as log(Yt) =
βl∗ log(Lt)+βk∗ log(Kt)+h(log(M(−1)

t ), log(K(−1)
t ))+ εt +Vt. Here, we can non-

parametrically control h(log(M(−1)
t ), log(K(−1)

t )) using (log(M(−1)
t ), log(K(−1)

t )).
For example, Wooldridge (2009) approximates h(log(M(−1)

t ), log(K(−1)
t )) by

polynomials of log(M(−1)
t ) and log(k(−1)

t ). As another example, Dhyne et al.
(2017) uses the first-order approximation of h(log(M(−1)

t ), log(K(−1)
t )), viz.,

h(log(M(−1)
t ), log(K(−1)

t )) ≈ γm∗ log(M(−1)
t )+ γk∗ log(K(−1)

t ). By substituting this
approximate into the production function, we derive the following production
function:

log(Yt) = βl∗ log(Lt)+βk∗ log(Kt)+γm∗ log(M(−1)
t )+γk∗ log(K(−1)

t )+ εt +Vt,

(16)

that we now regard as our regression model. Once we condition out Wt using the
lagged proxy variable and the lagged capital stock, log(Kt) becomes uncorrelated
with the error term because Kt is a dynamic input that cannot be adjusted
contemporaneously to the innovation εt, whereas log(Lt) is a static input that
can be flexibly adjusted by the firm after it observes εt, letting the estima-
tion of βl∗ be subject to the input bias problem. Therefore, log(Yt), log(Lt),
[log(Kt), log(M(−1)

t ), log(K(−1)
t )]′, and εt + Vt correspond to Yt, Xt, Dt, and Ut,

respectively, in terms of the notations in Section 2.2.
We overcome the input bias problem by employing the GMM estimator with the

weighting matrix assuming conditional homoskedastic error on the instrumental
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variable, so that the GMM estimator becomes equivalent to the two-stage least-
squares estimator. Note that the model structure provides a set of valid instrumental
variables. Specifically, for each j = 1,2, . . ., E[log(L(−j)

t )(εt + Vt)] = 0, so that a
large set of instrumental variables can be constructed by flexibly employing the
lagged labor as valid instrumental variables. Using these instrumental variables,
we can apply the DD-test for a desired empirical inference.

We detail the data structure for empirical application. Compustat data are
used for the estimation that cover 2,140 public firms in the United States in
the year 2019. The variables of value-added Yt, employment Lt, material input
Mt, and capital stock Kt are constructed by following İmrohoroğlu and Tüzel
(2014) without missing observations. In the Appendix, we provide more detailed
information on the data construction. Furthermore, the observations in the dataset
trivially satisfy the positive endogenous variable condition because the firm-level
dataset covers the firms with more than a single employee. For the instrumental
variables, we specifically let them be three lagged log labors or their squares as
follows:

Zt := [
log(L(2016)

t ), log(L(2017)
t ), log(L(2018)

t ), log2(L(2016)
t ),

log2(L(2017)
t ), log2(L(2018)

t )
]′

,

where, for example, L(2016)
t denotes the employment of the tth firm in the year

2016. We below test whether the selected instrumental variables are strong enough
to apply the DD-test using Kleinbergen and Papp’s (2006) and Stock and Yogo’s
(2005) F-tests.

Table 6 reports the OLS and GMM estimates of (13). We present the OLS
estimates’ results in columns (1) and (2), and the GMM estimates’ results in
columns (3) and (4). In columns (1) and (3), we report the estimation results of
the Cobb–Douglas production function by OLS and GMM, respectively. Column
(4) assumes that the Cobb–Douglas production technology is misspecified with
respect to the endogenous variable log(Lt) and remedies the misspecification by
adding its square term on the right side. We summarize the estimation results as
follows:

(a) The OLS estimates of log(Lt) are slightly bigger than the corresponding GMM
estimates. The direction of the biases is consistent with the model assumption
that labor can be adjusted contemporaneously to the innovation εt. Because the
firm with positive εt uses more labor inputs, it leads to the upward bias of the
OLS estimate.

(b) At the bottom panel of Table 6, Kleinbergen and Papp’s (2006) F-test is
reported. The test values are bigger than the rule-of-thumb value 10 for the
models in columns (3) and (4) (cf. Staiger and Stock, 1997), implying that
the instrumental variables do not suffer from the weak instrumental variable
problem. When Cragg and Donald’s (1993) F-test is applied to the models
in columns (3) and (4), they are obtained as 11,320 and 10,618, respectively.
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Table 6. The OLS and GMM estimates of production function

OLS estimation GMM estimation

(1) (2) (3) (4)

log(Lt) 0.61∗∗∗ 0.84∗∗∗ 0.60∗∗∗ 0.80∗∗∗

(0.02) (0.06) (0.02) (0.06)

log(Kt) 0.56∗∗∗ 0.55∗∗∗ 0.56∗∗∗ 0.55∗∗∗

(0.09) (0.09) (0.09) (0.10)

log2(Kt)

log2(Lt) –0.01∗∗∗ –0.01∗∗∗

(0.00) (0.00)

log(K(2018)
t ) –0.32∗∗∗ –0.31∗∗∗ –0.32∗∗∗ –0.31∗∗∗

(0.09) (0.09) (0.09) (0.09)

log(M(2018)
t ) 0.19∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.01) (0.01) (0.01) (0.01)

KP-Fn 13,638 9,928

SY-Fn 11,320∗∗ 10,618∗∗

Dn 4.92 0.04

p-value of Dn (0.00) (0.94)

Jn 19.72 2.31

p-value of Jn (0.00) (0.68)

n 2,140 2,140 2,140 2,140

Notes: This table reports the OLS and GMM estimates of (13). The dependent variable is the logarithm
of value-added. In columns (1) and (2), the OLS estimates are reported, and in columns (3) and (4),
the GMM estimates are reported. KP-Fn and SY-Fn denote Kleinbergen and Papp’s (2006) and Stock
and Yogo’s (2005) F-tests, respectively, and n denotes the total number of the firms available in the
year 2019. Robust standard errors are given in the parentheses below the estimates, and *, **, and ***
denote that p < 0.1, p < 0.05, and p < 0.01, respectively.

These values are sufficiently bigger than the critical values of the 5% level of
significance in Stock and Yogo (2005) that are 19.28 and 15.72, respectively.
This reaffirms that the instrumental variables are not weak.

(c) At the bottom panel of Table 6, the DD-test is provided and it rejects the
hypothesis of the Cobb–Douglas production technology given in column (3),
whereas it does not reject for the model in column (4). This implies that adding
the power transform of log(Lt) on the right side does not reduce the GMM
distance significantly. Here, for the test, we let � = [0.00,2.50], and before
computing the DD-test, we checked the nonsingular matrix conditions
in Assumption 7(vi and vii) by Bartlett’s (1947) test. Specifically, we
let the null hypothesis be rank(E[Gt(γ )Z′

t]) = 4 for each γ ∈ �c(ε)

and could observe that the p-values are less than 6% for every value of
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γ ∈ {0.01,0.11, . . . ,2.31,2.41,2.50}, ensuring Assumption 7(vi). Likewise,
we separately tested the null hypotheses given as rank(E[Gt,0Z′

t]) = 4,
rank(E[Gt,1Z′

t]) = 4, and rank(E[Gt,2Z′
t]) = 4 by the same test, where

Gt,0 := [Lt,Xt,D′
t]

′, Gt,1 := [XtLt,Xt,D′
t]

′, and Gt,2 := [X2
t Lt,Xt,D′

t]
′. These

hypotheses are uniformly rejected at the level of 6%, implying that the
nonsingular matrix condition is ensured.

(d) The J-test at the bottom panel also rejects the model in column (3) but does
not, for the model in column (4), that is consistent with the DD-test. Although
the J-test in column (3) does not say why the orthogonality condition violates,
the DD-test ascribes the violation to the model misspecification.

(e) The negative coefficient of the quadratic log labor term in column (4) implies
that the labor-augmenting technological change leads to the decline in the
labor share. The negative coefficient indicates that an increase in the labor-
augmenting technology decreases the marginal revenue product of labor
(MRPL) relative to the marginal revenue product of capital (MRPK), as our
estimate implies that MRPLt/MRPKt = (0.80−2×0.01× log(AL

t Lt)), where
AL

t is the labor-augmenting productivity shock. This makes firms substitute
more toward capital and in turn decreases the ratio of labor expenditure to
the value-added, so that the labor-augmenting technological change with our
preferred functional form explains the recent decline of labor shares.

