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We prove interior boundedness and Hölder continuity for the weak solutions of
nonlocal double phase equations in the Heisenberg group Hn. This solves a problem
raised by Palatucci and Piccinini et al. in 2022 and 2023 for the nonlinear
integro-differential problems in Heisenberg setting. Our proof of the a priori
estimates bases on De Giorgi–Nash–Moser theory, where the important ingredients
are Caccioppoli-type inequality and Logarithmic estimate. To achieve this goal, we
establish a new and crucial Sobolev–Poincaré type inequality in local domain, which
may be of independent interest and potential applications.
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1. Introduction

In this paper, we are interested in local behaviour of the weak solutions to nonlocal
double phase problem in the Heisenberg group Hn, whose prototype is

P.V.

∫
Hn

[
|u(ξ)− u(η)|p−2(u(ξ)− u(η))

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
|u(ξ)− u(η)|q−2(u(ξ)− u(η))

‖η−1 ◦ ξ‖Q+tq
Hn

]
dη = 0 in Ω, (1.1)
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where 1 < p ≤ q < ∞, s, t ∈ (0, 1), a(·, ·) ≥ 0, Q = 2n + 2 is the homogeneous
dimension and Ω is an open bounded subset of Hn (n ≥ 1). In the display above,
‖ · ‖Hn and P.V. mean the standard Heisenberg norm and “in the principal value
sense”, respectively. The main feature of the integro-differential equation (1.1) is
that the leading operator could change between two different fractional elliptic
phases according to whether the modulating coefficient a is zero or not.

We observe that, if the coefficient a ≡ 0, equation (1.1) is reduced to the p-
fractional subLaplace equation arising in many diverse contexts, such as quantum
mechanics, image segmentation models, ferromagnetic analysis and so on. Let us
pay attention to the linear scenario first, i.e., p=2. This kind of problems can
be regarded as an extension of the conformally invariant fractional subLaplacian
(−∆Hn)

s
in Hn proposed initially in [2] by the spectral formula

(−∆Hn)
s
:= 2s|T |s

Γ
(
−1

2∆H |T |−1
+ 1+s

2

)
Γ
(
−1

2∆H |T |−1
+ 1−s

2

) , s ∈ (0, 1) ,

where s ∈ (0, 1), Γ(·) is the Euler Gamma function, T is the vertical vector field,
and ∆Hn is the typical Kohn–Spencer subLaplacian on Hn. Subsequently, Roncal
and Thangavelu [36] demonstrated the representation as below

(−∆Hn)
s
u(ξ) := C(n, s)P.V.

∫
Hn

u (ξ)− u (η)

‖η−1 ◦ ξ‖Q+2s
Hn

dη, ξ ∈ Hn, (1.2)

holds true for C(n, s) > 0 depending only on n, s. During the last decade, several
aspects of the fractional operator of the type (1.2) have been investigated, such as
Hardy and uncertainty inequalities on stratified Lie groups [6], Sobolev and Morrey-
type embedding theory for fractional Sobolev spaceHs(Hn) [1], Harnack and Hölder
estimates in Carnot groups [18], Liouville-type theorem [7]. One can refer to [19–22]
and references therein for more results on the linear case. Regarding the nonlinear
analogue to (1.2), the p-growth scenario is considered (p 6= 2). For what concerns
the regularity properties of weak solutions to the fractional p-subLaplace equations
on the Heisenberg group, Manfredini et al. [31] established the interior boundedness
and Hölder continuity via employing the De Giorge–Nash–Moser iteration; see also
[32] for the nonlocal Harnack inequality, where the asymptotic behaviour of frac-
tional linear operator was proved as well. In addition, as for the obstacle problems
connected with the nonlocal p-subLaplacian, we refer to [34] in which Piccinini stud-
ied systematically solvability, semicontinuity, boundedness and Hölder regularity
up to the boundary for weak solutions. More interesting estimates or fundamental
functional inequalities can be found in [27, 28, 33]. To some extent, we can see that
the results mentioned above extended the counterparts of the fractional Euclidean
setting in [13, 14, 26, 29, 30] to the Heisenberg framework.

Equation (1.1) could be viewed naturally as the nonlocal version of the classical
double phase problem of the following type

−div(|∇u|p−2∇u+ a(x)|∇u|q−2∇u) = 0 in Ω. (1.3)
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Local regularity for nonlocal double phase equations 3

Within the Euclidean context, the regularity theory of weak solutions to (1.3)
or minimizers of the corresponding functionals has been developed extensively,
beginning with the pioneering papers of Colombo and Mingione [8, 9]. Under a ∈
L∞
loc(Ω) and, p ≤ q ≤ np

n−p if p<n, or p ≤ q <∞ if p ≥ n, local boundedness for u

was shown; and further under u ∈ L∞
loc(Ω), a ∈ C0,α

loc (Ω) and p ≤ q ≤ p+ α, Hölder
continuity of u was obtained as well, see, e.g. [9, 10].

Very recently, the investigation of nonlocal problems with nonstandard growth,
especially of those with (p, q)-growth condition, has been attracting increasing
attention, however only in the fractional Euclidean spaces. In this respect, De
Filippis and Palatucci [12] introduced nonlocal double phase equations of the
form (1.1) in the Euclidean spaces, and established Hölder continuity for bounded
viscosity solutions. Weak theory on this class of nonlocal equations was rapidly
explored in hot pursuit, for example, [37] for self-improving inequalities on bounded
weak solutions, [17] for Hölder regularity and relationship between weak and vis-
cosity solutions in the differentiability exponents s ≥ t, [4] for Hölder property
with weaker assumption on solutions in the case s < t, [24] for the sharp Hölder
index and the parabolic version. Concerning more regularity and related results for
nonlocal problems possessing nonuniform growth, one can see [3, 5, 16, 23, 35] and
references therein.

In particular, we would like to mention that Palatucci, Piccinini, et al. in a series
of papers [31–33] proposed the open problems about the regualrity of solutions to
the so-called nonlocal double phase equation in the Heisenberg group Hn. In this
paper, influenced by the works [4, 14] we answer this question and develop the
local regularity theory for the weak solutions of such equations in the Heisenberg
group Hn, including the boundedness and Hölder continuity of solutions. The main
difficulties which are different from the previous ones are mainly two parts. One is
that equation (1.1) not only possesses the nonlocal feature of the embraced integro-
differential operators and the noneuclidean geometrical structure of the Heisenberg
group, but also inherits the typical characteristics exhibited by the (local) double
phase problems due to the (p, q)-growth condition and the presence of the non-
negative variable coefficient a. We need to find some appropriate assumptions on
the summability exponents p, q ∈ (1,∞) and differentiability exponents s, t ∈ (0, 1)
together with the variable coefficient a in order to locally rebalance the non-uniform
ellipticity of the operator. The other one is that the existing Sobolev embedding
theorem, lemma 2.2, cannot be applied to our setting directly. To overcome this
point, we have to establish a suitable Sobolev–Poincaré type inequality on balls in
the Heisenberg group Hn. It may be of independent interest and potential applica-
tions when investigating regularity properties for some other nonlocal equations in
the Heisenberg group. These difficulties make the current study more challenging
than the fractional p-subLaplacian case.

Now we are in a position to state our main contributions. We first collect some
notations, definitions as well as assumptions. Let s, t and p, q satisfy

1 < p ≤ q <∞, 0 < s ≤ t < 1, (1.4)
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and the coefficient a : Hn ×Hn → R+ fulfil

0 ≤ a (ξ, η) = a (η, ξ) ≤ ‖a‖L∞ , ξ, η ∈ Hn, (1.5)

and

|a (ξ, η)− a (ξ′, η′)| ≤ [a]α

(
‖ξ′−1 ◦ ξ‖Hn + ‖η′−1 ◦ η‖Hn

)α
, (1.6)

for (ξ, η) , (ξ′, η′) ∈ Hn ×Hn and α ∈ (0, 1].
For convenience, we introduce the following notations:

H (ξ, η, τ) :=
τp

‖η−1 ◦ ξ‖spHn
+ a (ξ, η)

τ q

‖η−1 ◦ ξ‖tqHn

, ξ, η ∈ Hn and τ > 0,

and

Jl(τ1 − τ2) = |τ1 − τ2|l−2(τ1 − τ2),

with τ1, τ2 ∈ R and l ∈ {p, q}, and

ρ (u; Ω) =

∫
Ω

∫
Ω

H (ξ, η, |u(ξ)− u(η)|) dξdη

‖η−1 ◦ ξ‖QHn

,

for every measurable set Ω ⊂ Hn and u : Ω → R. A function space related to weak
solutions to (1.1) is defined as

A (Ω) : = {u : Hn → R : u|Ω ∈ Lp (Ω) and∫∫
CΩ
H(ξ, η, |u(ξ)− u(η)|) dξdη

‖η−1 ◦ ξ‖QHn

<∞

}
,

where

CΩ := (Hn ×Hn) \ ((Hn\Ω)× (Hn\Ω)) .

Additionally, in view of the nonlocal nature of this problem, we need define a tail
space

Lq−1
sp (Hn) :=

{
u ∈ Lq−1

loc (Hn) :

∫
Hn

|u(ξ)|q−1

(1 + ‖ξ‖Hn)Q+sp
dξ <∞

}
,

and the nonlocal tail

T (u; ξ0, r) :=

∫
Hn\Br(ξ0)

(
|u (ξ)|p−1

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

+ ‖a‖L∞
|u (ξ)|q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

)
dξ.

We can notice that the quantity T is finite if u ∈ Lq−1
sp (Hn).

We now give the definition of weak solutions to (1.1).
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Definition 1.1. weak solution If u ∈ A (Ω) satisfies

∫∫
CΩ

[
Jp(u(ξ)− u(η))(ϕ(ξ)− ϕ(η))

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
Jq(u(ξ)− u(η))(ϕ(ξ)− ϕ(η))

‖η−1 ◦ ξ‖Q+tq
Hn

]
dξdη = 0,

(1.7)

for every ϕ ∈ A (Ω) with ϕ= 0 a.e. in Hn\Ω, then we call u a weak solution to (1.1).

Note that u ∈ A(Ω) implies u ∈ HW s,p (Ω), i.e., A (Ω) ⊂ HW s,p (Ω). Hence in
this work, we only consider the case sp ≤ Q. Otherwise, the complementary scenario
sp>Q ensures the local boundedness and Hölder continuity directly because of the
fractional Morrey embedding in the Heisenberg group [1].

Our main results are stated as follows. The first one is the local boundedness of
weak solutions.

Theorem 1.2 Let the conditions (1.4) and (1.5) be in force. If p ≤ q ≤ Qp
Q−sp when sp < Q,

p ≤ q <∞ when sp ≥ Q,
(1.8)

then every weak solution u ∈ A(Ω) ∩ Lq−1
sp (Hn) to (1.1) is locally bounded in Ω.

The second one is about the Hölder regularity of weak solutions to (1.1) via
supposing a(·, ·) is Hölder continuous and the distance between q and p is small.
For simplicity, we denote

data := data(n, p, q, s, t, α, [a]α, ‖a‖L∞),

as the set of basic parameters intervening in the problem.

Theorem 1.3 Let the conditions (1.4)–(1.6) with

tq ≤ sp+ α, (1.9)

be in force. If weak solution u ∈ A(Ω) ∩ Lq−1
sp (Hn) to (1.1) has local boundedness

in Ω, then it is locally Hölder continuous as well, that is, for any subset Ω′ ⊂⊂ Ω,

u belongs to C0,β
loc (Ω

′) with some β ∈
(
0, sp

q−1

)
depending on data and ‖u‖L∞(Ω′).

