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Abstract
We establish new results on complex and p-adic linear independence on a class of semiabelian varieties. As appli-
cations, we obtain transcendence results concerning complex and p-adic Weierstrass sigma functions associated
with elliptic curves.

1. Introduction

Let G be a commutative algebraic group defined over the field of algebraic numbersQ of positive dimen-
sion d, and Lie(G) denote the Lie algebra of G. By fixing a choice of Q-basis for Lie(G), one can identify
Lie(G) with the Q-vector space Q

d
. The set of complex points G(C) of G has naturally the structure of

a complex Lie group whose Lie algebra Lie(G(C)) is the complex vector space Lie(G) ⊗Q C. This is
identified with the C-vector space Cd, and one has an analytic homomorphism, the so-called (complex)
exponential map expG(C) : Cd → G(C). A vector u ∈Cd is called a logarithm of an algebraic point of G
if expG(C) (u) is an algebraic point on G, that is expG(C) (u) ∈ G(Q). Transcendence result concerning the
coordinates of a logarithm of algebraic points of abelian varieties was first given by S. Lang in 1962.
Namely, he proved that if A is an abelian variety defined over Q and u is a non-zero logarithm of an
algebraic point of A, then at least one of the coordinates of u is transcendental (see [7, Theorem 2]).
The p-adic analogue of Lang’s result is due to D. Bertrand in 1977. Let Ap ⊆Cd

p denote the p-adic
domain of the p-adic exponential map expA(Cp) of A (see [3]). If u is a non-zero vector in Ap such that
expA(Cp) (u) ∈ A(Q), then there is at least one coordinate of u is transcendental (see [2, Proposition 2]).
There are some extensions of these results in both complex and p-adic cases, among which D. H. Pham
has recently obtained results on complex and p-adic linear independence concerning the coordinates of
abelian logarithms of algebraic points (see [11]).

The first aim of this note is to establish results on complex and p-adic linear independence on semi-
abelian varieties, which are determined by extensions of simple abelian varieties by the multiplicative
group Gm. To state the results, let S be a semiabelian variety defined over Q given by the exact sequence

1 →Gm → S → A → 1,

where A is an abelian variety defined over Q (not necessarily simple). It follows from [1, Section 2]
that the extension S corresponds to an algebraic point P in A∗(Q) via the canonical isomorphism
Ext1(A, Gm) ∼= Pic0(A) = A∗. Note that if P is not a torsion point of A∗, the extension S is non-trivial
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(i.e. the semiabelian variety S is not the direct product Gm × A of Gm and A). It is known that the exact
sequence

1 →Gm → S → A → 1

induces naturally an exact sequence of Q-vector spaces

0 → Lie(Gm) → Lie(S) → Lie(A) → 0.

In particular, this gives Lie(S) ∼= Lie(Gm) × Lie(A). Hence, by a choice of Q-basis for Lie(A), one can
identify the Lie algebra Lie(S) with the Q-vector space Q×Q

g =Q
g+1

, here g = dim A. Our theorem
now reads as follows:

Theorem 1.1. Let S be a semiabelian variety defined over Q given by an extension 1 →Gm → S →
A → 1 with A a simple abelian variety defined over Q of dimension g. Let expS(C) and expS(Cp) be the
complex and p-adic exponential maps of S, respectively.

(i) Let u = (u0, u1, . . . , ug) be a vector in Cg+1 with u0 	= 0 and (u1, . . . , ug) 	= (0, . . . , 0) such that
expS(C) (u) ∈ S(Q). Then 1, u0, u1, . . . , ug are linearly independent over Q.

(ii) Let u= (u0, u1, . . . , ug) be a vector in Sp with u0 	= 0 and (u1, . . . , ug) 	= (0, . . . , 0) such that
expS(Cp) (u) ∈ S(Q), where Sp is the p-adic domain of expS(Cp). Then 1, u0, u1, . . . , ug are linearly
independent over Q.

2. Semiabelian varieties and algebraic subgroups

This section involves the structure of algebraic subgroups concerning semiabelian varieties defined over
Q, which plays a crucial point for the proofs in the next section. The following lemma describes the form
of a connected algebraic subgroup of the direct product of the additive group Ga with a semiabelian
variety defined over Q.

Lemma 2.1. Let S be a semiabelian variety defined over Q and H a connected algebraic subgroup of
the algebraic group Ga × S defined over Q. Then H is of the form Ha × R, where Ha and R are connected
algebraic subgroups of Ga and S defined over Q, respectively.

Proof. Let πa and π be the projections of Ga × S on Ga and S, respectively. Put

Ha = πa

(
H ∩ (

Ga × {e})), R = π
(
H ∩ ({0} × S

))
,

where e is the identity element of S. Then Ha and R are connected algebraic subgroups of Ga and S
defined over Q, respectively. Let I be the image of H under the projection

Ga × S → (Ga × S)/(Ha × R) ∼= (Ga/Ha) × (S/R).