From this empirical analysis applying the DD- and J-tests sequentially, we
essentially conclude that the Cobb–Douglas production technology misspecifies
the firm-level production function in the United States, that is remedied by adding
log2(Lt) to the Cobb–Douglas production technology. Furthermore, the estimated
production technology is consistent with the recently discovered decline of labor
shares from the empirical literature.

6. CONCLUDING REMARKS

We provide an econometric method to estimate a correct structural model. For
this, we proceed in three steps. First, we provide the DD-test and demonstrate its
omnibus power against an arbitrary nonlinear structure. We also derive the null
and local alternative limit distributions of the DD-test. Second, we approximate
the nonlinear structural equation using a polynomial function if the linear model
is rejected, and provide a sequential testing procedure to consistently estimate
the degree of polynomial function. This procedure can consistently estimate the
polynomial function when it is finite, with the significance level converging to
zero as the sample size tends toward infinity. These properties and their perfor-
mance relative to the J-sequential testing procedure and MSCs are also compared
by simulation. Lastly, we provide an empirical illustration by investigating the
relationship between the value-added and its production factors using firm-level
data from the United States. Using the DD-test, we affirm that the production
function has exhibited factor-biased technological changes instead of the Hicks-
neutral technology presumed by a Cobb–Douglas production function.
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APPENDIX

A.1. Proofs

Before proving the main claims of this study, we provide some preliminary lemmas to
facilitate the proofs. For notational simplicity, we assume that F := V′Z̈Z̈′V and P̈ := Z̈Z̈′V.

LEMMA A1. Given Assumptions 1–3,

(i) Z′U = OP(
√

n);
(ii) V′V = OP(n), C0Z = OP(n), V′Z = OP(n), Z′Z = OP(n), and K′

1Z = OP(n),

where, for j = 1,2, . . ., Kj := [Lj
...0n×k] and Lj := [Lj

1, . . . ,L
j
n]′;

(iii) L2Z = OP(n), and K2Z = OP(n);
(iv) Z′U = oP(n). �

LEMMA A2. For j = 1,2, . . ., let d(j)
n (0;ξ0) := (∂ j/∂γ j)dn(γ ;ξ0)|γ=0. Given Assump-

tions 1–3, and H0,2,

(i) d(1)
n (0;ξ0) = −2(ξ0∗ − ξ0)C′

0Q1U + 2U′K1F−1P̈′U + U′P̈F−1(P̈′K1 + K′
1P̈)

F−1P̈′U;
(ii) d(1)

n (0;ξ0) = −2(ξ0∗ − ξ0)C′
0Q1U+OP(n);

(iii) d(2)
n (0;ξ0) = 2(ξ0∗ − ξ0)

2C′
0Q1C0 +oP(n2). �

LEMMA A3. Given Assumptions 1–3, and H0,2,

(i) D(γ=0;β)
n = {C′

0Q1U}2/{nC′
0Q1C0}+oP(1);

(ii) D(γ=0;β)
n = OP(1). �

LEMMA A4. Given Assumptions 1–3, and H0,2,

(i) D(γ=0;ξ0)
n = {C′

0Q1U}2/{nC′
0Q1C0}+oP(1);

(ii) D(γ=0;ξ0)
n = OP(1). �

LEMMA A5. Given Assumptions 1–3,

(i) V′V = OP(n), C1Z = OP(n), V′Z = OP(n), Z′Z = OP(n), and K
′
1Z = OP(n), where,

for j = 1,2, . . ., Kj := [0n×1
...Cj

...0n×k];

(ii) C2Z = OP(n), and K
′
2Z = OP(n). �

LEMMA A6. For j = 1,2, . . ., d(j)
n (1;ξ1) := (∂ j/∂γ j)dn(γ ;ξ1)|γ=1. Given Assumptions

1–3, and H0,3,

(i) d(1)
n (1;ξ1) = −2(ξ1∗ − ξ1)C′

1Q1U − 2U′K1F−1P̈′U + U′P̈F−1(P̈′K1 + K
′
1P̈)

F−1P̈′U;
(ii) d(1)

n (1;ξ1) = −2(ξ1∗ − ξ1)C′
1Q1U+OP(n);

(iii) d(2)
n (1;ξ1) = 2(ξ1∗ − ξ1)C′

1Q1C1 +oP(n2). �

https://doi.org/10.1017/S026646662200038X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200038X


SEQUENTIALLY ESTIMATING THE STRUCTURAL EQUATION 145

LEMMA A7. Given Assumptions 1–3, and H0,3,

(i) D(γ=1;β)
n = {C′

1Q1U}2/{nC′
1Q1C1}+oP(1);

(ii) D(γ=1;β)
n = OP(1). �

LEMMA A8. Given Assumptions 1–3, and H0,3,

(i) D(γ=1;ξ1)
n = {C′

1Q1U}2/{nC′
1Q1C1}+oP(1);

(ii) D(γ=1;ξ1)
n = OP(1). �

Proof of Lemma A1. (i) Z′U = [
∑

t ZtjUt]. Since E[Z2
tjU

2
t ] < E[Z4

tj]
1/2

E[U4
t ]1/2

by the Cauchy Schwarz inequality, E[Z4
tj] < ∞, and E[U4

t ] < ∞ hold by Assump-
tion 3, we can apply the CLT and obtain the desired result.

(ii) By the definition of K1, if C′
0Z = OP(n), K′

1Z = OP(n). We assume that R is
a generic notation for V, C0, and Z. As R′Z = [

∑
RtjZti], the result follows by

ergodicity if E[|RtjZti|] < ∞, that holds by the Cauchy–Schwarz inequality and the
fact that E[Z2

ti] < ∞, E[V2
tj] < ∞, and E[log2(Xt)] < ∞ by Assumption 3.

(iii) Similarly, by the definition of K2, if L′
2Z = OP(n), K′

2Z = OP(n). As E[log4(Xt)] <

∞ and E[Z2
ti] < ∞, the result similarly follows from ergodicity and the Cauchy–

Schwarz inequality.
(iv) This simply follows from the fact that {ZtUt} is a mixingale sequence by Assump-

tion 1 and applying the law of large numbers (LLN). �

Proof of Lemma A2. (i) We can obtain the first-order derivative with respect to γ as
follows:

d(1)
n (0;ξ0) = −2P(ξ0)′Z̈Z̈′H(0)[H(0)′Z̈Z̈′H(0)]−1K′

1Z̈Z̈′P(ξ0)

−P(ξ0)′Z̈Z̈′H(0)(d/dγ )[H(0)′Z̈Z̈′H(0)]−1H(0)′Z̈Z̈′P(ξ0).

Note that

(d/dγ )[H(0)′Z̈Z̈′H(0)]−1 = −F−1[P̈′K1 +K′
1P̈]F−1, (1)

and that P(ξ0) = Y− ξ0ι = V[ξ0∗ − ξ0,δ
′∗]′ +U = Vκ(ξ0)+U by assuming that κ(ξ0) :=

[ξ0∗ − ξ0,δ
′∗]′. For notational simplicity, we suppress ξ0 in κ(ξ0). From H(0) = V and

P̈ := Z̈Z̈′V, it follows that

d(1)
n (0;ξ0) = −2(Vκ +U)′P̈F−1K′

1Z̈Z̈′(Vκ +U)︸ ︷︷ ︸
(A)

+ (Vκ +U)′P̈F−1[P̈′K1 +K′
1P̈]F−1P̈′(Vκ +U)︸ ︷︷ ︸

(B)

.

We now examine each RHS component. The first component (A) can be expressed as a sum
of the following four components:

(a) −2κ ′VP̈F−1K′
1P̈κ = −2κ ′K′

1Z̈Z̈′Vκ ;
(b) −2κ ′K′

1Z̈Z̈′U;
(c) −2U′P̈F−1K′

1P̈κ ;
(d) −2U′P̈F−1K′

1Z̈Z̈′U.
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Next, the second component (B) can also be expressed as the sum of the following four
other components:

(a) κ ′(P̈′K1 +K′
1P̈)κ = 2κ ′K′

1P̈κ ;
(b) κ ′P̈′K1F−1P̈′U+U′P̈F−1K′

1P̈κ = 2κ ′P̈′K1F−1P̈′U;
(c) κ ′K′

1P̈F−1P̈′U+U′P̈′F−1P̈′K1κ = 2κ ′K′
1P̈F−1P̈′U;

(d) U′P̈F−1[P̈′K1 +K′
1P̈]F−1P̈′U.