Putting these two theorems above, Hölder continuity is immediately obtained
without local boundedness assumption under the intersecting conditions.

Remark 1.4. For the case s > t, local boundedness can be obtained under (1.5),
(1.8) by checking the proof of theorem 1.2. Meanwhile, following the proof of the-
orem 1.3 and making a few slight modifications, we can deduce, under the same
preconditions of theorem 1.3, that weak solutions are also of the class C0,β

loc (Ω
′) with

some β ∈
(
0, min{sp,tq}

q−1

)
.
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This paper is organized as follows. In § 2, we introduce the Heisenberg group
and function spaces, and then deduce some needful Sobolev embedding theo-
rems. Section 3 is dedicated to proving local boundedness of weak solutions by
the Caccioppoli-type estimate. At last, we shall show that the locally bounded
weak solutions to (1.1) are Hölder continuous via establishing Logarithmic-type
inequality in § 4.

2. Functional setting

In this section, we introduce the Heisenberg group Hn and some function spaces,
and establish several important Sobolev embedding results. The Euclidean space
R2n+1 (n ≥ 1) with the group multiplication

ξ ◦ η =

(
x1 + y1, x2 + y2, · · · , x2n + y2n, τ + τ ′ +

1

2

n∑
i=1

(xiyn+i − xn+iyi)

)
,

where ξ = (x1, x2, · · · , x2n, τ) , η = (y1, y2, · · · , y2n, τ ′) ∈ R2n+1, leads to the
Heisenberg group Hn. The left invariant vector field on Hn is of the form

Xi = ∂xi −
xn+i

2
∂τ , Xn+i = ∂xn+i

+
xi
2
∂τ , 1 ≤ i ≤ n,

and a non-trivial commutator is

T = ∂τ = [Xi, Xn+i] = XiXn+i −Xn+iXi, 1 ≤ i ≤ n.

We call that X1, X2, · · · , X2n are the horizontal vector fields on Hn and T the
vertical vector field. Denote the horizontal gradient of a smooth function u on Hn

by

∇Hu = (X1u,X2u, · · · , X2nu) .

The Haar measure in Hn is equivalent to the Lebesgue measure in R2n+1.
We denote the Lebesgue measure of a measurable set E ⊂ Hn by |E|. For
ξ = (x1, x2, · · · , x2n, τ) , we define its module as

‖ξ‖Hn =

( 2n∑
i=1

xi
2

)2

+ τ2

 1
4

.

The Carnot-Carathéodary metric between two points ξ and η in Hn is the shortest
length of the horizontal curve joining them, denoted by d(ξ, η). The C-C metric is
equivalent to the Korànyi metric, i.e., d (ξ, η) ∼ ‖ξ−1 ◦ η‖Hn . The ball

Br (ξ0) = {ξ ∈ Hn : d (ξ, ξ0) < r} ,

is defined by the C-C metric d. When not important or clear from the context, we
will omit the center as follows: Br := Br(ξ0).
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Let 1 ≤ p < ∞, s ∈ (0, 1), and v : Hn → R be a measurable function. The
Gagliardo semi-norm of v is defined as

[v]HWs,p(Hn) =

(∫
Hn

∫
Hn

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) 1
p

,

and the fractional Sobolev spaces HW s,p (Hn) on the Heisenberg group are defined
as

HW s,p (Hn) =
{
v ∈ Lp (Hn) : [v]HWs,p(Hn) <∞

}
,

endowed with the natural fractional norm

‖v‖HWs,p(Hn) =
(
‖v‖pLp(Hn) + [v]

p
HWs,p(Hn)

) 1
p
.

For any open set Ω ⊂ Hn, we can define similarly fractional Sobolev spaces
HW s,p (Ω) and fractional norm ‖v‖HWs,p(Ω). The space HW s,p

0 (Ω) is the closure
of C∞

0 (Ω) in HW s,p (Ω). Throughout this paper, we denote a generic positive con-
stant as c or C. If necessary, relevant dependencies on parameters will be illustrated
by parentheses, i.e., c = c(n, p) means that c depends on n, p. Now we recall the
fractional Poincaré type inequality and Sobolev embedding in the Heisenberg group
Hn; see [34, proposition 2.7] and [28, theorem 2.5], respectively.

Lemma 2.1. Poincaré type inequality Let p ≥ 1, s ∈ (0, 1) and v ∈ HW s,p(Br).
Then we have ∫

Br

|v − (v)r|
p
dξ ≤ crsp

∫
Br

∫
Br

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη,

where c = c(n, p) > 0, (v)r = −
∫
Br
vdξ.

Lemma 2.2. Let 1 < p < ∞, s ∈ (0, 1) such that sp<Q. Let also v : Hn → R
be a measurable compactly supported function. Then there is a positive constant
c = c (n, p, s) such that

‖v‖p
Lp∗s (Hn)

≤ c [v]
p
HWs,p(Hn) ,

with p∗s = Qp
Q−sp being a critical Sobolev exponent.

Now we also give the following result, a truncation lemma near ∂Ω.

Lemma 2.3. Let p ≥ 1, s ∈ (0, 1) and v ∈ HW s,p (Br). If ϕ ∈ C0,1 (Br)∩L∞ (Br),
then it holds that ϕv ∈ HW s,p (Br) and ‖ϕv‖HWs,p(Br) ≤ c‖v‖HWs,p(Br) with c> 0
depending on n, p, s, r and ϕ.

The proof of this lemma is very similar to that of [15, lemma 5.3], so we omit it
here. Based on lemmas 2.1–2.3, we could conclude a Sobolev–Poincaré inequality
on balls in the Heisenberg group, which plays a crucial role in proving regularity of
solutions.
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Proposition 2.4. Sobolev–Poincaré type inequality Let 1 < p < ∞, s ∈ (0, 1)
fulfil sp<Q. Suppose that v ∈ HW s,p (BR(ξ0)) and Br(ξ0) ⊂ BR(ξ0) (0 < r < R)
are concentric balls. Then there exists a positive constant c = c(n, p, s) such that

(
−
∫
Br

|v − (v)r|
p∗s dξ

) p
p∗s ≤ cD1(R, r)−

∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη,

where

D1(R, r) := rsp
(
R

r

)2Q
[(

R

R− r

)p

+

(
R

R− r

)Q+sp
]
.

Proof. Take ϕ (ξ) ∈ C∞
0 (BR (ξ0)) as a cut-off function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1

in Br (ξ0), suppϕ ⊂ BR+r
2

(ξ0) and |∇Hϕ| ≤ c
R−r in BR (ξ0). Then (v − (v)r)ϕ ∈

HW s,p
0 (BR) and further (v − (v)r)ϕ ∈ HW s,p

0 (Hn) by zero extension. We split
Hn ×Hn into

(BR ×BR) ∪ (Hn\BR ×BR) ∪ (BR ×Hn\BR) ∪ (Hn\BR ×Hn\BR) .

By virtue of lemma 2.2 and the definition of ϕ, we get

(∫
Br

|v − (v)r|
p∗
s dξ

) p
p∗s

≤
(∫

Hn

|(v − (v)r)ϕ|
p∗
s dξ

) p
p∗s

≤ c

∫
Hn

∫
Hn

|(v (ξ)− (v)r)ϕ (ξ)− (v (η)− (v)r)ϕ (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

≤ c

∫
BR

∫
BR

|(v (ξ)− (v)r)ϕ (ξ)− (v (η)− (v)r)ϕ (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

+ c

∫
BR

∫
Hn\BR

|(v (η)− (v)r)ϕ (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

=: J1 + J2.

Note that

J1 ≤ c

∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη + c

∫
BR

∫
BR

|ϕ (ξ)− ϕ (η)|p|(v (η)− (v)r)|
p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

=: c

∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη + J11.
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We first evaluate J 11 as

J11 ≤ c

(R− r)
p

∫
BR

∫
BR

|v (η)− (v)r|
p

‖η−1 ◦ ξ‖Q+p(s−1)
Hn

dξdη

≤ c

(R− r)
p

∫
BR

|v (η)− (v)r|
p
∫
B2R(η)

1

‖η−1 ◦ ξ‖Q+p(s−1)
Hn

dξdη

≤ c

(
R

R− r

)p

R−sp

∫
BR

|v (η)− (v)r|
p
dη

≤ c

(
R

R− r

)p

R−sp

(∫
BR

|v (η)− (v)R|
p
dη +

∫
BR

|(v)R − (v)r|
p
dη

)

≤ c

(
R

R− r

)p

R−sp

(
Rsp

∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη + |(v)R − (v)r|
p |BR|

)
,

where in the last line we have utilized lemma 2.1. On the other hand,

|(v)R − (v)r|
p |BR| = |BR|

∣∣∣∣−∫
Br

(v − (v)R) dξ

∣∣∣∣p
≤ |BR| −

∫
Br

|v − (v)R|
p
dξ

≤ |BR|
|Br|

∫
BR

|v − (v)R|
p
dξ

≤ c

(
R

r

)Q

Rsp

∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη.

Thus

J1 ≤ c

(
1 +

(
R

R− r

)p

+

(
R

r

)Q(
R

R− r

)p
)∫

BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

≤ c

(
R

r

)Q(
R

R− r

)p ∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hnn

dξdη.

Moreover, for ξ ∈ Hn\BR, η ∈ BR+r
2

, owing to the triangle inequality [11] there

holds that

‖ξ−1 ◦ ξ0‖Hn ≤
(
1 +

‖η−1 ◦ ξ0‖Hn

‖ξ−1 ◦ η‖Hn

)
‖ξ−1 ◦ η‖Hn

≤
(
1 +

(R+ r)/2

(R− r)/2

)
‖ξ−1 ◦ η‖Hn =

2R

R− r
‖ξ−1 ◦ η‖Hn .
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From this, it follows that

J2 ≤ c

∫
BR+r

2

∫
Hn\BR

|v (η)− (v)r|
p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

≤ c

(
R

R− r

)Q+sp ∫
Hn\BR

1

‖ξ−1 ◦ ξ0‖Q+sp
Hn

dξ

∫
BR+r

2

|v (η)− (v)r|
p
dη

≤ c
RQ

(R− r)
Q+sp

∫
BR

|v (η)− (v)r|
p
dη

≤ c
RQ

(R− r)
Q+sp

(
Rsp +

RQ+sp

rQ

)∫
BR

∫
BR

|v(ξ)− v(η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

≤ c

(
R

r

)Q(
R

R− r

)Q+sp ∫
BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hnn

dξdη,

the procedure of which is analogous to J 1. Eventually, we obtain

(∫
Br

|v − (v)r|
p∗s dξ

) p
p∗s

≤ c

(
R

r

)Q
[(

R

R− r

)p

+

(
R

R− r

)Q+sp
]∫

BR

∫
BR

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hnn

dξdη,

which implies the statement. �

If we let R = 2r in the preceding Sobolev–Poincaré inequality, then we can get
the very simple version below.

Corollary 2.5. Let 1 < p < ∞, s ∈ (0, 1) fulfil sp<Q. Suppose that v ∈
HW s,p(B2r) and Br ⊂ B2r are concentric balls. Then there exists a positive
constant c(n, p, s) such that

(
−
∫
Br

|v − (v)r|
p∗s dξ

) p
p∗s ≤ crsp−

∫
B2r

∫
B2r

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη.

The following result shows an embedding relation between the fractional Sobolev
spaces HW t,q(Ω) and HW s,p(Ω).