Denote by pa and p the projections of (Ga/Ha) × (S/R) onto Ga/Ha and onto S/R, respectively. One can
show that I ∼= pa(I) and I ∼= p(I), hence pa(I) ∼= p(I). On the other hand, Ha is either trivial or Ga, and this
leads to the algebraic subgroup pa(I) of Ga/Ha is either Ga or trivial. We claim that the first case cannot
hold. In fact, if not, then this gives p(I) ∼=Ga. Since p(I) is an algebraic subgroup of S/R defined over Q,
there exists a connected algebraic subgroup Q of S containing R defined over Q such that p(I) ∼= Q/R,
and then Q/R ∼=Ga. Furthermore, it follows from [10, Proposition 2.1.3] that Q and R are semiabelian
varieties. We therefore get the short exact sequences

1 →Gq
m → Q → B → 1

and

1 →Gr
m → R → C → 1
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of Q and R, respectively, for non-negative integers q, r and for abelian varieties B, C defined over Q.
Since Q/R is isomorphic to Ga, the composition of the homomorphism of algebraic groups Gq

m → Q
(from the first exact sequence above) with the projection Q → Q/R must be trivial. This means that
Gq

m ↪→ R. We now consider the cases:
If q > r, then

Gq−r
m =Gq

m/Gr
m ↪→ R/Gr

m
∼= C.

If q < r, then

Gr−q
m =Gr

m/Gq
m ↪→ Q/Gq

m
∼= B

(since Gr
m ↪→ R from the second exact sequence and R is an algebraic subgroup of Q).

If q = r, then

Ga
∼= Q/R ∼= (Q/Gq

m)/(R/Gr
m) ∼= B/C.

But these cases cannot hold because of the fact that there is no non-trivial algebraic homomorphism
from a linear algebraic group to an abelian variety defined over Q (see [5, Lemma 2.3]). Hence, pa(I)
must be trivial, and this shows that so is I. From this, we are able to conclude that H = Ha × R, which
completes the proof of the lemma.

3. Proof of the theorem

(i) Let G be the commutative algebraic group defined by G =Ga × S. Then G is defined over Q and
its Lie algebra Lie(G) is identified with Q×Q

g+1 =Q
g+2

. Suppose by contradiction that the numbers
1, u0, u1, . . . , ug are linearly dependent over Q, that is there is a non-zero linear form L in g + 2 variables
with coefficients in Q such that L(1, u0, u1, . . . , ug) = 0. Let V be the Q-vector space defined by the zero
set of L in Q

g+2
. Then one has the vector ũ := (1, u) lies in the C-vector space V ⊗Q C, and furthermore,

expG(C) (ũ) = (1, expS(C) (u)) ∈ G(Q).

Hence, thanks to the analytic subgroup theorem (see [16] or [17]), there exists a connected algebraic
subgroup H of G of positive dimension defined over Q for which Lie(H) is contained in V and ũ lies in
Lie(H(C)). The above lemma tells us that H must be of the form Ha × R with Ha an algebraic subgroup
of Ga and R an algebraic subgroup of S (defined over Q). Since

(1, u0, u1, . . . , ug) = ũ ∈ Lie(H(C)) = Lie((Ha × R)(C)) = Lie(Ha(C)) × Lie(R(C)),

it follows that Lie(Ha(C)) is not trivial, and this leads to Ha must be Ga. In particular, Lie(Ha) =Q

and since Lie(H) ⊆ V , the linear form L is given by L = a0X0 + a1X1 + · · · + agXg with coefficients
a0, a1, . . . , ag ∈Q not all zero. Let W denote the Q-vector space defined by

W = {(w0, w1, . . . , wg) ∈Q
g+1

: a0w0 + a1w1 + · · · + agwg = 0}.
Then one has Lie(R) ⊆ W. Let π : S → A denote the projection from the extension 1 →Gm → S →
A → 1. Then we get an isomorphism of algebraic groups R/R ∩Gm

∼= π (R). On the other hand, since A is
a simple abelian variety, it follows that either π (R) is trivial or π (R) is A. In the first case, R = Kerπ ∼=Gm,
and therefore Lie(R) is identified with the Q-vector subspace Q× {0} × · · · × {0} of Lie(S) =Q×Q

g
.