By adding and organizing all these terms according to their order of convergence, we obtain
the following:

(a) −2κ ′K′
1P̈κ +2κ ′K′

1P̈κ = 0;
(b, c) −2κ ′{K′

1Z̈Z̈′ +K′
1P̈F−1P̈′}U = −2(ξ0∗ − ξ0)C0Q1U;

(d) U′P̈F−1[P̈′K1 +K′
1P̈]F−1P̈′U−2U′P̈F−1K′

1Z̈Z̈′U.

Hence, the first-order derivative can be obtained as

d(1)
n (0;ξ0) = −2(ξ0∗ − ξ0)C′

0Q1U−2U′P̈F−1K′
1Z̈Z̈′U+U′P̈F−1[P̈′K1 +K′

1P̈]F−1P̈′U.

(ii) Given the result in (i), by applying the result of Lemma A1, we obtain

d(1)
n (0;ξ0) = −2(ξ0∗ − ξ0)C′

0Q1U︸ ︷︷ ︸
OP(n3/2)

−2U′P̈F−1K′
1Z̈Z̈′U︸ ︷︷ ︸

OP(n)

+U′P̈F−1[P̈′K1 +K′
1P̈]F−1P̈′U︸ ︷︷ ︸

OP(n)

= −2(ξ0∗ − ξ0)C′
0Q1U+OP(n).

(iii) The second-order derivative is obtained as

d(2)
n (0;ξ0) =−2P(ξ0)′Z̈Z̈′K1[H(0)′Z̈Z̈′H(0)]−1K′

1P(ξ0)

−2P(ξ0)′Z̈Z̈′H(0)[H(0)′Z̈Z̈′H(0)]−1K′
2Z̈Z̈′P(ξ0)

−4P(ξ0)′Z̈Z̈′H(0)(d/dγ )[H(0)′Z̈Z̈′H(0)]−1K′
1Z̈Z̈′P(ξ0)

−P(ξ0)′Z̈Z̈′H(0)(d2/dγ 2)[H(0)′Z̈Z̈′H(0)]−1H(0)′Z̈Z̈′P(ξ0),

where

d2

dγ 2
[H(0)′Z̈Z̈′H(0)]−1 = 2F−1[P̈′K1 +K′

1P̈]F−1[P̈′K1 +K′
1P̈]F−1

−F−1[P̈′K2 +K′
2Z̈Z̈′V+2K′

1Z̈Z̈′K1]F−1,

and (1) shows the specific form of (d/dγ )[H(0)′Z̈Z̈′H(0)]−1. Using these results, we
arrange the terms to obtain

d(2)
n (0;ξ0) =+4(Vκ +U)′P̈F−1[P̈′K1 +K′

1P̈]F−1K′
1Z̈Z̈′(Vκ +U)

−2(Vκ +U)′{Z̈Z̈′K1F−1P̈′ + Z̈Z̈′K1F−1K′
2Z̈Z̈′}(Vκ +U)

− (Vκ +U)′P̈F−1[2K′
1Z̈Z̈′K1 + P̈′K2 +K′

2P̈]F−1P̈′(Vκ +U)

−2(Vκ +U)′P̈F−1[P̈′K1 +K′
1P̈]F−1[P̈′K1 +K′

1P̈]M−1P̈′(Vκ +U).

By organizing each term according to their order of convergence and applying Lemma A1,
because E[ZtUt] = 0, we can obtain
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• −2κ ′{P̈′K1F−1K1 + K′
2Z̈Z̈′}Vκ + 4κ ′[P̈′K1 + K′

1P̈]F−1K′
1P̈κ − 2κ ′[P̈′K1 + K′

1P̈]
F−1[P̈′K1 + K′

1P̈]κ + 2κ ′[2K′
1Z̈Z̈′K1 + K′

2P̈ + P̈′K2]κ = 2(κ ′K′
1Z̈Z̈′K1κ

−2κ ′K′
1P̈M−1P̈′κ) = 2(ξ0∗ − ξ0)

2C′
0Q1C0 = OP(n2).

• −4κ ′P̈′K1F−1K′
1Z̈Z̈′U+4κ ′[P̈′K1 +K′

1P̈]F−1K′
1Z̈Z̈′U−4κ ′[P̈′K1 +K′

1P̈]F−1[P̈′K1 +
K′

1P̈]F−1P̈′U − 2κ ′K′
2Z̈Z̈′U − 2κ ′P̈′K2F−1P̈′U = −2(ξ0∗ − ξ0)[L′

2Q1U − 2C′
0Q1K1

F−1P̈′U+2C′
0P̈F−1K′

1Q1U] = oP(n2).
• −2U′Z̈Z̈′K1F−1K′

1Z̈Z̈′U − 2U′P̈F−1K′
2Z̈Z̈′U + 4U′P̈(P̈′V)−1[P̈′K1 + K′

1P̈]F−1

K′
1ZMnZ′U+2U′P̈F−1 {[P̈′K1 +K′

1P̈]F−1[P̈′K1 +K′
1P̈]−K′

1Z̈Z̈′K1 − P̈′K2}F−1P̈′U
= oP(n2).

Therefore, by adding all these terms, we can have d(2)
n (0;ξ0) = 2(ξ0∗ − ξ0)2C′

0Q1C0 +
oP(n2). �

Proof of Lemma A3. (i) By applying a second-order Taylor expansion to dn(γ ;β) and
optimizing with respect to γ , we have

infγ {dn(γ ;β)−dn(0;β)} = −{d(1)
n (0;β)}2

2d(2)
n (0;β)

+oP(1).

Given this, we note that d(1)
n (0;β) := (d/dγ )dn(0;β) = 2βC′

0Q1U = OP(n3/2) and

L(2)
n (0;β) := (d2/dγ 2)Ln(0;β) = β2C′

0Q1C0 −βL′
2Q1U = OP(n2). From this, it follows

that

D(γ=0;β)
n = − inf

γ∈�
n−1{dn(γ ;β)−dn(0;β)}

= {n−3/2βC′
0Q1U}2

n−2(β2C′
0Q1C0 −βL′

2Q1U)
+oP(1) = {C′

0Q1U}2

nC′
0Q1C0

+oP(1),

because L′
2Q1U = oP(n2), as shown in (ii).

(ii) We separate the proof into three parts. First, we note that C′
0Q1U = C′

0Z̈(I −
Z̈′V(V′Z̈Z̈′V)−1V′ Z̈)Z̈′U. Lemma A1(i and ii) and Assumption 3 imply that C′

0Q1U =
OP(n3/2). Similarly, Lemma A1(ii) and Assumption 3 imply that C′

0Q1C0 = OP(n2).

Furthermore, Lemma A1(ii–iv) and Assumption 3 imply that L′
2Q1U = oP(n2). By

combining all these results, we obtain the desired result. �

Proof of Lemma A4. (i) By applying a second-order Taylor expansion to dn(·;ξ0)

and optimizing with respect to γ , we have

inf
γ∈�

{dn(γ ;ξ0)−dn(0;ξ0)} = −{d(1)
n (0;ξ0)}2

2d(2)
n (0;ξ0)

+oP(n)

= −{2(ξ0∗ − ξ0)C′
0Q1U}2

4(ξ0∗ − ξ0)2C′
0Q1C0

+oP(n).

Therefore,

D(γ=0;ξ0)
n = −infγ n−1{dn(γ ;ξ0)−dn(0;ξ0)} = {C′

0Q1U}2

nC′
0Q1C0

+oP(1).

(ii) The desired result follows from Lemmas A3 and A4(i). �
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Proof of Lemma A5. The proof of this lemma is similar to that of Lemma A1. �

Proof of Lemma A6. (i) We can obtain the first-order derivative with respect to γ as
follows:

d(1)
n (1;ξ1) =−2P̃(ξ1)′Z̈Z̈′H̃(1)[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
1Z̈Z̈′P̃(ξ1)

− P̃(ξ1)′Z̈Z̈′H̃(1)(d/dγ )[H̃(1)′Z̈Z̈′H̃(1)]−1H̃(1)′Z̈Z̈′P̃(ξ1).