Lemma 2.6. Let 1 < p ≤ q and 0 < s < t < 1. Let also Ω be a bounded measurable
subset of Hn. Then there holds that, for each v ∈ HW t,q(Ω),

(∫
Ω

∫
Ω

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) 1
p

≤ c|Ω|
q−p
pq (diam (Ω))t−s

(∫
Ω

∫
Ω

|v (ξ)− v (η)|q

‖η−1 ◦ ξ‖Q+tq
Hn

dξdη

) 1
q

,

where c> 0 depends upon n, p, q, s, t.
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Proof. For p< q, we first utilize the Hölder inequality to get

∫
Ω

∫
Ω

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

=

∫
Ω

∫
Ω

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖
(Q+tq)

p
q

Hn

1

‖η−1 ◦ ξ‖
Q

q−p
q +(s−t)p

Hn

dξdη

≤

(∫
Ω

∫
Ω

|v (ξ)− v (η)|q

‖η−1 ◦ ξ‖Q+tq
Hn

dξdη

)p
q

∫
Ω

∫
Ω

1

‖η−1 ◦ ξ‖
Q+

(s−t)pq
q−p

Hn

dξdη


q−p
q

.

On the other hand,

∫
Ω

∫
Ω

1

‖η−1 ◦ ξ‖
Q+

(s−t)pq
q−p

Hn

dξdη ≤
∫
Ω

∫
Bd(η)

1

‖η−1 ◦ ξ‖
Q+

(s−t)pq
q−p

Hn

dξdη

≤ Q |B1|
∫
Ω

∫ d

0

ρ
(t−s)pq
q−p −1

dρdη

=
Q |B1| (q − p)

(t− s)pq
d
(t−s)pq
q−p |Ω| ,

with d := diam (Ω). The combination of preceding inequalities implies the desired
display.

If q = p, noting ‖η−1 ◦ ξ‖Hn ≤ diam (Ω) for ξ, η ∈ Ω and s < t, we can readily
obtain

(∫
Ω

∫
Ω

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) 1
p

=

(∫
Ω

∫
Ω

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+tp
Hn

1

‖η−1 ◦ ξ‖(s−t)p
Hn

dξdη

) 1
p

≤ (diam (Ω))
t−s

(∫
Ω

∫
Ω

|v (ξ)− v (η)|p

‖η−1 ◦ ξ‖Q+tp
Hn

dξdη

) 1
p

.

Now, we complete the proof. �

The forthcoming two lemmas are the consequences of these results above, which
will be exploited in the proof of boundedness and Hölder continuity for solutions.
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Lemma 2.7. Assume that s, t ∈ (0, 1), 1 < p ≤ q and (1.8) hold. Then for every
f ∈ HW s,p (Br) we infer that

−
∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a0

∣∣∣∣ frt
∣∣∣∣q) dξ ≤ ca0

D
q
p

1 (R, r)

rtq

(
−
∫
BR

∫
BR

|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) q
p

+ c
D1(R, r)

rsp

(
|supp f |
|Br|

) sp
Q

−
∫
BR

∫
BR

|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

+ c

(
R

r

)Q( |supp f |
|Br|

)p−1

−
∫
BR

(∣∣∣∣ frs
∣∣∣∣p + a0

∣∣∣∣ frt
∣∣∣∣q) dξ,

where supp f := {Br : f 6= 0}, and c> 0 depends only upon n, p, q, s, t, and a0 is
any positive constant.

Proof. By the Hölder inequality and proposition 2.4, we obtain

−
∫
Br

∣∣∣∣ frs
∣∣∣∣p dξ ≤ c−

∫
Br

∣∣∣∣f − (f)r
rs

∣∣∣∣pχ{f 6=0} dξ + c

∣∣∣∣ (f)rrs

∣∣∣∣p

≤ c

(
|supp f |
|Br|

) sp
Q
(
−
∫
Br

∣∣∣∣f − (f)r
rs

∣∣∣∣p∗s dξ
) p

p∗s
+ c

∣∣∣∣ (f)rrs

∣∣∣∣p

≤ c
D1(R, r)

rsp

(
|supp f |
|Br|

) sp
Q

−
∫
BR

∫
BR

|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

+ c

(
|supp f |
|Br|

)p−1

−
∫
Br

∣∣∣∣ frs
∣∣∣∣p dξ,

where we used the inequality below,∣∣∣∣ (f)rrs

∣∣∣∣p = r−sp

∣∣∣∣−∫
Br

fχ{f 6=0} dξ

∣∣∣∣p ≤
(
|supp f |
|Br|

)p−1

−
∫
Br

∣∣∣∣ frs
∣∣∣∣p dξ.

On the other hand, via the Hölder inequality and proposition 2.4 again,

−
∫
Br

∣∣∣∣ frt
∣∣∣∣qdξ ≤ c

(
−
∫
Br

∣∣∣∣f − (f)r
rt

∣∣∣∣p∗sdξ
) q

p∗s
+ c

∣∣∣∣ (f)rrt
∣∣∣∣q

≤ c
D

q
p
1 (R, r)

rtq

(
−
∫
BR

∫
BR

|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) q
p

+ c

∣∣∣∣ (f)rrt
∣∣∣∣q

≤ c
D

q
p
1 (R, r)

rtq

(
−
∫
BR

∫
BR

|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) q
p

+ c

(
|supp f |
|Br|

)p−1

−
∫
Br

∣∣∣∣ frt
∣∣∣∣q dξ,
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where we can see that

∣∣∣∣ (f)rrt
∣∣∣∣q ≤

(
|supp f |
|Br|

)q−1

−
∫
Br

∣∣∣∣ frt
∣∣∣∣q dξ ≤ ( |supp f |

|Br|

)p−1

−
∫
Br

∣∣∣∣ frt
∣∣∣∣q dξ.

We finally observe the plain relation that

−
∫
Br

∣∣∣∣ frs
∣∣∣∣p + a0

∣∣∣∣ frt
∣∣∣∣q dξ ≤ c

(
R

r

)Q

−
∫
BR

∣∣∣∣ frs
∣∣∣∣p + a0

∣∣∣∣ frt
∣∣∣∣q dξ.

In summary, we combine all the previous inequalities to arrive at the desired display.
�

Now denote

a+R := sup
BR×BR

a (·, ·) and a−R := inf
BR×BR

a (·, ·) .

Lemma 2.8. Let s, t ∈ (0, 1), 1 < p ≤ q and a(·, ·) satisfy (1.6) and (1.9). Assume

f ∈ HW t,q (BR̄)∩L∞ (BR̄) with R̄ ≤ 1. Then for γ := min
{

p∗s
p ,

q∗t
q

}
> 1, we have

[
−
∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a+

R̄

∣∣∣∣ frt
∣∣∣∣q)γ

dξ

] 1
γ

≤ c
(
1 + ‖f‖q−p

L∞(Br)

)(
D1 (R, r)

rsp
+

D̃1 (R, r)

rtq

)
−
∫
BR

∫
BR

H (ξ, η, |f (ξ)− f (η)|)
‖η−1 ◦ ξ‖QHn

dξdη

+ c
(
1 + ‖f‖q−p

L∞(Br)

)
−
∫
BR

(∣∣∣∣ frs
∣∣∣∣p + a−

R̄

∣∣∣∣ frt
∣∣∣∣q) dξ,

where Br ⊂ BR ⊆ BR̄ are concentric balls with 1
2 R̄ ≤ r < R ≤ R̄, and c> 0

depends only on n, p, q, s, t and [a]α. Here D̃1(R, r) is the corresponding D1 (R, r)
defined in proposition 2.4 with sp replaced by tq.

Proof. In view of Hölder continuity of a, we have

a+
R̄
≤ a−

R̄
+ 4[a]αR̄

α ≤ a−
R̄
+ 8[a]αr

α.

Then we by employing tq ≤ sp+ α, r ≤ 1 have

a+
R̄

∣∣∣∣ frt
∣∣∣∣q ≤ a−

R̄

∣∣∣∣ frt
∣∣∣∣q + crα−tq+sp|f |q−p

∣∣∣∣ frs
∣∣∣∣p.
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Thus

[
−
∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a+

R̄

∣∣∣∣ frt
∣∣∣∣q)γ

dξ

] 1
γ

≤ c
(
1 + ‖f‖q−p

L∞(Br)

)[
−
∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a−

R̄

∣∣∣∣ frt
∣∣∣∣q)γ

dξ

] 1
γ

≤ c
(
1 + ‖f‖q−p

L∞(Br)

)[
−
∫
Br

(∣∣∣∣f − (f)r
rs

∣∣∣∣p + a−
R̄

∣∣∣∣f − (f)r
rt

∣∣∣∣q)γ

dξ

] 1
γ

+ c
(
1 + ‖f‖q−p

L∞(Br)

)(∣∣∣∣ (f)rrs

∣∣∣∣p + a−
R̄

∣∣∣∣ (f)rrt
∣∣∣∣q) .

Observe that

∣∣∣∣ (f)rrs

∣∣∣∣p + a−
R̄

∣∣∣∣ (f)rrt
∣∣∣∣q ≤ −

∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a−

R̄

∣∣∣∣ frt
∣∣∣∣q) dξ.

Moreover, it follows from proposition 2.4 that

[
−
∫
Br

∣∣∣∣f − (f)r
rs

∣∣∣∣pγ dξ]
1
γ

≤

(
−
∫
Br

∣∣∣∣f − (f)r
rs

∣∣∣∣p∗s dξ
) p

p∗s

≤ cD1 (R, r)

rsp
−
∫
BR

∫
BR

|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη,

and

[
−
∫
Br

∣∣∣∣f − (f)r
rt

∣∣∣∣qγdξ]
1
γ

≤

(
−
∫
Br

∣∣∣∣f − (f)r
rt

∣∣∣∣q∗t dξ
) q

q∗t

≤ cD̃1 (R, r)

rtq
−
∫
BR

∫
BR

|f (ξ)− f (η)|q

‖η−1 ◦ ξ‖Q+tq
Hn

dξdη.
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Merging the last four inequalities leads to

[
−
∫
Br

(∣∣∣∣ frs
∣∣∣∣p + a+

R̄

∣∣∣∣ frt
∣∣∣∣q)γ

dξ

] 1
γ

≤ c
(
1 + ‖f‖q−p

L∞(Br)

)(
D1 (R, r)

rsp
+

D̃1 (R, r)

rtq

)
· −
∫
BR

∫
BR

(
|f (ξ)− f (η)|p

‖η−1 ◦ ξ‖Q+sp
Hn

+ a−
R̄

|f (ξ)− f (η)|q

‖η−1 ◦ ξ‖Q+tq
Hn

)
dξdη

+ c
(
1 + ‖f‖q−p

L∞(Br)

)
−
∫
BR

(∣∣∣∣ frs
∣∣∣∣p + a−

R̄

∣∣∣∣ frt
∣∣∣∣q) dξ

≤ c
(
1 + ‖f‖q−p

L∞(Br)

)(
D1 (R, r)

rsp
+

D̃1 (R, r)

rtq

)
−
∫
BR

∫
BR

H (ξ, η, |f (ξ)− f (η)|)
‖η−1 ◦ ξ‖QHn

dξdη

+ c
(
1 + ‖f‖q−p

L∞(Br)

)
−
∫
BR

(∣∣∣∣ frs
∣∣∣∣p + a−

R̄

∣∣∣∣ frt
∣∣∣∣q) dξ.