Since Lie(R) ⊆ W, it follows that a0α = 0 for all α ∈Q. This implies that a0 = 0. By the expression of the
exponential map expS(C) given in [1, Section 2.3], we obtain expA(C) (u1, . . . , ug) ∈ A(Q), and therefore
by the analytic subgroup theorem again, one can find an algebraic subgroup B of A defined over Q
of positive dimension such that Lie(B) is contained in the Q-vector space {(z1, . . . , zg) ∈Q

g
: a1z1 +

· · · + agzg = 0}. Note that A is simple, this gives B must be equal to A. But this cannot happen since
dim B = dimQ Lie(B) ≤ g − 1. Thus, π (R) = A and this means that R/R ∩Gm

∼= A. It is clear that R ∩ Gm

is either trivial or Gm, one can show that R ∼= A (since R is a proper algebraic subgroup of S). In this
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case, similarly, we obtain L is of the form L = a0X0. In particular, u0 = 0 which is a contradiction, and
this completes the proof for the first part of Theorem 1.1.

(ii) The proof of the second part follows directly from the p-adic analytic subgroup theorem (see [6]
or [9]) and from the same argument as in the proof of the first part above.

4. Applications to complex and p-adic Weierstrass sigma functions

This last section is devoted to discuss applications concerning the complex and p-adic Weierstrass
sigma functions associated with elliptic curves. To begin with, let E be an elliptic curve defined over C
characterised by the Weierstrass model

Y2Z − 4X3 + g2XZ2 + g3Z3 = 0

with g2, g3 ∈C such that g3
2 − 27g2

3 	= 0. Let � denote the period lattice of E, and ℘ the Weierstrass
elliptic function associated with E (or relative to �), which is defined as:

℘(z) = 1

z2
+

∑
w∈�∗

( 1

(z − w)2
− 1

w2

)
,

where �∗ = � \ {0}. There are two more Weierstrass functions associated with E, which are auxiliary
to the function ℘, called Weierstrass sigma and zeta functions, respectively. They play important roles
in studying elliptic curves and are considered elliptic analogues of the classical trigonometric functions.
In detail, the Weierstrass sigma function σ associated with E is defined as:

σ (z) = z
∏
w∈�∗

(
1 − z

w

)
e

z
w + z2

2w2 ,

and the Weierstrass zeta function ζ associated with E is defined as:

ζ (z) = 1

z
+

∑
w∈�∗

( 1

z − w
+ 1

w
+ z

w2

)
.

These functions are related by:
d

dz
log σ (z) = ζ (z);

d

dz
ζ (z) = −℘(z).

It is convenient to recall that the corresponding Laurent expansions at the origin of these Weierstrass
functions are given by:

℘(z) = 1

z2
+

∞∑
k=1

(2k + 1)G2k+2(�)z2k;

ζ (z) = 1

z
−

∞∑
k=1

G2k+2(�)z2k+1,

where Gk(�) =
∑
w∈�∗

w−k for k ≥ 3 are the Eisenstein series (of weight k), and

σ (z) =
∞∑

m,n=0

am,n

(1

2
g2

)m

(2g3)n z4m+6n+1

(4m + 6n + 1)!
where the sequence (am,n)m,n≥0 is defined by the recurrence relation

am,n = 3(m + 1)am+1,n+1 + 16

3
(n + 1)am−2,n+1 − 1

3
(2m + 3n − 1)(4m + 6n − 1)am−1,n
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with a0,0 = 1 and am,n = 0 for either m or n is negative. One can show that g2 = 60G4(�) and g3 =
140G6(�), and by induction, G2k+2(�) can be represented as polynomials P2k+2 in terms of g2, g3 with
rational coefficients (see [4, Chapter IV]).

Now, let E be an elliptic curve defined over Q and G an extension of E by Gm defined over Q.
Recall that the group Ext1(E, Gm) of extension classes of E by Gm is isomorphic to the Picard group
Pic0(E) = E∗ of divisors on E modulo principal divisors. This means that the extension G corresponds
to an algebraic point P in E(Q) (here we identify E with E∗). Let q ∈C be an elliptic logarithm of P,
that is expE(C) (q) = P, here the exponential map expE(C) of the elliptic curve E is given by:

expE(C) : C→ E(C) ⊆ P2(C)

z �→ [℘(z) : ℘ ′(z) : 1].

The exponential map of G is given by:

expG(C) : C2 → G(C) ⊆ (P2 × P1)(C)

(z, t) �→ (
[℘(z) : ℘ ′(z) : 1], [etf (z) : 1]

)
,

where f (z) = σ (z + q)

σ (z)σ (q)
e−ζ (q)z is Serre’s function (see [1, Section 6]). We now obtain the following theo-

rem, which is an improvement of a previous result in transcendence given by M. Waldschmidt (see [13,
Theorem 1] or [14, Theorem 3.2.10]).