Note that

(d/dγ )[H̃(1)′Z̈Z̈′H̃(1)]−1 = −F−1[P̈′K1 +K
′
1P̈]F−1, (2)

and that P̃(ξ1) = Y − ξ1X = V[ξ0∗,ξ1∗ − ξ1,η
′∗]′ + U = Vζ (ξ1) + U by assuming that

ζ (ξ1) := [ξ0,ξ1∗ −ξ1,η
′∗]′. For notational simplicity, we further suppress ξ1 of ζ (ξ1). From

this, it follows that since H̃(1) = V,

d(1)
n (1;ξ1) = −2(Vζ +U)′P̈F−1K

′
1Z̈Z̈′(Vζ +U)

+ (Vζ +U)′P̈F−1[P̈′K1 +K
′
1P̈]F−1P̈′(Vζ +U).

Note that this is the same as d(1)
n (0;ξ0) in Lemma A2(i) when we replace ζ , C1, and K1

with κ , C0, and K1, respectively.

(ii) From (i) and Lemmas A1, A2, and A5, we can infer that d(1)
n (1;ξ1) = −2(ξ1∗ −

ξ1)C′
1Q1U+OP(n).

(iii) The second-order derivative is

d(2)
n (1;ξ1) =−2P̃(ξ1)′Z̈Z̈′K1[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
1P̃(ξ1)

−2P̃(ξ1)′Z̈Z̈′H̃(1)[H̃(1)′Z̈Z̈′H̃(1)]−1K
′
2Z̈Z̈′P̃(ξ1)

−4P̃(ξ1)′Z̈Z̈′H̃(1)(d/dγ )[H̃(1)′Z̈Z̈′H̃(1)]−1K
′
1Z̈Z̈′P̃(ξ1)

− P̃(ξ1)′Z̈Z̈′H̃(1)(d2/dγ 2)[H̃(1)′Z̈Z̈′H̃(1)]−1H̃(1)′Z̈Z̈′P̃(ξ1),

where

d2

dγ 2
[H̃(1)′Z̈Z̈′H̃(1)]−1 =−F−1[V′Z̈Z̈′K2 +K

′
2Z̈Z̈′V+2K

′
1Z̈Z̈′K1]F−1

+2F−1[V′Z̈Z̈′K1 +K
′
1Z̈Z̈′V]F−1[V′Z̈Z̈′K1 +K

′
1Z̈Z̈′V]F−1,

and (2) shows the specific form of (d/dγ )[H̃(1)′Z̈Z̈′H̃(1)]−1. By using these results and
arranging the terms, we obtain

d(2)
n (1;ξ1) =+4(Vζ +U)′P̈F−1[P̈′K1 +K

′
1P̈]F−1K

′
1Z̈Z̈′(Vζ +U)

−2(Vζ +U)′{Z̈Z̈′K1F−1P̈′ + Z̈Z̈′K1F−1K
′
2Z̈Z̈′}(Vζ +U)

− (Vζ +U)′P̈F−1[2K
′
1Z̈Z̈′K1 + P̈′K2 +K

′
2P̈]F−1V′Z̈Z̈′(Vζ +U)

−2(Vζ +U)′P̈F−1[P̈′K1 +K
′
1P̈]F−1[P̈′K1 +K

′
1P̈]F−1V′Z̈Z̈′(Vζ +U).

If we reorganize the terms according to their order of convergence by applying Lemmas A1
and A5 and the fact E[ZtUt] = 0, we obtain

https://doi.org/10.1017/S026646662200038X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200038X


SEQUENTIALLY ESTIMATING THE STRUCTURAL EQUATION 149

• −2ζ ′{P̈′K′
1F−1K1 + K

′
2Z̈Z̈′}Vζ + 4ζ ′[P̈′K1 + K

′
1P̈]F−1K

′
1P̈ζ − 2ζ ′[P̈′K1 + K

′
1P̈]F−1

[P̈′K1 +K
′
1P̈]ζ +2ζ ′[2K

′
1Z̈Z̈′K1 +K

′
2P̈+P̈′K2]ζ = 2(ζ ′K′

1Z̈Z̈′K1ζ −2ζ ′K′
1P̈M−1P̈′ζ )

= 2(ξ1∗ − ξ1)
2C′

1Q1 C1 = OP(n2).

• −4ζ ′P̈′K1F−1K
′
1Z̈Z̈′U+4ζ ′[P̈′K1 +K

′
1P̈]F−1K

′
1Z̈Z̈′U−4ζ ′[P̈′K1 +K

′
1P̈]F−1[P̈′K1 +

K
′
1P̈]F−1 P̈′U − 2ζ ′K′

2Z̈Z̈′U − 2ζ ′P̈′K2F−1P̈′U = −2(ξ1∗ − ξ1)[C′
2Q1U − 2C′

1Q1K1

F−1P̈′U+2C′
1P̈F−1K

′
1Q1 U] = oP(n2).

• −2U′Z̈Z̈′K1F−1K
′
1Z̈Z̈′U − 2U′P̈F−1K

′
2Z̈Z̈′U + 4U′P̈(P̈′V)−1[P̈′K1 + K

′
1P̈]F−1K

′
1

Z̈Z̈′U + 2U′P̈F−1{[P̈′ K1 + K
′
1P̈]F−1[P̈′K1 + K

′
1P̈] − K

′
1Z̈Z̈′K1 − P̈′K2}F−1P̈′U =

oP(n2).

Therefore, we combine all these terms and obtain d(2)
n (1;ξ1) = 2(ξ1∗ − ξ1)2C′

1Q1C1 +
oP(n2). �

Proof of Lemma A7. (i) By applying a second-order Taylor expansion to dn(γ ;β) and
optimizing with respect to γ , we have

infγ∈�{dn(γ ;β)−dn(1;β)} = −{d(1)
n (1;β)}2

2d(2)
n (1;β)

+oP(n)

= − {βC′
1Q1U}2

β2C′
1Q1C1 −βC′

2Q1U
+oP(n),

where d(1)
n (1;β) := (d/dγ )dn(1;β) = −2βC′

1Q1U = OP(n3/2) and d(2)
n (1;β) :=

(d2/dγ 2)dn(1;β) = −β2C′
1Q1C1 +βC′

2Q1U = OP(n2). In (ii), we show that C′
2Q1U =

oP(n), so that

D(γ=1;β)
n = −infγ∈�n−1{dn(γ ;β)−dn(1;β)}

= {n−3/2βC′
1Q1U}2

n−2(β2C′
1Q1C1 −βC′

2Q1U)
+oP(1) = {C′

1Q1U}2

nC′
1Q1C1

+oP(1),

as desired.
(ii) We proceed with the proof in three components. First, C′

1Q1U = C′
1Z̈(I −

Z̈′V(V′Z̈Z̈′V)−1 V′Z̈)Z̈′U. Lemmas A1(i), 3, and A5(i) imply that C′
1Q1U = OP(n3/2).

Similarly, Lemma A5(i) and Assumption 3 imply that C′
1Q1C1 = OP(n2). Furthermore,

Lemmas A1(iv) and A5(i and ii) and Assumption 3 imply that C′
2Q1U = oP(n2). By

combining all these results, we obtain D(γ=1;β)
n = OP(1). �

Proof of Lemma A8. (i) By applying a second-order Taylor expansion to dn(γ ;ξ1) and
optimizing with respect to γ , we have

infγ∈�{dn(γ ;ξ1)−dn(1;ξ1)} = −{d(1)
n (1;ξ1)}2

2d(2)
n (1;ξ1)

+oP(n)

= −{2(ξ1∗ − ξ1)C′
1Q1U}2

4(ξ1∗ − ξ1)2C′
1Q1C1

+oP(n)
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by Lemma A6(ii and iii). Therefore, it follows that

D(γ=1;ξ1)
n = −infγ∈�n−1{dn(γ ;ξ1)−dn(1;ξ1)}

= {n−3/2(ξ1∗ − ξ1)C′
1Q1U}2

n−2(ξ1∗ − ξ1)2C′
1Q1C1

+oP(1) = {C′
1Q1U}2

nC′
1Q1C1

+oP(1),

as desired.
(ii) The desired result follows from Lemmas A7 and A8(i). �

We now prove the main claims of this study.