We now finish the proof. �

3. Local boundedness

This section is devoted to showing the interior boundedness of weak solutions to
equation (1.1) by means of the key ingredient, a Caccioppoli-type inequality in the
nonlocal framework. The forthcoming lemma indicates the multiplication of each
function in A(Ω) and a cut-off function also belongs to A(Ω).

Lemma 3.1. Let s, t, p and q satisfy (1.4) and ϕ ∈ HW 1,∞
0 (Br) , v ∈ A(Ω). If one

of the following two conditions holds:

(i) The inequality (1.8) holds and v ∈ Lp (B2r) satisfies ρ (v;B2r) <∞;
(ii) v ∈ Lq (B2r) satisfies ρ (v;B2r) <∞,

then ρ (vϕ;Hn) <∞. In particular, vϕ ∈ A(Ω) whenever B2r ⊂ Ω.

Proof. By v ∈ A(Ω), proposition 2.4 and (1.8), we get v ∈ Lq
(
B3r/2

)
in (i). Thus,

we just consider condition (ii). By the definition of ρ (vϕ;Hn), we have

ρ (vϕ;Hn) = 2

∫
Hn\B3r/2

∫
B3r/2

H (ξ, η, |v (ξ)ϕ (ξ)− v (η)ϕ (η)|) dξdη

‖η−1 ◦ ξ‖QHn

+

∫
B3r/2

∫
B3r/2

H (ξ, η, |v (ξ)ϕ (ξ)− v (η)ϕ (η)|) dξdη

‖η−1 ◦ ξ‖QHn

=: 2I1 + I2. (3.1)
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Owing to ϕ ∈ HW 1,∞
0 (Br), we find

I1 ≤
(
‖ϕ‖L∞(Br)

+ 1
)q ∫

Hn\B3r/2

∫
Br

(
|v (ξ)|p

‖η−1 ◦ ξ‖Q+sp
Hn

+ ‖a‖L∞
|v (ξ)|q

‖η−1 ◦ ξ‖Q+tq
Hn

)
dξdη

≤ c
(
‖ϕ‖L∞(Br)

+ 1
)q (

r−sp

∫
Br

|v (ξ)|p dξ + ‖a‖L∞r−tq

∫
Br

|v (ξ)|q dξ

)
< ∞. (3.2)

The term I 2 is estimated as

I2 ≤ c

∫
B3r/2

∫
B3r/2

H (ξ, η, |(v (ξ)− v (η))ϕ (η)|) dξdη

‖η−1 ◦ ξ‖QHn

+ c

∫
B3r/2

∫
B3r/2

H (ξ, η, |v (ξ) (ϕ (ξ)− ϕ (η))|) dξdη

‖η−1 ◦ ξ‖QHn

≤ c
(
‖ϕ‖L∞(Br)

+ 1
)q ∫

B3r/2

∫
B3r/2

H (ξ, η, |v (ξ)|) dξdη

‖η−1 ◦ ξ‖QHn

+ c‖∇Hϕ‖p
L∞(Br)

∫
B3r/2

|v (ξ)|p
∫
B3r

dη

‖η−1 ◦ ξ‖Q+(s−1)p
Hn

dξ

+ c‖∇Hϕ‖q
L∞(Br)

‖a‖L∞

∫
B3r/2

|v (ξ)|q
∫
B3r

dη

‖η−1 ◦ ξ‖Q+(t−1)p
Hn

dξ

≤ c
(
‖ϕ‖L∞(Br)

+ 1
)q

ρ (v;B2r) + c‖∇Hϕ‖p
L∞(Br)

r(1−s)p
∫
B2r

|v (ξ)|p dξ

+ c‖∇Hϕ‖q
L∞(Br)

‖a‖L∞r(1−t)q
∫
B2r

|v (ξ)|q dξ

< ∞. (3.3)

Thus, it follows ρ (vϕ;Hn) <∞ by combining (3.2), (3.3) with (3.1). �

Next, we prove a nonlocal Caccioppoli-type inequality. Define

h (ξ, η, τ) :=
τp−1

‖η−1 ◦ ξ‖spHn
+ a (ξ, η)

τ q−1

‖η−1 ◦ ξ‖tqHn

, ξ, η ∈ Hn and τ > 0. (3.4)

The numerical inequality below, to be exploited frequently, is from [14, lemma
3.1].

Lemma 3.2. Let p ≥ 1 and a, b ≥ 0. Then we have

ap − bp ≤ pap−1 |a− b| ,

and

ap − bp ≤ εbp + cε1−p|a− b|p,

for any ε ∈ (0, 1) and some c = c(p) > 0.
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Lemma 3.3. Caccioppoli-type inequality Let B2r (ξ0) ⊂⊂ Ω, 1 < p ≤ q, (1.5) and
(1.8) hold. Assume u ∈ A(Ω) is a weak solution to (1.1). Then for any φ ∈ C∞

0 (Br)
with 0 ≤ φ ≤ 1, we have∫

Br

∫
Br

H (ξ, η, |w± (ξ)− w± (η)|) (φq (ξ) + φq (η))
dξdη

‖η−1 ◦ ξ‖QHn

≤c
∫
Br

∫
Br

H (ξ, η, |(φ (ξ)− φ (η)) (w± (ξ) + w± (η))|) dξdη

‖η−1 ◦ ξ‖QHn

+ c

(
sup

ξ∈suppφ

∫
Hn\Br

h (ξ, η, |w± (η)|) dη

‖η−1 ◦ ξ‖QHn

)∫
Br

w± (ξ)φq (ξ) dξ, (3.5)

for some c := c(n, s, t, p, q) > 0, where w± := (u− k)± with k ≥ 0.

Proof. We just consider the estimate for w+, since the estimate for w− can be
proved similarly. By lemma 3.1, it follows that w+φ

q ∈ A(Ω) from u ∈ A(Ω) and
φ ∈ C∞

0 (Br) ⊂ HW 1,∞
0 (Br), so we can take the testing function ϕ = w+φ

q in
(1.7). Then we have

0 =

∫
Br

∫
Br

[
Jp(u(ξ)− u(η))(w+(ξ)φ

q(ξ)− w+(η)φ
q(η))

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
Jq(u(ξ)− u(η))(w+(ξ)φ

q(ξ)− w+(η)φ
q(η))

‖η−1 ◦ ξ‖Q+tq
Hn

]
dξdη

+ 2

∫
Hn\Br

∫
Br

[
Jp(u(ξ)− u(η))w+(ξ)φ

q(ξ)

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
Jq(u(ξ)− u(η))w+(ξ)φ

q(ξ)

‖η−1 ◦ ξ‖Q+tq
Hn

]
dξdη

=: J1 + J2. (3.6)

We first estimate J 1. Since J 1 is symmetry for ξ and η, we may suppose without
loss of generality that u (ξ) ≥ u (η). Then for l ∈ {p, q}, it yields

Jl (u (ξ)− u (η)) (w+ (ξ)φq (ξ)− w+ (η)φq (η))

=


(w+ (ξ)− w+ (η))

l−1
(w+ (ξ)φq (ξ)− w+ (η)φq (η)) , if u (ξ) ≥ u (η) ≥ k

(u (ξ)− u (η))
l−1

w+ (ξ)φq (ξ) , if u (ξ) ≥ k ≥ u (η)

0, if k ≥ u (ξ) ≥ u (η)

≥ Jl (w+ (ξ)− w+ (η)) (w+ (ξ)φq (ξ)− w+ (η)φq (η)) .

Moreover,

w+ (ξ)φq (ξ)− w+ (η)φq (η)

=
w+ (ξ)− w+ (η)

2
(φq (ξ) + φq (η)) +

w+ (ξ) + w+ (η)

2
(φq (ξ)− φq (η)) ,
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which implies

Jl (w+ (ξ)− w+ (η))
(
w+ (ξ)φq (ξ)− w+ (η)φq (η)

)
≥ |w+(ξ)− w+(η)|l φ

q(ξ) + φq(η)

2
− |w+(ξ)− w+(η)|l−1w+(ξ) + w+(η)

2
|φq(ξ)− φq(η)|.

Since

|φq (ξ)− φq (η)| ≤ q
(
φq−1 (ξ) + φq−1 (η)

)
|φ (ξ)− φ (η)|

≤ c (q) (φq (ξ) + φq (η))
q−1
q |φ (ξ)− φ (η)| ,

from lemma 3.2, we use Young’s inequality, 0 ≤ φ ≤ 1 and q−1
q > 0 to deduce that

|w+ (ξ)− w+ (η)|l−1w+ (ξ) + w+ (η)

2

∣∣φq (ξ)− φq (η)
∣∣

≤ c (q) |w+ (ξ)− w+ (η)|l−1 (w+ (ξ) + w+ (η))
(
φq (ξ) + φq (η)

) l−1
l + q−l

ql |φ (ξ)− φ (η)|

≤ ε|w+ (ξ)− w+ (η)|l
(
φq (ξ) + φq (η)

)
+ c (ε, q)

(
φq (ξ) + φq (η)

) q−l
q |φ (ξ)− φ (η)|l(w+ (ξ) + w+ (η))l

≤ ε|w+ (ξ)− w+ (η)|l
(
φq (ξ) + φq (η)

)
+ c (ε, q) |φ (ξ)− φ (η)|l(w+ (ξ) + w+ (η))l.

Then, by choosing ε small enough, we have

Jl (w+ (ξ)− w+ (η)) (w+ (ξ)φq (ξ)− w+ (η)φq (η))

≥|w+ (ξ)− w+ (η)|lφ
q (ξ) + φq (η)

4
− c|φ(ξ)− φ (η)|l(w+ (ξ) + w+ (η))

l
.

Thus, we get

J1 ≥
∫
Br

∫
Br

[
|w+(ξ)− w+(η)|p(φq(ξ) + φq(η))/4− c|φ(ξ)− φ(η)|p(w+(ξ) + w+(η))p

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
|w+ (ξ)− w+ (η)|q(φq(ξ) + φq(η))/4

‖η−1 ◦ ξ‖Q+tq
Hn

− c|φ(ξ)− φ(η)|q(w+ (ξ) + w+ (η))q

‖η−1 ◦ ξ‖Q+tq
Hn

]
dξdη

≥
∫
Br

H (ξ, η, |w+ (ξ)− w+ (η)|)
(
φq (ξ) + φq (η)

) dξdη

‖η−1 ◦ ξ‖QHn

− c

∫
Br

∫
Br

H (ξ, η, |φ(ξ)− φ(η)| (w+ (ξ) + w+ (η)))
dξdη

‖η−1 ◦ ξ‖QHn

. (3.7)

Now we estimate J 2. Note that

Jl (u (ξ)− u (η))w+ (ξ) ≥ −wl−1
+ (η)w+ (ξ) . (3.8)
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In fact, when u (ξ) ≥ u (η), it easy to see that the inequality (3.8) holds. When
u (ξ) < u (η) and u (ξ) ≤ k, w+ (ξ) = 0, the inequality (3.8) also holds. When
k < u (ξ) < u (η),

Jl(u(ξ)− u(η))w+(ξ) = −|w+(ξ)− w+(η)|l−1w+(ξ) ≥ −wl−1
+ (η)w+(ξ).