Theorem 4.1. Let E be an elliptic curve defined over Q and ℘, ζ , σ the Weierstrass elliptic, zeta, sigma
functions associated with E, respectively. Let α, β be algebraic numbers and u, u0 complex numbers
such that ℘(u), ℘(u0) are algebraic numbers. Suppose that u0 is not a torsion point and that u, u + u0

are not in the lattice of periods of ℘. Then, the number
σ (u + u0)

σ (u)σ (u0)
e(α−ζ (u0))u+β

is transcendental.

Proof. Consider the algebraic point

expE(C) (u0) = [℘(u0) : ℘ ′(u0) : 1] ∈ E(Q).

This algebraic point corresponds to a semiabelian variety G in Ext1(E, Gm). Then one has

expG(C) (u, αu + β) = ([℘(u) : ℘ ′(u) : 1], [eαu+β f (u) : 1]),

with f (u) = σ (u + u0)

σ (u)σ (u0)
e−ζ (u0)u, and this gives

eαu+β f (u) = σ (u + u0)

σ (u)σ (u0)
e(α−ζ (u0))u+β .

Hence, if this number is algebraic then expG(C) (u, αu + β) ∈ G(Q). Applying the first part of
Theorem 1.1, we deduce that the elements 1, u, αu + β are linearly independent over Q. This contradic-
tion proves the theorem.

It is natural to obtain a p-adic analogue of the above theorem, and in order to express such a result in
the p-adic setting, we first recall the p-adic Weierstrass elliptic, zeta and sigma functions, respectively. By
definition, the p-adic Weierstrass elliptic function ℘p is the (Lutz-Weil) p-adic elliptic function associated
with the elliptic curve E (see [8] and [15]). This function satisfies the relation (as the complex one)
℘ ′

p(z) = 4℘3
p (z) − g2℘p − g3, but only on the neighbourhood of the origin

Ep := {
z ∈Cp; |1/4|p max{|g2|1/4

p , |g3|1/6
p }z ∈ B(rp)

}
,
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where B(rp) is the set of all p-adic numbers x in Cp with |x|p < rp := p− 1
p−1 . Note that ℘p is analytic on

Ep \ {0} and expressed by:

℘p(z) = 1

z2
+

∞∑
k=1

(2k + 1)P2k+2(g2, g3)z2k.

Let ζp and σp be the p-adic Weierstrass zeta and sigma functions, respectively. By definition, ζp and σp

are meromorphic functions on the domain Ep \ {0} satisfying the followings:
d

dz
log σp(z) = ζp(z);

d

dz
ζp(z) = −℘p(z),

and their corresponding p-adic expansions are also given by:

ζp(z) = 1

z
−

∞∑
k=1

P2k+2(g2, g3)z2k+1

and

σp(z) =
∞∑

m,n=0

am,n

(1

2
g2

)m

(2g3)n z4m+6n+1

(4m + 6n + 1)! .

We obtain the following theorem.

Theorem 4.2. Let E be an elliptic curve defined over Q and ℘p, ζp, σp the p-adic Weierstrass elliptic,
zeta, sigma functions associated with E, respectively. Let α and β be algebraic numbers and u, u0 non-
zero p-adic numbers in Ep such that ℘p(u), ℘p(u0) are algebraic numbers. If αu+ β ∈ B(rp), then the
number

σp(u+ u0)

σp(u)σp(u0)
e(α−ζp(u0))u+β

p

is transcendental.

Proof. As in the complex case, we first consider the algebraic point

expE(Cp) (u0) = [℘p(u0) : ℘ ′
p(u0) : 1] ∈ E(Q),

and this algebraic point gives the corresponding semiabelian variety Gp in Ext1(E, Gm). Since we have
seen from above that the p-adic functions ℘p, ζp and σp are represented by the same power series as the
complex functions ℘, ζ and σ , respectively, one can show that the p-adic exponential map of Gp is also
expressed as the same type as the complex exponential map. More precisely, the map expG(Cp) is given
by:

expG(Cp) : Gp → Gp(Cp) ⊆ (P2 × P1)(Cp)

(z, t) �→ (
[℘p(z) : ℘ ′

p(z) : 1], [et
pfp(z) : 1]

)
,

with Gp = Ep × B(rp) and fp(z) = σp(z + u0)

σp(z)σp(u0)
e

−ζp(u0)z
p with ep the usual p-adic exponential function, and

prolonged to a function on the whole Cp (thanks to [12, Section 5.4.4]). Assume by contradiction as the
complex case that the number

σp(u+ u0)

σp(u)σp(u0)
e(α−ζp(u0))u+β

p

is algebraic, then we also get expGp(Cp) (u, αu+ β) ∈ Gp(Q), and therefore we are able to deduce from
the second part of Theorem 1.1 that 1, u, αu+ β are linearly independent over Q (a contradiction). This
completes the proof of the theorem.
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