Proof of Lemma 1. We can apply the uniform law of large numbers (ULLN) to each
row of {n−1/2 ∑n

t=1 Xγ
t Zt}, so that for each j, we have

supγ∈�

∣∣∣∣n−1
n∑

t=1

Xγ
t Zt,j −E[Xγ

t Zt,j]

∣∣∣∣ P→ 0, (3)

where Zt,j is the jth-row element of Zt. This result mainly follows from Theorem 3(a) of
Andrews (1992). In particular, Assumption 2 implies that � is totally bounded; for each j,
E[|Xγ

t Zt,j|] ≤ E[M2
t ] < ∞ by Assumption 3, so that for each γ ∈ �, the ergodic theorem

holds for n−1 ∑n
t=1 Xγ

t Zt,j; and finally, X(·)
t Zt,j is Lipschitz continuous because, for each j,

|Xγ
t Zt,j −Xγ ′

t Zt,j| ≤ supγ∈� |Xγ
t Lt| · |Zt,j| · |γ −γ ′| ≤ M2

t |γ −γ ′|, (4)

where M2
t = OP(1). These three conditions are the assumptions required for Theorem 3(a)

of Andrews (1992) to prove the ULLN. This also implies that E[X(·)
t Vt] is continuous on �.

Note that X(γ )′Q1U = X(γ )′Z̈[I−Z̈′VF−1V′Z̈]Z̈′U to obtain supγ∈� |n−3/2X(γ )′Q1U−
n−1/2

E[Xγ
t Z̃′

t]J1Z̃′U| = oP(1), because Mn
P→ M0 and n−1 ∑n

t=1 ZtV′
t

P→ E[ZtV′
t] by

ergodicity, where Z̃ := M1/2
0 Z. Furthermore, we can apply the CLT to n−1/2Z′U, so that

n−1/2Z′U A∼ N(0,�), implying that n−1/2X(·)′Q1U ⇒ G(·), where G(·) is a Gaussian
stochastic process whose covariance kernel is identical to κ(·,·).

Second, we apply the ULLN to n−2X(·)′Q1X(·). We separate our proof into two parts.
We first show that supγ∈� |n−2X(γ )Z̈Z̈′X − E[Xγ

t Z′
t]M0E[Z′

tX
γ
t ]| = oP(1), and then

show that supγ∈� |n−2X(γ )′ZGnZ′X(γ ) −E[Xγ
t Z′

t]G0E[ZtX
γ
t ]| = oP(1), where Gn :=

MnZ′VF−1V′ZMn and G0 := M0E[ZtV′
t](E [VtZ′

t]M0E[ZtV′
t])

−1
E[VtZ′

t]M0.
For the first part, we note the following triangle inequality:

sup
γ∈�

|n−2X(γ )′Z̈Z̈′X(γ )−E[Xγ
t Z̃′

t]E[Z̃tX
γ
t ]|

≤ sup
γ∈�

|(n−1X(γ )′Z−E[Xγ
t Zt])Mnn−1Z′X(γ )|

+ sup
γ∈�

|E[Xγ
t Zt](Mn −M0)n−1Z′X(γ )|+ sup

γ∈�
|E[Xγ

t Z̃t](n
−1Z̃′X(γ )−E[Z̃tX

γ
t ])|.
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supγ∈� |(n−1X(γ )′Z)−E[Xγ
t Z′

t]| = oP(1) by (3), and |Mn −M0| = oP(1) by Assumption

1. Moreover, we note that supγ∈� |n−1X(γ )′Z| = OP(1) by Assumption 3, ensuring

that supγ∈� |E[Xγ
t Z′

t]| = O(1). Thus, it now follows that supγ∈� |n−2X(γ )′Z̈Z̈′X(γ ) −
E[Xγ

t Z̃′
t]E[Z̃tX

γ
t ]| = oP(1).

For the second part, note that

sup
γ∈�

|n−2X(γ )′ZGnZ′X(γ )−E[Xγ
t Z′

t]G0E[ZtX
γ
t ]|

≤ sup
γ∈�

|(n−1X(γ )′Z−E[Xγ
t Zt])Gnn−1Z′X(γ )|

+ sup
γ∈�

|E[Xγ
t Zt](Gn −G0)n−1Z′X(γ )|

+ sup
γ∈�

|E[Xγ
t Zt]G0(n−1Z′X(γ )−E[ZtX

γ
t ])|.

Here, Gn = G0 + oP(1), because |Mn − M0| = oP(1) and n−1Z′V = E[ZtV′
t] + oP(1)

by Assumptions 1 and 3, and the ergodicity. Therefore, supγ∈� |n−2X(γ )′ZGnZ′X(γ )−
E[Xγ

t Z′
t]G0E[ZtX

γ
t ]| = oP(1), as for the first part.

From these two parts, it follows that supγ∈� |n−2X(γ )′Q1X(γ )−E[Xγ
t Z̃′

t]J1E[Z̃tX
γ
t ]|

= oP(1), by noting that M1/2
0 J1M1/2

0 = M0 −G0, and the desired result follows from the

definition of σ 2
1 (·). �

Proof of Lemma 2. The desired result follows from Lemmas A3 and A4. Specifically,
we apply the martingale CLT and continuous mapping theorem to derive the asymptotic
null distribution of Z0. �

Proof of Lemma 3. The desired result follows from Lemmas A7 and A8. Specifically,
we apply the martingale CLT and continuous mapping theorem to derive the asymptotic
null distribution of Z1. �

Proof of Lemma 4. (i) Letting γ converge to zero,

plim
γ→0

N(2)
n (γ ) = plim

γ→0
2{(d/dγ )X(γ )′Q1U}2 +2{X(γ )′Q1(d/dγ )X(γ )} = 2{C′

0Q1U}2,

because plimγ→0(d/dγ )X(γ ) = C0 and plimγ→0X(γ )′Q1U = ι′Q1U = 0. Furthermore,

plim
γ→0

D(2)
n (γ ) = plim

γ→0
2n{(d2/dγ 2)X(γ )′Q1X(γ )}2

+ plim
γ→0

2n{(d/dγ )X(γ )′Q1(d/dγ )X(γ )} = 2nC′
0Q1C0,

because plimγ→0(d/dγ )X(γ ) = C0 and plimγ→0(d2/dγ 2)X(γ )′Q1U = L′
2Q1ι = 0.

We now let γ converge to 1.

plim
γ→1

N(2)
n (γ ) = plim

γ→1
2{(d/dγ )X(γ )′Q1U}2 +2{X(γ )′Q1(d/dγ )X(γ )} = 2{C′

1Q1U}2,
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because plimγ→1(d/dγ )X(γ ) = C1 and plimγ→1X(γ )′Q1U = X′Q1U = 0. Furthermore,

plim
γ→1

D(2)
n (γ ) = plim

γ→1
2n{(d2/dγ 2)X(γ )′Q1X(γ )}2

+ plim
γ→1

2n{(d/dγ )X(γ )′Q1(d/dγ )X(γ )} = 2nC′
1Q1C1,

because plimγ→1(d/dγ )X(γ ) = C1 and plimγ→0(d2/dγ 2)X(γ )′Q1U = C′
2Q1X = 0.

�

Proof of Theorem 1. From Lemma 4, we have

sup
γ∈�

1

n

{X(γ )′Q1U}2

X(γ )′Q1X(γ )
≥ max

[
1

n

{C′
0Q1U}2

C′
0Q1C0

,
1

n

{C′
1Q1U}2

C′
1Q1C1

]
.

Thus, the desired result follows from Lemmas 1–3. �

Proof of Theorem 2. (i) For notational simplicity, for each γ ∈ �, we assume that
g(γ ) := J1E[Z̃tX

γ
t ] and h := J1E[Z̃tm(Xt)]. Note that from (9), it follows that

d0 −d(γ ) =
{

h′g(γ )√
h′h

√
g(γ )′g(γ )

}2

(h′h),

so that d0 − d(·) ≥ 0. Therefore, if supγ∈�(d0 − d(γ )) = 0, it implies that c(·) :=
〈h,g(·)〉 ≡ 0.