Thus, we apply (3.8) and (3.4) to get

J2 = 2

∫
Hn\Br

∫
Br

[
Jp(u(ξ)− u(η))w+(ξ)φq(ξ)

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
Jq(u(ξ)− u(η))w+(ξ)φq(ξ)

‖η−1 ◦ ξ‖Q+tq
Hn

]
× dξdη

≥ −c

∫
Hn\Br

∫
Br

[
wp−1
+ (η)w+(ξ)φq(ξ)

‖η−1 ◦ ξ‖spHn

+ a(ξ, η)
wq−1
+ (η)w+(ξ)φq(ξ)

‖η−1 ◦ ξ‖tqHn

]
dξdη

‖η−1 ◦ ξ‖QHn

≥ −c

(
sup

ξ∈supp φ

∫
Hn\Br

h(ξ, η, w+(η))
dη

‖η−1 ◦ ξ‖QHn

)∫
Br

w±(ξ)φq(ξ) dξ. (3.9)

Combining (3.6), (3.7) with (3.9), we get (3.5). �

The following standard iteration lemma can be found in [25, lemma 7.1].

Lemma 3.4. Let {yi}∞i=0 be a sequence of nonnegative numbers satisfying

yi+1 ≤ b1b
i
2y

1+β
i , i = 0, 1, 2, · · ·

for some constants b1, β > 0 and b2 > 1. If

y0 ≤ b
− 1

β
1 b

− 1
β2

2 ,

then yi → 0 as i→ ∞.

We end this section by providing the proof of boundedness. Lemmas 2.7 and 3.3
play the vital roles in the process.
Proof of theorem 1.2. For convenience, denote

H0 (τ) = τp + ‖a‖L∞τ q, τ ≥ 0.

Let Br ≡ Br (ξ0) ⊂⊂ Ω be a fixed ball with r ≤ 1. For i = 0, 1, 2, · · · and k0 > 0,
we write

ri :=
r

2

(
1 + 2−i

)
, σi :=

ri−1 + ri
2

, ki := 2k0
(
1− 2−i−1

)
and

yi :=

∫
A+
(
ki,ri

)H0 ((u (ξ)− ki)+) dξ.

In addition, we denote

A+ (ki, ri) :=
{
ξ ∈ Bri

: u (ξ) ≥ ki
}
.
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Then via (u (ξ)− ki)+ ≤ (u (ξ)− ki−1)+,

A+ (ki, ri) ⊂ A+ (ki−1, ri) ⊂ A+ (ki−1, ri−1) . (3.10)

Moreover, for ξ ∈ A+ (ki, ri), we have

(u (ξ)− ki−1)+ = u (ξ)− ki−1 ≥ ki − ki−1 = 2−ik0.

Thus, it deduces

∣∣A+ (ki, ri)
∣∣ ≤ ∫

A+
(
ki,ri

) (u (ξ)− ki−1)
p
+

(ki − ki−1)
p dξ ≤ k−p

0 2ipyi−1 (3.11)

and ∫
Bri−1

(u (ξ)− ki)+ dξ ≤
∫
Bri−1

(u (ξ)− ki−1)+

(
(u (ξ)− ki−1)+
ki − ki−1

)p−1

dξ

≤ k1−p
0 2i(p−1)

∫
Bri−1

H0

(
(u (ξ)− ki−1)+

)
dξ

= k1−p
0 2i(p−1)yi−1. (3.12)

We use lemma 2.7 with f := (u− k)+, a0 := ‖a‖L∞ and (3.11) to get

yi ≤ crQi −
∫
Bri

H0

(
(u (ξ)− ki)+

)
dξ

≤ crQ+sp
i −

∫
Bri

(∣∣∣∣ (u (ξ)− ki)+
rsi

∣∣∣∣p + ‖a‖L∞

∣∣∣∣ (u (ξ)− ki)+
rti

∣∣∣∣q) dξ

≤ c‖a‖L∞rQ+sp−tq
i D

q
p

1 (σi, ri)

(
−
∫
Bσi

∫
Bσi

∣∣(u (ξ)− ki)+ − (u (η)− ki)+
∣∣p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) q
p

+ crQ−sp
i D1(σi, ri)

(
A+ (ki, ri)

) sp
Q −
∫
Bσi

∫
Bσi

∣∣(u (ξ)− ki)+ − (u (η)− ki)+
∣∣p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

+ crQ+sp
i

(
A+ (ki, ri)

|Bri |

)p−1

−
∫
Bσi

(∣∣∣∣ (u (ξ)− ki)+
rsi

∣∣∣∣p + ‖a‖L∞

∣∣∣∣ (u (ξ)− ki)+
rti

∣∣∣∣q) dξ

≤ c‖a‖L∞rQ+sp−tq
i D

q
p

1 (σi, ri)

(
−
∫
Bσi

∫
Bσi

∣∣(u (ξ)− ki)+ − (u (η)− ki)+
∣∣p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

) q
p

+ ck
− sp2

Q

0 rQ−sp
i 2

i sp
2

Q D1(σi, ri)y
sp
Q

i−1 −
∫
Bσi

∫
Bσi

∣∣(u (ξ)− ki)+ − (u (η)− ki)+
∣∣p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

+ crQ+sp−tq
i

(
k−p
0 2ipyi−1

|Bri |

)p−1

−
∫
Bσi

H0

(
(u (ξ)− ki)+

)
dξ. (3.13)
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When we apply lemma 3.3, we choose a cut-off function φ ∈ C∞
0

(
Bσi+ri−1

2

)
satisfying 0 ≤ φ ≤ 1, φ ≡ 1 in Bσi

and |∇Hφ| ≤ c
ri−1−σi

= c
r2

i. Then we have

that, from (3.12),

−
∫
Bσi

∫
Bσi

∣∣(u (ξ)− ki)+ − (u (η)− ki)+
∣∣p

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη

≤ −
∫
Bσi

∫
Bσi

H
(
ξ, η,

∣∣(u (ξ)− ki)+ − (u (η)− ki)+
∣∣) dξdη

‖η−1 ◦ ξ‖QHn

≤ cr−p2ip −
∫
Bri−1

(u (ξ)− ki)
p
+

∫
Bri−1

dξdη

‖η−1 ◦ ξ‖Q+(s−1)p
Hn

+ c‖a‖L∞r−q2iq −
∫
Bri−1

(u (ξ)− ki)
q
+

∫
Bri−1

dξdη

‖η−1 ◦ ξ‖Q+(t−1)q
Hn

+ c sup
ξ∈supp φ

∫
Hn\Bri−1

(
(u (η)− ki)

p−1
+

‖η−1 ◦ ξ‖Q+sp
Hn

+ ‖a‖L∞
(u (η)− ki)

q−1
+

‖η−1 ◦ ξ‖Q+tq
Hn

)
dη

· −
∫
Bri−1

(u (ξ)− ki)+ dξ

≤ cr−p2ipr
(1−s)p
i−1 −

∫
Bri−1

(u (ξ)− ki)
p
+ dξ

+ c‖a‖L∞r−q2iqr
(1−t)q
i−1 −

∫
Bri−1

(u (ξ)− ki)
q
+ dξ + c

(
ri−1 + σi
ri−1 − σi

)Q+tq

·
∫
Hn\Bri−1

(
(u (η)− ki)

p−1
+

‖η−1 ◦ ξ0‖Q+sp
Hn

+ ‖a‖L∞
(u (η)− ki)

q−1
+

‖η−1 ◦ ξ0‖Q+tq
Hn

)
dη −
∫
Bri−1

(u (ξ)− ki)+ dξ

≤ cr−q2iqr
(1−t)p
i−1 −

∫
Bri−1

H0

(
(u (ξ)− ki)+

)
dξ

+ c2i(Q+tq)T
(
(u− ki)+; ξ0, ri−1

)
−
∫
Bri−1

(u (ξ)− ki)+ dξ

≤ c2i(Q+q+p−1)yi−1,

where we used the fact that

T
(
(u− ki)+; ξ0, ri−1

)
≤ T

(
u; ξ0,

r

2

)
<∞,

and

‖η−1 ◦ ξ0‖Hn

‖η−1 ◦ ξ‖Hn
≤ 1 +

‖ξ−1
0 ◦ ξ‖Hn

‖η−1 ◦ ξ‖Hn
≤ 1 +

ri−1 + σi
ri−1 − σi

≤ 2
ri−1 + σi
ri−1 − σi

≤ c2i
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for ξ ∈ supp φ and η ∈ Hn\Bri−1
. Noting that D1(σi, ri) ≤ c2i(Q+p), it follows

from (3.13) that

yi ≤ c2
i

[
q(Q+p)

p +
q(Q+q+p)

p

]
y
q
p
i−1 + c2

i

(
p2

Q
+Q+p+

q(Q+q+p)
p

)
y
sp
Q

+1

i−1 + c2ip(p−1)ypi−1.

(3.14)

Since H0 (u) ∈ L1 (Ω) from the assumption (1.8), we get that

y0 =

∫
A+(k0,r)

H0 ((u (ξ)− k0)+) dξ → 0 as k0 → ∞.

First, we consider k0 > 1 so large that

yi ≤ yi−1 ≤ · · · ≤ y0 ≤ 1, i = 1, 2, · · · .

Then, we have from (3.14) that

yi ≤ c2θiyβi−1,

where

θ = 2

(
(Q+ p+ q) q

p
+ p2

)
, β = min

{
q

p
− 1,

sp

Q
, p− 1

}
.

Finally, we can choose k0 so large that

y0 ≤ c̃
− 1

β 2
− θ

β2

holds. Then lemma 3.4 implies

y∞ =

∫
A+
(
2k0,

r
2

)H0 ((u (ξ)− 2k0)+) dξ = 0,

which means that u ≤ 2k0 a.e. in B r
2
.

Applying the same argument to −u, we consequently obtain u ∈ L∞(B r
2
).

4. Hölder continuity

We are going to demonstrate the Hölder regularity of weak solutions to equation
(1.1) in the last section. First, the second important tool, logarithmic estimate, is
established as follows. Throughout this part, we fix any subdomain Ω′ ⊂⊂ Ω.

Lemma 4.1. Logarithmic inequality Let s, t, p, q satisfy (1.4) and a(·, ·) fulfil (1.5),
(1.6) with (1.9). Let also u ∈ A(Ω) be a weak solution of (1.1) such that u ∈ L∞(Ω′)
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and u ≥ 0 in BR := BR (ξ0) ⊂ Ω′ with R ≤ 1. Then for any 0 < r ≤ R
2 and d> 0,∫

Br

∫
Br

∣∣∣∣log u (ξ) + d

u (η) + d

∣∣∣∣ dξdη

‖η−1 ◦ ξ‖QHn

≤cK2

(
rQ +

rQ+sp

dp−1

∫
Hn\BR

up−1
− (η) + uq−1

− (η)

‖η−1 ◦ ξ0‖Q+sp
Hn

dη +
rQ+tq

dq−1

∫
Hn\BR

uq−1
− (η)

‖η−1 ◦ ξ0‖Q+tq
Hn

dη

)
,

holds true. Here K := 1 + dq−p + ‖u‖q−p

L∞(Ω′) and the constant c ≥ 1 depends on

data.

Proof. Let us give some notations as below,

Hρ (ξ, η, τ) =
τp

ρsp
+ a (ξ, η)

τ q

ρtq
, hρ (ξ, η, τ) =

τp−1

ρsp
+ a (ξ, η)

τ q−1

ρtq

and

Gρ (τ) =
τp

ρsp
+ a+ρ

τ q

ρtq
, gρ (τ) =

τp−1

ρsp
+ a+ρ

τ q−1

ρtq
,

with a+ρ := sup
Bρ×Bρ

a (·, ·) and τ ≥ 0.