We prove the given claim by contradiction. Now, assume that c(·) ≡ 0 on �. From the
condition that J1E[Z̃tm(Xt)] �= 0, it follows that h �= 0, and so g(·) ≡ 0 from the assumption

that c(·) ≡ 0 and E[Z̃tX
(·)
t ] ≡ 0. If we let M(·,·) denote the moment generating function

of (log(Xt),Z̃′
t)

′, viz., M(γ,τ ) := E[exp(γ log(Xt)+ τ ′Z̃t)], then, for each γ , E[Xγ
t Z̃t] =

∇τ M(γ,τ )|τ=0, so that E[Z̃tX
(·)
t ] ≡ 0 implies that E[Z̃t| log(Xt)] = 0 with probability 1 by

applying Theorem 1 of Bierens (1982) to the moment generating function. Note that log(·)
is a one-to-one mapping from R

+ to R, so that it is a measure preserving transformation.
This implies that E[Z̃t|Xt] = 0 with probability 1. We now multiply m(Xt) to each side and
apply the law of iterated expectation: E[m(Xt)E[Z̃t|Xt]] = E[m(Xt)Z̃t] = 0. Note that this
is a contradiction to the condition that J1E[Z̃tm(Xt)] �= 0. Therefore, for some γ̃ , c(γ̃ ) �= 0,
and this implies that d0 −d(γ̃ ) > 0.

(ii) Because dn(β,γ ) = (Y − βX(γ ))′Q1(Y − βX(γ )) and Y = Vς∗ + n−1/2s + U,
where s := (s(X1), . . . ,s(Xn))′, we have

Dn = sup
γ∈�

{X(γ )′Q1Y}2

nX(γ )′Q1X(γ )
= sup

γ∈�

{n−2X(γ )′Q1s+n−3/2X(γ )′Q1U)}2

n−2X(γ )′Q1X(γ )
.

From Lemma 1, we have n−3/2X(·)′Q1U ⇒ G(·) and supγ∈� |n−2X(γ )′Q1X(γ ) −
σ 2

1 (γ )| P→ 0, where σ 2
1 (γ ) := E[Xγ

t Z̃′
t]J1E[Z̃ts(Xt)]. Note that n−2X(γ )′Q1s =

n−2X(γ )′Z̈Z̈′s − n−2X(γ )′Z̈Z̈′VF−1V′Z̈ Z̈′s. In the proof of Lemmas 1 and A1, we

saw that supγ∈� |n−1X(γ )′ Z −E[Xγ
t Zt]| P→ 0 and n−1V′Z P→ E[VtZ′

t]. Furthermore,

if we apply the ergodic theorem, n−1Z′s P→ E[Zts(Xt)] by the moment condition that
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E[s2(Xt)] < ∞. Thus, we have supγ∈� |n−2Z(γ )′Q1s − E[Xγ
t Z̃t]J1E[Z̃ts(Xt)]| P→ 0.

Therefore, it follows that

Dn ⇒ sup
γ∈�

{E[Xγ
t Z̃t]J1E[Z̃ts(Xt)]+G(γ )}2

σ 2
1 (γ )

= sup
γ∈�

{ν1(γ )+Z1(γ )}2

by the definitions of ν1(·) := E[X(·)
t Z̃t]J1E[Z̃ts(Xt)]/σ1(·) and Z1(·) := G(·)/σ (·). This

completes the proof. �

Proof of Theorem 3. (i) The proof is the same as that of Theorem 1.
(ii) We first note from (10) that

n−1dn(̃ξ0,n,̃δn,β0,γ̃n)

= inf
γ∈�

[n−1/2U′Z̈−β∗
√

n(γ −γ∗)n−1D(γ∗)′Z̈]

×J1[n−1/2Z̈′U−β∗
√

n(γ −γ∗)n−1Z̈′D(γ∗)]+oP(1)

⇒ inf
s

[U −β∗sd(γ∗)]′J1[U −β∗sd(γ∗)]

by noting that X(γ )−X(γ∗) = D(γ∗)(γ −γ∗)+oP((γ −γ∗)); Q1 = Z̈(J1 +oP(1))Z̈′; J1 is

idempotent; and n−1D(·)′Z̈ P→ E[X(·)
t log(Xt)Z̃t] uniformly on � by the ULLN. Likewise,

we note from (11) that

inf
γ∈�

n−1dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ )

= inf
γ∈�

[n−1/2U′Z̈−β∗
√

n(γ −γ∗)n−1D(γ∗)′Z̈]

×H(γ )[n−1/2Z̈′U−β∗
√

n(γ −γ∗)n−1Z̈′D(γ∗)]+oP(1)

= inf
γ∈�

[n−1/2U′Z̈−β∗
√

n(γ −γ∗)n−1D(γ∗)′Z̈]

×H(γ∗)[n−1/2Z̈′U−β∗
√

n(γ −γ∗)n−1Z̈′D(γ∗)]+oP(1)

⇒ inf
s

[U −β∗sd(γ∗)]′H(γ∗)[U −β∗sd(γ∗)]

by further noting that P(γ∗) = Z̈(H(γ∗) + oP(1))Z̈′. Here, the second equality holds by
noting that

dn(β,γ ) := dn(̂ξ0,n(β,γ ),̂δn(β,γ ),β,γ )

= [U− (β −β∗)X(γ )−β∗(X(γ )−X(γ∗))]′

×Q1[U− (β −β∗)X(γ )−β∗(X(γ )−X(γ∗))]

= [U− (β −β∗)X(γ )−β∗(X(γ )−X(γ∗))]′

×Q1[U− (β −β∗)X(γ )−β∗(X(γ )−X(γ∗))]+oP(n−1),

where we let dn(̂ξ0,n(β,γ ),̂δn(β,γ )) := dn(ξ0,δ,β,γ ). Here, we further use that X(γ ) =
X(γ∗)+D(γ∗)(γ −γ∗)+oP((γ −γ∗)) to obtain that

dn(β,γ ) = [U− (β −β∗)X(γ∗)−β∗(X(γ )−X(γ∗))]′

×Q1[U− (β −β∗)X(γ∗)−β∗(X(γ )−X(γ∗))]+oP(n−1),
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so that if we optimize this with respect to β, it follows that β̂n(γ ) = β∗+(X(γ )′Q1X(γ ))−1

X(γ )′Q1U and

dn(β̂n(γ ),γ )

= [U−β∗(X(γ )−X(γ∗))]′[Q1 −Q1X(γ∗)(X(γ∗)′Q1X(γ∗))−1X(γ∗)′Q1]

× [U−β∗(X(γ )−X(γ∗))]+oP(n−1)

= [U−β∗(γ −γ∗)D(γ∗)]′Z̈H(γ∗)Z̈′[U−β∗(γ −γ∗)D(γ∗)]+oP(n−1).

We now note that dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ ) = dn(β̂n(γ ),γ ) + oP(n−1), leading to the
second equality.

Therefore, it now follows that

Dn = n−1dn(̃ξ0,n,̃δn,β0,γ̃n)− inf
γ∈�

n−1dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ )

⇒ inf
s

[U −β∗sd(γ∗)]′J1[U −β∗sd(γ∗)]− inf
s

[U −β∗sd(γ∗)]′H(γ∗)[U −β∗sd(γ∗)]

= {g(γ∗)′K(γ∗)U}2

g(γ∗)′K(γ∗)g(γ∗)
,

whose distribution is the same as that of Z2
2 (γ∗) as desired. �

Proof of Theorem 4. (i) For each (β∗,γ∗) ∈ ϒ0, we can rewrite ξ0∗ +E′
tδ∗ +β∗Xγ∗

t as
a linear model of (1,Xt,D′

t)
′, so that Dn ⇒ supγ∈� Z2

1 (γ ) uniformly on ϒ0, implying that
limsupn→∞ sup(β∗,γ∗)∈ϒ Pω∗(Dn > cv1(α)) = α.

(ii) Before proving the statement, we note that if we let νn(·) := n1/2{n−1X(·)′Z̈J1 −
g(·)},
n−1/2J1Z̈′(X(·)−X(◦)) = √

n{g(·)−g(◦)}+νn(·)−νn(◦)

= d(◦)�n +�2
nO(n−1/2)+νn(·)−νn(◦), (5)

where �n translates
√

n(· − ◦), and the second equality follows from the fact that g(·) −
g(◦) = d(◦)(·−◦)+O(1)(·−◦)2 and that, for each j = 1,2, . . . ,p, E[Zt,j log2(Xt)X

(·)
t ] < ∞

uniformly on � by Assumptions 1(iii) and 3, leading to the uniformly bounded second-order
derivative of g(·) on �c(ε). Furthermore, νn(·) converges to a multivariate Gaussian process
by applying an FCLT. Therefore, if we let dn(̃ξ0,n,̃δn,β0,γ̃n;β∗,γ∗) := dn(̃ξ0,n,̃δn,β0,γ̃n)

to indicate the dependence on the unknown parameters of dn(̃ξ0,n,̃δn,β0,γ̃n),

dn(̃ξ0,n,̃δn,β0,γ ;β∗,γ∗) = [U−β∗(X(γ )−X(γ∗))]′Q1[U−β∗(X(γ )−X(γ∗))]

under H′
0. We now note that n−1/2Z̈′U = OP(1), Q1 = Z̈(J1 + oP(1))Z̈′, and (3), so that

under H′
0,

n−2dn(̃ξ0,n,̃δn,β0, · ;β∗,◦)

= [n−1Z̈′U−β∗n−1Z̈′(X(·)−X(◦))]′Q1[n−1Z̈′U−β∗n−1Z̈′(X(·)−X(◦))]

= β2∗ [E[Z̃tX
(·)
t ]−E[Z̃tX

(◦)
t ]]′J1[E[Z̃tX

(·)
t ]−E[Z̃tX

(◦)
t ]]+oP(1)

uniformly on �c(ε). Therefore, the right side is oP(1) if (·) = (◦) uniformly on �c(ε),
implying that if we let γ̃n(γ∗) := arg infγ∈�c(ε) dn(̃ξ0,n,̃δn,β0,γ ;β∗,γ∗), then γ̃n(◦)−◦ =
oP(1) uniformly on �c(ε), so that ‖νn(γ̃n(◦))− νn(◦)‖ = oP(1). Next, we note that if we
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let Un(·,◦) := n−1/2Z̈′U + νn(·) − νn(◦), then Un(γ̃n(◦),◦) = n−1/2Z̈′U + νn(γ̃n(◦)) −
νn(◦) = n−1/2Z̈′U+oP(1)

n−1dn(̃ξ0,n,̃δn,β0,γ̃n(◦);β∗,◦)

= [n−1/2Z̈′U−β∗n−1/2Z̈′(X(γ̃n(◦))−X(◦))]′

×Q1[n−1/2Z̈′U−β∗n−1/2Z̈′(X(γ̃n(◦))−X(◦))]

= [Un(γ̃n(◦),◦)−β∗{d(◦)�̃n +�̃2
nO(n−1/2)}]′

×J1[Un(γ̃n(◦),◦)−β∗{d(◦)�̃n +�̃2
nO(n−1/2)}]+oP(1)

= [n−1/2Z̈′U−β∗{d(◦)�̃n +�̃2
nO(n−1/2)}]′

×J1[n−1/2Z̈′U−β∗{d(◦)�̃n +�̃2
nO(n−1/2)}]+oP(1),

where ̃n := √
n(γ̃n(◦) − ◦) and γ̃n(◦) satisfies the following asymptotic first-order

condition:

[n−1/2Z̈′U−β∗{d(◦)�̃n +�̃2
nO(n−1/2)}]′J1[−β∗{d(◦)+�̃nO(n−1/2)}] = oP(1).

If we solve for ̃n from this condition, it follows that ̃n = β−1∗ (d(◦)′J1d(◦))−1(d(◦)′
J1n−1/2Z̈′U)+oP(1) ⇒ β−1∗ (d(◦)′J1d(◦))−1(d(◦)′J1U). That is, ̃n is OP(1) uniformly
on �c(ε), so that

n−1dn(̃ξ0,n,̃δn,β0,γ̃n(◦);β∗,◦) ⇒ U ′K(◦)U . (6)

This null weak limit is free of β∗, although it has different null limit distributions for
different γ∗’s.

Next, we let dn(β,γ ;β∗,γ∗) := dn(β,γ ) to indicate the dependence of the unknown
parameters and note that

n−2dn(β,γ ;β∗,γ∗)

= [n−1Z̈′U− (β −β∗)n−1Z̈′X(γ )−β∗(n−1Z̈′X(γ )−n−1Z̈′X(γ∗))]′

× (J1 +oP(1))[n−1Z̈′U− (β −β∗)n−1Z̈′X(γ )−β∗(n−1Z̈′X(γ )−n−1Z̈′X(γ∗))],

so that if we note that n−1/2Z̈′U = OP(1), Q1 = Z̈(J1 +oP(1))Z̈′, and (3),

n−2dn(�, · ; �,◦) = [(�−�)E[Z̃tX
(·)
t ]+ (�)(E[Z̃tX

(·)
t ]−E[Z̃tX

(◦)
t ])]′

×J1[(�−�)E[Z̃tX
(·)
t ]+ (�)(E[Z̃tX

(·)
t ]−E[Z̃tX

(◦)
t ])]+oP(1)

uniformly on ϒc(ε). Therefore, the right side is oP(1) if (�,·) = (�,◦) uniformly on ϒc(ε),
implying that if we let (β̂n(β∗,γ∗),γ̂n(β∗,γ∗)) := arg inf(β,γ )∈ϒc(ε) dn(β,γ ;β∗,γ∗), then
‖(β̂n(�,◦),γ̂n(�,◦))−(�,◦)‖ = oP(1) uniformly on ϒc(ε), so that ‖νn(γ̃n(�,◦))−νn(◦)‖ =
oP(1).

We also let dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ ;β∗,γ∗) = dn(̂ξ0,n(γ ),̂δn(γ ),β̂n(γ ),γ ) to
emphasize its dependence on the unknown parameter. We further let dn(·;β∗,◦) :=
dn(̂ξ0,n(·),̂δn(·),β̂n(·), · ;β∗,◦) and note that it follows from (11) that

dn(·;β∗,◦) = [Z̈′U−β∗(Z̈′X(·)− Z̈′X(◦))]′(H(·)+oP(1))[Z̈′U−β∗(Z̈′X(·)− Z̈′X(◦))]
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by noting that P(·) = Z̈′(H(·)+ oP(1))Z̈. If we now use (5) and let γ̂n(◦) := γ̂n(β∗,◦) for
simplicity,

n−1dn(γ̂n(◦);β∗,◦)

= [Un(γ̂n(◦),◦)−β∗{d(◦)�̂n +�̂2
nO(n−1/2)}]′

×H(γ̂n(◦))[Un(γ̂n(◦),◦)−β∗{d(◦)�̂n +�̂2
nO(n−1/2)}]+oP(1)

= [n−1/2Z̈′U−β∗{d(◦)�̂n +�̂2
nO(n−1/2)}]′

×H(γ̂n(◦))[n−1/2Z̈′U−β∗{d(◦)�̂n +�̂2
nO(n−1/2)}]+oP(1),

where ̂n := √
n(γ̂n(◦)−◦) and γ̂n(◦) asymptotically satisfies the first-order condition:

[n−1/2Z̈′U−β∗{d(◦)�̂n +�̂2
nO(n−1/2)}]′H(γ̂n(◦))[−β∗{d(◦)+�̂nO(n−1/2)}] = oP(1).

If we solve for ̂n from this condition, it follows that ̂n = β−1∗ (d(◦)′H(γ̂ (◦))d(◦))−1

(d(◦)′H(γ̂ (◦))n−1/2Z̈′U) + oP(1) ⇒ β−1∗ (d(◦)′H(◦)d(◦))−1(d(◦)′H(◦)U). That is, ̂n
is OP(1) uniformly on �c(ε). Here, |γ̂n(◦)−◦| = oP(1) uniformly on �c(ε), implying that
H(γ̂n(◦)) = H(◦)+oP(1) uniformly on �c(ε). Therefore,

n−1dn(γ̂n(◦);β∗,◦) ⇒ U ′(H(◦)−H(◦)d(◦)(d(◦)′H(◦)d(◦))−1d(◦)′H(◦))U (7)

using the fact that H(◦) is idempotent uniformly on �c(ε). As for n−1dn(̃ξ0,n,̃δn,β0,γ̃n(◦);
β∗,◦), the null weak limit of n−1dn(γ̂n(◦);β∗,◦) is free of β∗, although it has different null
limit distributions for different γ∗’s.