Consider a cut-off function φ ∈ C∞
0

(
B3r

2
(ξ0)

)
satisfying

0 ≤ φ ≤ 1, φ ≡ 1inBr and |∇Hφ| ≤
c

r
inB 3r

2
.

Taking the test function ϕ (ξ) := φq(ξ)
g2r(u(ξ)+d) , we have from the weak formulation

that

0 =

∫
B2r

∫
B2r

[
Jp(u(ξ)− u(η))

‖η−1 ◦ ξ‖Q+sp
Hn

(
φq(ξ)

g2r(u(ξ))
− φq(η)

g2r(u(η))

)

+ a(ξ, η)
Jq(u(ξ)− u(η))

‖η−1 ◦ ξ‖Q+tq
Hn

(
φq(ξ)

g2r(ū(ξ))
− φq(η)

g2r(ū(η))

)]
dξdη

+ 2

∫
Hn\B2r

∫
B2r

[
Jp(u(ξ)− u(η))

‖η−1 ◦ ξ‖Q+sp
Hn

+ a(ξ, η)
Jq(u(ξ)− u(η))

‖η−1 ◦ ξ‖Q+tq
Hn

]
φq(ξ)

g2r(u(ξ))
dξdη

=: I1 + I2, (4.1)

with ū := u+ d.
In what follows, we deal with I 1 in the case ū (ξ) ≥ ū (η) that is divided into two

subcases:

ū (ξ) ≥ ū (η) ≥ 1

2
ū (ξ) , (4.2)

and

ū (ξ) ≥ 2ū (η) . (4.3)
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If (4.2) occurs, we first observe that

φq (ξ)

g2r (ū (ξ))
− φq (η)

g2r (ū (η))

≤
cφq−1 (ξ) supB3R/2

|∇Hφ| ‖η−1 ◦ ξ‖Hn

g2r (ū (η))

+ φq (ξ)

∫ 1

0

d

dσ

(
g−1
2r (σū (ξ) + (1− σ)ū (η))

)
dσ

≤
cφq−1 (ξ) r−1‖η−1 ◦ ξ‖Hn

g2r (ū (η))
− (p− 1)φq (ξ) (ū (ξ)− ū (η))

2qG2r (ū (η))
, (4.4)

where the first inequality holds naturally when φ(ξ) ≤ φ(η). Here, we have used
(4.2) and

∫ 1

0

d

dσ

(
g−1
2r (σū (ξ) + (1− σ)ū (η))

)
dσ ≥ (p− 1) (ū (ξ)− ū (η))

G2r (ū (ξ))

≥ (p− 1) (ū (ξ)− ū (η))

2qG2r (ū (η))
,

the details of which can be found in [4]. Then, combining (4.4) and Young’s
inequality yields

F (ξ, η) :=

(
Jp (u (ξ)− u (η))

‖η−1 ◦ ξ‖spHn

+ a (ξ, η)
Jq (u (ξ)− u (η))

‖η−1 ◦ ξ‖tqHn

)(
φq (ξ)

g2r (ū (ξ))
− φq(η)

g2r (ū (η))

)
≤

cφq−1 (ξ) r−1‖η−1 ◦ ξ‖Hn ū (η)

G2r (ū (η))(
|ū (ξ)− ū (η)|p−1

‖η−1 ◦ ξ‖spHn

+ a (ξ, η)
|ū (ξ)− ū (η)|q−1

‖η−1 ◦ ξ‖tqHn

)

− (p− 1)φq (ξ)H (ξ, η, ū (ξ)− ū (η))

2qG2r (ū (η))

≤ εφ
(q−1)p
p−1 (ξ) |ū (ξ)− ū (η)|p

G2r (ū (η)) ‖η−1 ◦ ξ‖spHn

+ a (ξ, η)
εφq (ξ) |ū (ξ)− ū (η)|q

G2r (ū (η)) ‖η−1 ◦ ξ‖tqHn

− (p− 1)φq (ξ)H (ξ, η, ū (ξ)− ū (η))

2qG2r (ū (η))

+ c (ε)
r−p‖η−1 ◦ ξ‖pHn |ū (η)|p

G2r (ū (η)) ‖η−1 ◦ ξ‖spHn

+ c (ε) a+2r
r−q‖η−1 ◦ ξ‖qHn |ū (η)|q

G2r (ū (η)) ‖η−1 ◦ ξ‖tqHn

≤ − (p− 1)φq (ξ)H (ξ, η, ū (ξ)− ū (η))

2q+1G2r (ū (η))
+ c

rp(s−1)

‖η−1 ◦ ξ‖p(s−1)
Hn

+ c
rq(t−1)

‖η−1 ◦ ξ‖q(t−1)
Hn

,

(4.5)
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where ε was chosen as p−1

2q+1 ,
(q−1)p
p−1 > q and c> 0 is independent of a. We proceed

to evaluate G2r (ū (η)). For ξ, η ∈ B2r, recalling the Hölder continuity of a, we get

a+2r = a+2r − a (ξ, η) + a (ξ, η) ≤ 2[a]α(4r)
α
+ a (ξ, η) .

Thus this implies by the facts that r ≤ 1 and tq ≤ sp+ α that

G2r (ū (η)) ≤
ūp (η)

(2r)
sp + 2[a]α(4r)

α ū
q (η)

(2r)
tq + a (ξ, η)

ūq (η)

(2r)
tq

≤
(
1 + 8[a]αr

α+sp−tq‖u‖q−p

L∞(Ω′)
) ūp (η)
(2r)

sp + a (ξ, η)
ūq (η)

(2r)
tq

≤ c
(
1 + ‖u‖q−p

L∞(Ω′)
)
H2r (ξ, η, ū (η)) . (4.6)

Next, we will obtain an estimate on log ū. It is easy to find

log
ū (ξ)

ū (η)
=

∫ 1

0

ū (ξ)− ū (η)

ū (η) + σ (ū (ξ)− ū (η))
dσ ≤ (ū(ξ)− ū(η))/‖η−1 ◦ ξ‖sHn

ū(η)/(2r)s
‖η−1 ◦ ξ‖sHn

(2r)s
,

so, by the monotonicity of the function f(τ) = (τp + a(ξ, η)τ q‖η−1 ◦ ξ‖−(t−s)q
Hn )/τ

with τ ≥ 0,

log
ū(ξ)

u(η)
≤ ‖η−1 ◦ ξ‖sHn

(2r)s


(

ū(ξ)−ū(η)
‖η−1◦ξ‖s

Hn

)p
+ a(ξ, η)

(
ū(ξ)−ū(η)
‖η−1◦ξ‖s

Hn

)q
‖η−1 ◦ ξ‖−(t−s)q

Hn(
ū(η)
(2r)s

)p
+ a(ξ, η)

(
ū(η)
(2r)s

)q
‖η−1 ◦ ξ‖−(t−s)q

Hn

+ 1


≤ cH (ξ, η, ū (ξ)− ū (η))

H2r (ξ, η, ū (η))
+

‖η−1 ◦ ξ‖sHn

(2r)s
, (4.7)

where we need to note ‖η−1 ◦ ξ‖Hn ≤ 4r. It follows from (4.5)–(4.7) that

F (ξ, η) ≤ −φ
q (ξ)

cK
log

ū (ξ)

ū (η)
+
c‖η−1 ◦ ξ‖sHn

(2r)
s +

c‖η−1 ◦ ξ‖p(1−s)
Hn

(2r)
p(1−s)

+
c‖η−1 ◦ ξ‖q(1−t)

Hn

(2r)
q(1−t)

.

Second, we in the case (4.3) tackle the integral I 1. Applying lemma 3.2 and the
relation ū (ξ) ≥ 2ū (η), we could derive

φq (ξ)

g2r (ū (ξ))
− φq(η)

g2r (ū (η))
≤ φq (ξ)− φq (η)

g2r (ū (ξ))
+ φq (η)

(
1

g2r (2ū (η))
− 1

g2r (ū (η))

)
≤ εφq (η) + c (ε) |φ (ξ)− φ (η)|q

g2r (ū (ξ))
− 2p−1 − 1

2p−1

φq(η)

g2r (ū (η))

≤ c|φ(ξ)− φ(η)|q

g2r (ū (ξ))
−
(
2p−1 − 1

)
φq (η)

2pg2r (ū (η)),
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with ε = 2p−1−1
2p . Thereby, it holds that

F (ξ, η) ≤ ch (ξ, η, ū (ξ)− ū (η)) |φ(ξ)− φ(η)|q

g2r (ū (ξ))
− h (ξ, η, ū (ξ)− ū (η))φq (η)

cg2r (ū (η))

≤
c(2r)

−q‖η−1 ◦ ξ‖qHnh (ξ, η, ū (ξ)− ū (η))

g2r (ū (ξ))
− h (ξ, η, ū (ξ)− ū (η))φq (η)

cKh2r (ξ, η, ū (η))
.

Here F (ξ, η) is the same as that in (4.5) and the estimate for g2r (ū (η)) is similar
to (4.6). Moreover, via ū (ξ) ≥ 2ū (η) ≥ 0 in B2r,

h (ξ, η, ū(ξ)− ū(η))

g2r(ū(ξ))
≤

|ū(ξ)−ū(η)|p−1

‖η−1◦ξ‖spHn
+ a(ξ, η) |ū(ξ)−ū(η)|q−1

‖η−1◦ξ‖tqHn

|ū(ξ)−ū(η)|p−1

(2r)sp + a+2r
|ū(ξ)−ū(η)|q−1

(2r)tq

≤ (2r)
sp

‖η−1 ◦ ξ‖spHn
+

(2r)
tq

‖η−1 ◦ ξ‖tqHn

,

and further

F (ξ, η) ≤
c‖η−1 ◦ ξ‖q−sp

Hn

(2r)
q−sp +

‖η−1 ◦ ξ‖q(1−t)
Hn

(2r)
q(1−t)

− h (ξ, η, ū (ξ)− ū (η))φq (η)

cKh2r (ξ, η, ū (η))
.

Now we obtain an estimate on log ū(ξ)
ū(η) under (4.3). Notice ū(ξ) ≤ 2(ū(ξ)− ū(η)).

we get

log
ū(ξ)

ū(η)

≤
c
(
(ū(ξ)− ū(η))/‖η−1 ◦ ξ‖sHn

)p−1

(ū(η)/(2r)s)p−1

‖η−1 ◦ ξ‖s(p−1)
Hn

(2r)s(p−1)

≤ c
‖η−1 ◦ ξ‖s(p−1)

Hn

(2r)s(p−1)


(

ū(ξ)−ū(η)
‖η−1◦ξ‖s

Hn

)p−1
+ a(ξ, η)

(
ū(ξ)−ū(η)
‖η−1◦ξ‖s

Hn

)q−1
‖η−1 ◦ ξ‖−(t−s)q

Hn(
ū(η)
(2r)s

)p−1
+ a(ξ, η)

(
ū(η)
(2r)s

)q−1
‖η−1 ◦ ξ‖−(t−s)q

Hn

+ 1


≤ ch (ξ, η, ū (ξ)− ū (η))

h2r (ξ, η, ū (η))
+

c‖η−1 ◦ ξ‖s(p−1)
Hn

(2r)s(p−1)
,

where the fact ‖η−1 ◦ ξ‖Hn ≤ 4r was utilized. Noting q ≥ p and ‖η−1 ◦ ξ‖Hn ≤ 4r
again,

F (ξ, η) ≤ −φq (ξ)

cK
log

ū (ξ)

ū (η)
+

c‖η−1 ◦ ξ‖p(1−s)
Hn

(2r)p(1−s)
+

c‖η−1 ◦ ξ‖q(1−t)
Hn

(2r)q(1−t)
+

c‖η−1 ◦ ξ‖s(p−1)
Hn

(2r)s(p−1)
.
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At this moment, for ū (ξ) ≥ ū (η), the integral I 1 is evaluated as

I1 ≤ − 1

cK

∫
B2r

∫
B2r

min {φq(ξ), φq(η)}
∣∣∣∣log ū(ξ)ū(η)

∣∣∣∣ dξdη

‖η−1 ◦ ξ‖QHn

+ c

∫
B2r

∫
B2r

[
‖η−1 ◦ ξ‖p−sp

Hn

rp(1−s)

+
‖η−1 ◦ ξ‖q(1−t)

Hn

rq(1−t)
+

‖η−1 ◦ ξ‖s(p−1)
Hn

rs(p−1)
+

‖η−1 ◦ ξ‖sHn

rs

]
dξdη

‖η−1 ◦ ξ‖QHn

≤ − 1

cK

∫
B2r

∫
B2r

∣∣∣∣log ū(ξ)ū(η)

∣∣∣∣ dξdη

‖η−1 ◦ ξ‖QHn

+ crQ, (4.8)

where

∫
B2r

∫
B2r

‖η−1 ◦ ξ‖lHn

rl
dξdη

‖η−1 ◦ ξ‖QHn

≤
∫
B2r

∫
B4r(η)

‖η−1 ◦ ξ‖lHn

rl
dξdη

‖η−1 ◦ ξ‖QHn

≤ c

rl

∫
B2r

∫ 4r

0

ρl−1 dρdη ≤ crQ.