Finally, we now obtain the null limit distribution of Dn by emphasizing the dependence
of Dn on (β∗,γ∗) via Dn(β∗,γ∗). If we now combine (6) with (7),

Dn(·,◦) = n−1dn(̃ξ0,n,̃δn,β0,γ̃n(◦); ·,◦)−n−1dn(γ̂n(◦); ·,◦) ⇒ Z2
2 (◦)

under H′
0 by the fact that the null weak limits of n−1dn(̃ξ0,n,̃δn,β0,γ̃n(◦);β∗,◦) and

n−1dn(γ̂n(◦);β∗,◦) are free of β∗. This implies the desired result.
(iii) We note that

sup
(β∗,γ∗)∈B×�

Pω∗(Dn > cv(α))

= max

[
sup

(β∗,γ∗)∈ϒ0

Pω∗(Dn > cv1(α)), lim
ε↓0

sup
(β∗,γ∗)∈ϒc(ε)

Pω∗(Dn > cv2(α))

]
,

and

limsup
n→∞

max

[
sup

(β∗,γ∗)∈ϒ0

Pω∗(Dn > cv1(α)), lim
ε↓0

sup
(β∗,γ∗)∈ϒc(ε)

Pω∗(Dn > cv2(α))

]

≤ max

[
limsup
n→∞

sup
(β∗,γ∗)∈ϒ0

Pω∗(Dn >cv1(α)), limsup
n→∞

lim
ε↓0

sup
(β∗,γ∗)∈ϒc(ε)

Pω∗(Dn > cv2(α))

]
≤ α,

where the last inequality follows from (i) and (ii). Therefore, it follows that limsupn→∞
sup(β∗,γ∗)∈B×� Pω∗(Dn > cv(α)) ≤ α. �
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Proof of Theorem 5. We first note that

1

n3/2
X(·)′Q1U = 1

n
X(·)′Z̈

(
I− 1

n
Z̈′V

(
1

n2
V′Z̈Z̈′V

)−1 1

n
V′Z̈

)
1√
n

Z̈′U

⇒ [E[X(·)
t S̃′

t],0
′]
(

I− [E[VtS̃′
t],0

′]′
(
E[VtS̃′

t]E[̃StV′
t]
)−1 [E[VtS̃′

t],0
′]
)
U

= E[X(·)
t S̃′

t]JsU s

uniformly on �. Here, note that

1

n2
V′Z̈Z̈′V =

(
1

n
V′S̈

)(
1

n
S̈′V

)
+

(
1

n
V′Ẅ

)(
1

n
Ẅ′V

)
= E[VtS̃′

t]E[̃StV′
t]+oP(1)

by applying Assumption 6(iii) and the ergodic theorem, and (E[VtS̃′
t]E[̃StV′

t])
−1 is well

defined because of Assumption 6(ii). Next, we note that

1

n2
X(·)′Q1X(·) = 1

n
X(·)′Z̈

(
I− 1

n
Z̈′V

(
1

n2
V′Z̈Z̈′V

)−1 1

n
V′Z̈

)
1

n
Z̈′X(·)

= [E[X(·)
t S̃′

t],0
′]
(

I− [E[VtS̃′
t],0

′]′
(
E[VtS̃′

t]E[̃StV′
t]
)−1 [E[VtS̃′

t],0
′]
)

× [E[X(·)
t S̃′

t],0
′]′ +oP(1)

= E[X(·)
t S̃′

t]JsE[̃StX
(·)
t ]+oP(1)

uniformly on �. Therefore, it now follows that

Dn = sup
γ∈�

1

n

{X(γ )′Q1U}2

X(γ )′Q1X(γ )
⇒ sup

γ∈�

(
E[X(γ )

t S̃′
t]JsU s

{E[X(γ )
t S̃′

t]JsE[̃StX
(γ )
t ]}1/2

)2

under H0. Here, if we apply the definition of π s(·) to the right side, it is equivalent to
supγ∈�(π s(γ )′U s)

2, and this completes the proof. �

Proof of Theorem 6. (i) This is obvious from Corollary 1.
(ii) For the given claim, note that limn→∞P(̂qn > q∗) = limn→∞ αn = 0 by the

given condition. Furthermore, for any q < q∗, if cvq(αn) = o(n), then limn→∞P(Dn,q >

cvq(αn)) = 1, implying that the desired result follows if cvq(αn)) = o(n). We show this as
follows.

First, note that sup
γ∈�(q̄) Z2

q (γ ) ≤ sup
γ∈�(q̄) max2[0,Zq(γ )] + sup

γ∈�(q̄) min2

[0,Zq(γ )]. This implies that, for any u > 0,

P

⎛⎝ sup
γ∈�(q̄)

Z2
q (γ ) ≥ u2

⎞⎠ ≤ P

⎛⎝ sup
γ∈�(q̄)

Zq(γ ) ≥ u√
2

⎞⎠+P

(
inf

γ∈�(q̄)
Zq(γ ) ≤ − u√

2

)

= 2P

⎛⎝ sup
γ∈�(q̄)

Zq(γ ) ≥ u√
2

⎞⎠
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from the inequality in the proof of Theorem 2 of Cho and Phillips (2018). We further note
that Borel’s inequality (e.g., Piterbarg, 1996, p. 13) implies that

P

⎛⎝ sup
γ∈�(q̄)

Zq(γ ) ≥ u√
2

⎞⎠ ≤ 2�

(
u/

√
2−aq

σq

)
,

and so it follows that

P

⎛⎝ sup
γ∈�(q̄)

Z2
q (γ ) ≥ u2

⎞⎠ ≤ 4�

(
u/

√
2−aq

σq

)
≤ 2exp

(
−u2 −2

√
2uaq +a2

q

4σ 2
q

)

from the fact that �(·) ≤ 1
2 exp(−(·)2/2). We now let the left-hand side of this inequality

and u2 to be αn and cvq(αn), respectively. Then, it follows that

− log(αn)

n
≥ 1

n

(
a2

q

4σ 2
q

− log(2)

)
+ 1

4σ 2
q

(
cvq(αn)

n

)
− aq√

2σ 2
q

(
cvq(αn)

n2

)1/2
.

Note that n−1(a2
q/(4σ 2

q )− log(2)) → 0, and the sum of the last terms is greater than zero,

provided that cv1/2
q (αn) > 2

√
2aq and is achieved as αn → 0. Furthermore, the given

condition implies that −log(αn)/n → 0, so that

1

4σ 2
q

(
cvq(αn)

n

)
− aq√

2σ 2
q

(
cvq(αn)

n2

)1/2
= o(1).

Therefore, it follows that cvq(αn) = o(n), as desired. �

A.2. Data Construction

Using the Compustat fundamental annual, we construct firm-level value-added, capital
stock, employment, and material inputs following the data-cleaning procedure conducted
by İmrohoroğlu and Tüzel (2014). We supplement Compustat with the Gross Domestic
Product (GDP) price deflator, the investment price deflator, and the national wage index
from the Social Security Administration. See the Supplementary Material of İmrohoroğlu
and Tüzel (2014) for more details. When we construct the dataset, we use their code that is
downloadable from

https://sites.google.com/usc.edu/selale-tuzel/home?authuser=2.
The dataset is constructed by the following procedure:

(a) We exclude financial firms (SIC ∈ [6000,6999]) and regulated firms (SIC ∈
[4900,4999]).

(b) We keep only observations with positive values on sales (SALE), total assets
(AT), number of employees (EMP), gross property, plant, and equipment (PPEGT),
depreciation (DP), accumulated depreciation (DPACT), and capital expenditures
(CAPX).

(c) We compute the material input (M) by total expenditure (TE) minus labor expen-
diture (LE), where TE is obtained as SALE minus operating income before depre-
ciation and amortization (OIBDP), and LE is computed by EMP multiplied by the
national wage index from the Social Security Administration.
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(d) We compute the value-added by SALE minus M. Both SALE and M are deflated by
the GDP price deflator.

(e) We use EMP as the labor input.
(f) Finally, we deflate PPEGT using the investment price deflator and use this as the

capital stock. When deflating PPEGT, we use the deflator corresponding to the
average age of capital of each year. �
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