Furthermore, if ū (ξ) < ū (η), the same estimate still holds true through exchanging
the roles of ξ and η.

For the second contribution I 2 in (4.1), we first observe that if η ∈ BR,
then (u (ξ)− u (η))+ ≤ u (ξ) + d by u (η) ≥ 0, and that if η ∈ Hn\BR, then
(u (ξ)− u (η))+ ≤ u (ξ) + u− (η) ≤ ū (ξ) + u− (η). From this and suppφ ⊂ B 3r

2
, we

can evaluate I 2 as

I2 ≤ 2

∫
BR\B2r

∫
B3r

2

[
(u (ξ)− u (η))

p−1
+

‖η−1 ◦ ξ‖Q+sp
Hn

+ a (ξ, η)
(u (ξ)− u (η))

q−1
+

‖η−1 ◦ ξ‖Q+tq
Hn

]
dξdη

g2r (ū (ξ))

+ 2

∫
Hn\BR

∫
B3r

2

[
(u (ξ)− u (η))

p−1
+

‖η−1 ◦ ξ‖Q+sp
Hn

+ a (ξ, η)
(u (ξ)− u (η))

q−1
+

‖η−1 ◦ ξ‖Q+tq
Hn

]
dξdη

g2r (ū (ξ))

≤
∫
Hn\B2r

∫
B3r

2

ch (ξ, η, ū (ξ))

g2r (ū (ξ)) ‖η−1 ◦ ξ‖QHn

dξdη +

∫
Hn\BR

∫
B3r

2

ch (ξ, η, u (η))

g2r (ū (ξ)) ‖η−1 ◦ ξ‖QHn

dξdη

=: I21 + I22. (4.9)
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We now intend to control precisely the term h(ξ,η,ū(ξ))
g2r(ū(ξ))

by some constants. In

view of the condition (1.6), there holds that, for ξ ∈ B2r and η ∈ Hn,

a (ξ, η) ≤ a (ξ, η)− a (ξ, ξ) + a+2r

≤ (2‖a‖L∞)
1− tq−sp

α |a (ξ, η)− a (ξ, ξ)|
tq−sp

α + a+2r

≤ c‖η−1 ◦ ξ‖tq−sp
Hn + a+2r. (4.10)

This indicates

I21 ≤ c

∫
Hn\B2r

∫
B3r

2

ūp−1(ξ)+ūq−1(ξ)

‖η−1◦ξ‖spHn
+ a+2r

ūq−1(ξ)

‖η−1◦ξ‖tqHn

ūp−1(ξ)

‖η−1◦ξ‖spHn

‖η−1◦ξ‖spHn

(2r)sp
+ a+2r

ūq−1(ξ)

‖η−1◦ξ‖tqHn

‖η−1◦ξ‖tqHn

(2r)tq

dξdη

‖η−1 ◦ ξ‖QHn

≤ cK

∫
Hn\B2r

∫
B3r

2

(r/2)sp

‖η−1 ◦ ξ‖Q+sp
Hn

dξdη,

by virtue of ‖η−1 ◦ ξ‖Hn > r
2 . For ξ ∈ B3r

2
and η ∈ Hn\B2r, via the triangle

inequality,

‖η−1 ◦ ξ0‖Hn ≤
(
1 +

‖ξ−1 ◦ ξ0‖Hn

‖η−1 ◦ ξ‖Hn

)
‖η−1 ◦ ξ‖Hn

≤
(
1 +

3r/2

r/2

)
‖η−1 ◦ ξ‖Hn = 4‖η−1 ◦ ξ‖Hn , (4.11)

Thus by [31, Lemma 2.6],

I21 ≤ cK
∣∣∣B3r

2

∣∣∣ ∫
Hn\B2r

rsp

‖η−1 ◦ ξ0‖Q+sp
Hn

dη ≤ cKrQ. (4.12)

Let us proceed to examine I 22. With the aid of (4.10), (4.11) and u(ξ) ≥ 0 in B3r
2
,

I22 ≤ c

∫
Hn\BR

∫
B3r

2

(
up−1
− (η) + uq−1

− (η)

‖η−1 ◦ ξ‖Q+sp
Hn

+ a+2r
uq−1
− (η)

‖η−1 ◦ ξ‖Q+tq
Hn

)
g−1(d) dξdη

≤ crQg−1(d)

∫
Hn\BR

(
up−1
− (η) + uq−1

− (η)

‖η−1 ◦ ξ0‖Q+sp
Hn

+ a+2r
uq−1
− (η)

‖η−1 ◦ ξ0‖Q+tq
Hn

)
dη

≤ crQ+spd1−p

∫
Hn\BR

up−1
− (η) + uq−1

− (η)

‖η−1 ◦ ξ0‖Q+sp
Hn

dη

+ crQ+tqd1−q

∫
Hn\BR

uq−1
− (η)

‖η−1 ◦ ξ0‖Q+tq
Hn

dη, (4.13)

where we notice η ∈ Hn\BR ⊂ Hn\B2r.
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Merging (4.8), (4.9), (4.12), (4.13) with (4.1) arrives eventually at the desired
estimate with the positive constant c depending upon n, p, q, s, t, α, [a]α and ‖a‖L∞ .
�

Corollary 4.2. Let the assumptions of lemma 4.1 be in force. Define

w := min
{
(log (τ + d)− log (u+ d))+, log b

}
with τ, d > 0 and b> 1. Then for the weak solution u of (1.1) it holds that

−
∫
Br

|w − (w)r| dη

≤ cK2

(
1 +

rsp

dp−1

∫
Hn\BR

up−1
− (η) + uq−1

− (η)

‖η−1 ◦ ξ0‖Q+sp
Hn

dη +
rtq

dq−1

∫
Hn\BR

uq−1
− (η)

‖η−1 ◦ ξ0‖Q+tq
Hn

dη

)
,

where c> 1 depends on data, and K is defined as in lemma 4.1.

Proof. Notice that, since w is a truncation of log(u+ d),

−
∫
Br

|w − (w)r| dη ≤ −
∫
Br

∣∣∣∣−∫
Br

(w(η)− w(ξ)) dξ

∣∣∣∣ dη
≤ −
∫
Br

−
∫
Br

|w(ξ)− w(η)| dξdη

≤ −
∫
Br

−
∫
Br

|log (u (ξ) + d)− log (u (η) + d)|
‖η−1 ◦ ξ‖QHn/(2r)

Q
dξdη

≤ −
∫
Br

∫
Br

∣∣∣∣log u (ξ) + d

u (η) + d

∣∣∣∣ dξdη

‖η−1 ◦ ξ‖QHn

.

Then the desired result is a plain consequence of lemma 4.1. �

In the end, we will focus on establishing Hölder regularity of weak solutions. For
this aim, it is sufficient to show an oscillation improvement result, theorem 4.3.
Before proceeding, let us introduce some notations. For j ∈ N ∪ {0}, set

rj := σjr, σ ∈ (0, 1/4], Bj := Brj
(ξ0) and 2Bj := B2rj

,

where we fix any ball B2r(ξ0) ⊂ Ω′ ⊂⊂ Ω. Furthermore, define

ω(r0) := 2 sup
Br

|u|+

(
rsp
∫
Hn\Br

|u|p−1 + |u|q−1

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

dξ

) 1
p−1

+

(
rtq
∫
Hn\Br

|u|q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

) 1
q−1

,

and

ω(rj) :=

(
rj
r0

)β

ω(r0) = σjβω(r) for some 0 < β <
sp

q − 1
.
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Let us point out that σ and β are to be determined later.
Now we are in a position to prove the following iteration lemma, which suggests

u ∈ C0,β(Br).

Theorem 4.3 Let u ∈ A(Ω) ∩ Lq−1
sp (Hn) be a weak solution to (1.1). Under the

conditions (1.4), (1.5) and (1.6) with tq ≤ sp+ α, there holds that

osc
Bj

u ≤ ω(rj) for any j ∈ N ∪ {0},

where these notations are fixed as above.

Proof. Argue by induction. The conclusion is obvious for j =0 and then assume it
holds true for i ≤ j. Now we show this claim for j +1. Let us notice the simple fact
that either ∣∣∣∣∣2Bj+1 ∩

{
u ≥ inf

Bj
u+ ω(rj)/2

}∣∣∣∣∣ ≥ 1

2
|2Bj+1|, (4.14)

or ∣∣∣∣∣2Bj+1 ∩

{
u < inf

Bj
u+ ω(rj)/2

}∣∣∣∣∣ ≥ 1

2
|2Bj+1|. (4.15)

Define

uj =


u− infBj

u, if (4.14) occurs,

supBj
u− u, if (4.15) occurs.

Obviously, uj ≥ 0 in Bj and

|2Bj+1 ∩ {uj ≥ ω(rj)/2}| ≥
1

2
|2Bj+1|. (4.16)

Moreover, uj is a weak solution to (1.1) such that

sup
Bi

|uj | ≤ ω(ri) for any i ∈ {0, 1, 2, · · · , j}. (4.17)

Now we set an auxiliary function

w := min

{[
log

(
ω(rj)/2 + d

uj + d

)]
+

, k

}
with k > 0.

Applying corollary 4.2 derives

−
∫
2Bj+1

|w − (w)2Bj+1
| dξ

≤ CK2

(
1 + d1−prspj+1

∫
Hn\Bj

|uj |p−1 + |uj |q−1

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

dξ + d1−qrtqj+1

∫
Hn\Bj

|uj |q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

)
,

(4.18)
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with K defined as in lemma 4.1. We evaluate the second integral at the right-hand
side. By means of (4.17) and the definition of ω(r0),

rtqj+1

∫
Hn\Bj

|uj |q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

= rtqj

j∑
i=1

∫
Bi−1\Bi

|uj |q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ + rtqj

∫
Hn\B0

|uj |q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

≤
j∑

i=1

ω(ri−1)
q−1

(
rj
ri

)tq

+ Crtqj

∫
Hn\B0

|u|q−1 + (supB0
|u|)q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

≤ C

j∑
i=1

(
rj
ri

)tq

ω(ri−1)
q−1

≤ C
4tq−β(q−1)

(tq − β(q − 1)) log 4
σ−β(q−1)ω(rj)

q−1, (4.19)

where we used the fact that β < sp
q−1

(
≤ tq

q−1

)
. Analogously,

rspj

∫
Hn\Bj

|uj |p−1 + |uj |q−1

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

dξ ≤ C(1 + ‖u‖q−p

L∞(Ω′))

j∑
i=1

(
rj
ri

)sp

ω(ri−1)
p−1

≤ CNσ−β(p−1)ω(rj)
p−1, (4.20)

with β < sp
q−1

(
≤ sp

p−1

)
, where N := 1+‖u‖q−p

L∞(Ω′) and the derivation of ‖u‖q−p

L∞(Ω′)
is from the term |uj |q−1, and C > 0 depends on n, p, s and the difference of sp

p−1

and β. Combining (4.19), (4.20) with (4.18) and remembering
rj+1
rj

= σ, we get

−
∫
2Bj+1

|w − (w)2Bj+1
| dξ

≤ CK2
(
1 +Nd1−pσsp−β(p−1)ω(rj)

p−1 + d1−qσtq−β(q−1)ω(rj)
q−1
)
,

where C depends on n, p, q, s, t and the difference of β and tq
q−1 , and

sp
p−1 .

In what follows, picking

d := σ
sp
q−1−β

ω(rj),

and recalling ω(rj) = σjβω(r0), we find

−
∫
2Bj+1

|w − (w)2Bj+1
| dξ

≤ CK2

[
1 +Nσ

(
sp

q−1−β
)
(1−p)+

(
sp

p−1−β
)
(p−1)

+ σ

(
sp

q−1−β
)
(1−q)+

(
tq

q−1−β
)
(q−1)

]
≤ CN3,

where C depends on n, p, q, s, t, α, [a]α, ‖a‖L∞ and the difference of β and tq
q−1 , and

sp
p−1 . Here we need to utilize the definition of K as in lemma 4.1, and ω(rj) ≤
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2‖u‖L∞(Ω′). From the last inequality,

|2Bj+1 ∩ {w = k}|
|2Bj+1|

≤ CN3

k
.

We refer to [14, page 1296] for the details. By taking

k = log

(
ω(rj)/2 + εω(rj)

3εω(rj)

)
= log

(
1/2 + ε

3ε

)
≈ log

1

ε
,

with ε := σ
sp
q−1−β

, it holds that

|2Bj+1 ∩ {uj ≤ 2εω(rj)}|
|2Bj+1|

≤ CN3

k
≤ ClogN

3

log 1
σ

(4.21)

for the constant Clog > 0 depending on n, p, q, s, t, α, [a]α, ‖a‖L∞ and β.
At this moment, we are going to perform a suitable iteration. For each i =

0, 1, · · · , let

ρi = rj+1 + 2−irj+1, ρ̂i =
ρi + 3ρi+1

4
, ρ̃i =

3ρi + ρi+1

4
,

and the corresponding balls

Bi = Bρi
, B̂i = Bρ̂i

, B̃i = Bρ̃i
.

Then take the cut-off functions ψi ∈ C∞
0 (B̃i) such that

0 ≤ ψi ≤ 1, ψi ≡ 1in B̂i and |∇Hψi| ≤ 2i+2r−1
j+1.

Besides, set

ki = (1 + 2−i)εω(rj), wi = (ki − uj)+,

and

Ai =
|Bi ∩ {uj ≤ ki}|

|Bi|
=

|Bi ∩ {wj ≥ 0}|
|Bi|

.

Observe the apparent facts that

rj+1 ≤ ρi+1 < ρ̂i < ρ̃i < ρi ≤ 2rj+1, 0 ≤ wi ≤ ki ≤ 2εω(rj),

and denote

a+
j+1 := sup

B2rj+1
×B2rj+1

a(·, ·), a−
j+1 := inf

B2rj+1
×B2rj+1

a(·, ·), G(τ) :=
τp

rspj+1

+ a+
j+1

τ q

rtqj+1

.
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With the help of Caccioppoli inequality (lemma 3.3), we derive

−
∫
B̂i

∫
B̂i

H(ξ, η, |wi(ξ)− wi(η)|)
‖η−1 ◦ ξ‖QHn

dξdη

≤ C −
∫
Bi

∫
Bi

H(ξ, η, (wi(ξ) + wi(η))|ψi(ξ)− ψi(η)|)
‖η−1 ◦ ξ‖QHn

dξdη

+ C −
∫
Bi
wiψ

q
i dξ

(
sup
η∈B̃i

∫
Hn\Bi

h(ξ, η, wi(ξ))

‖η−1 ◦ ξ‖QHn

dξ

)
=: J1 + J2. (4.22)

Via the definition of wi and ψi, J 1 is evaluated as

J1 ≤ C
2ipkpi
rpj+1

∫
Bi∩{uj≤ki}

−
∫
Bi

‖η−1 ◦ ξ‖−Q+(1−s)p
Hn dξdη

+ Ca+j+1

2iqkqi
rqj+1

∫
Bi∩{uj≤ki}

−
∫
Bi

‖η−1 ◦ ξ‖−Q+(1−t)q
Hn dξdη

≤ C2iqG(ki)Ai, (4.23)

and moreover, we have

−
∫
Bi
wiψ

q
i dξ ≤ CkiAi.

As for the nonlocal integral in J 2, we first note that if η ∈ B̃i and ξ ∈ Hn \ Bi,
then

‖ξ−1
0 ◦ ξ‖Hn ≤

(
1 +

‖ξ−1
0 ◦ η‖Hn

‖η−1 ◦ ξ‖Hn

)
‖η−1 ◦ ξ‖Hn ≤ 2i+4‖η−1 ◦ ξ‖Hn .

Furthermore, wi ≤ ki ≤ 2εω(rj) in Bj (by uj ≥ 0 in Bj), and wi ≤ ki + |u| in
Hn \Bj . In a similar way to treat I 2 in the proof of lemma 4.1, by applying (4.19),
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(4.20), the definition of ε and Bj+1 ⊂ Bi we derive

sup
η∈B̃i

∫
Hn\Bi

h(ξ, η, wi(ξ))

‖η−1 ◦ ξ‖QHn

dξ

≤ sup
η∈B̃i

∫
Hn\Bi

wp−1
i + wq−1

i

‖η−1 ◦ ξ‖Q+sp
Hn

+ a+j+1

wq−1
i

‖η−1 ◦ ξ‖Q+tq
Hn

dξ

≤ C2i(Q+sp+tq)

∫
Hn\Bj+1

wp−1
i + wq−1

i

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

+ a+j+1

wq−1
i

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

≤ C2i(Q+sp+tq)

∫
Hn\Bj

|uj |p−1 + |uj |q−1

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

+ a+j+1

|uj |q−1

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

+ C2i(Q+sp+tq)

∫
Hn\Bj+1

kp−1
i + kq−1

i

‖ξ−1
0 ◦ ξ‖Q+sp

Hn

+ a+j+1

kq−1
i

‖ξ−1
0 ◦ ξ‖Q+tq

Hn

dξ

≤ C2i(Q+sp+tq)

(
Nω(rj)

p−1

rspj σ
β(p−1)

+ a+j+1

ω(rj)
q−1

rtqj σ
β(q−1)

+
kp−1
i + kq−1

i

rspj+1

+ a+j+1

kq−1
i

rtqj+1

)

≤ C2i(Q+sp+tq)

(
Nkp−1

i

εp−1rspj σ
β(p−1)

+ a+j+1

kq−1
i

εq−1rtqj σ
β(q−1)

+
Nkp−1

i

rspj+1

+ a+j+1

kq−1
i

rtqj+1

)

≤ CN2i(Q+sp+tq)

σsp− sp(p−1)
q−1 kp−1

i

rspj+1

+ a+j+1

σtq−spkq−1
i

rtqj+1

+
G(ki)

ki


≤ CN2i(Q+sp+tq)G(ki)

ki
.

Therefore,

J2 ≤ CN2i(Q+sp+tq)G(ki)Ai. (4.24)

On the other hand, making use of lemma 2.8 with u := wi yields that

A
1
γ
i+1G(ki − ki+1)

≤

(
−
∫
Bi+1

(∣∣∣∣∣ wi

rsj+1

∣∣∣∣∣
p

+ a+j+1

∣∣∣∣∣ wi

rtj+1

∣∣∣∣∣
q)γ

dξ

) 1
γ

≤ CN

(
D1(ρ̂i, ρi+1)

rspj+1

+
D̃1(ρ̂i, ρi+1)

rtqj+1

)
−
∫
B̂i

∫
B̂i

H(ξ, η, |wi(ξ)− wi(η)|)
‖η−1 ◦ ξ‖QHn

dξdη

+ CN −
∫
B̂i

∣∣∣∣∣ wi

rsj+1

∣∣∣∣∣
p

+ a−j+1

∣∣∣∣∣ wi

rtj+1

∣∣∣∣∣
q

dξ. (4.25)
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Thanks to the definitions of D1, D̃1 and ρ̂i, ρi+1, we from ρ̂i ≈ ρi+1 ≈ rj+1 and
ρ̂i − ρi+1 = 2−i−3rj+1 calculate

D1(ρ̂i, ρi+1)

rspj+1

≤ C2i(Q+sp+p),
D̃1(ρ̂i, ρi+1)

rtqj+1

≤ C2i(Q+tq+q).

It is easy to obtain

−
∫
B̂i

∣∣∣∣∣ wi

rsj+1

∣∣∣∣∣
p

+ a−j+1

∣∣∣∣∣ wi

rtj+1

∣∣∣∣∣
q

dξ ≤ C −
∫
Bi
G(wi) dξ ≤ CG(ki)Ai. (4.26)

It follows from (4.22)–(4.26) that

A
1
γ
i+1G(2

−i−1εω(rj)) = A
1
γ
i+1G(ki − ki+1)

≤ CN22i2(Q+2q)G(ki)Ai

≤ CN22i2(Q+2q)G(εω(rj))Ai,

and further

Ai+1 ≤ CN2γ2i2(Q+3q)γAγ
i ,

where γ = min
{

p∗s
p ,

q∗t
q

}
> 1 and C depends on data and β.

Now if A0 fulfils

A0 =
|2Bj+1 ∩ {uj ≤ 2εω(rj)}|

|2Bj+1|
≤ (CN2γ)

− 1
γ−1 2

−2γ(Q+3q)

(γ−1)2 =: µ, (4.27)

then by lemma 3.4 we deduce Ai → 0 as i→ ∞. This means

uj ≥ εω(rj) a.e. in Bj+1,

which together with (4.17) leads to

osc
Bj+1

u ≤ (1− ε)ω(rj) = (1− ε)σ−βω(rj+1).

Finally, choosing β ∈
(
0, sp

q−1

)
small enough such that

σβ ≥ 1− ε = 1− σ
sp
q−1−β

,

then oscBj+1
u ≤ ω(rj+1), and β depends on data and ‖u‖L∞(Ω′). Indeed, due to

(4.21), it yields that

A0 ≤ ClogN
3

log 1
σ

≤ µ,

by picking σ ≤ exp

(
−

ClogN
3

µ

)
. Then, we select σ = min

{
1
4 , exp

(
−

ClogN
3

µ

)}
to

ensure the condition (4.27) does hold true. Now we finish the proof. �
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