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SUMMARY

West Nile virus (WNV) is a growing public health concern in Europe and there is a need to
develop more efficient early detection systems. Nervous signs in horses are considered to be an
early indicator of WNV and, using them in a syndromic surveillance system, might be relevant.
In our study, we assessed whether or not data collected by the passive French surveillance system
for the surveillance of equine diseases can be used routinely for the detection of WNV. We tested
several pre-processing methods and detection algorithms based on regression. We evaluated
system performances using simulated and authentic data and compared them to those of the
surveillance system currently in place. Our results show that the current detection algorithm
provided similar performances to those tested using simulated and real data. However, regression
models can be easily and better adapted to surveillance objectives. The detection performances
obtained were compatible with the early detection of WNV outbreaks in France (i.e. sensitivity
98%, specificity >94%, timeliness 2·5 weeks and around four false alarms per year) but further
work is needed to determine the most suitable alarm threshold for WNV surveillance in France
using cost-efficiency analysis.
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INTRODUCTION

West Nile virus (WNV) is a mosquito-borne arbovirus
belonging to the genus Flavivirus (family Flaviviri-
dae). Main reservoir hosts are birds but the virus
also infects various species including horses and
humans, with marked consequences for public health

and for the equine industry due to potentially fatal
encephalitis [1, 2]. Since the discovery of WNV in
1937 in Uganda [3], the geographical distribution of
the virus has expanded widely [1, 4]. In Europe,
WNV was first recognized in 1962 in France.
Several outbreaks have since been documented in
many European countries [5], and increasingly so in
southern and eastern Europe (e.g. Italy, Greece,
Bulgaria, Croatia, Serbia, Albania) [6], resulting in
the virus now being considered endemic in large
parts of Europe.
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The recent introduction of Lineage 2 in Europe [7–
9] resulted in more severe clinical cases in humans [10]
and contributed to WNV becoming a growing public
health concern in Europe in general, and in France in
particular. French outbreaks occurred between 2000
and 2006 when a total of 114 confirmed equine cases
and four confirmed human cases were reported [11–
14]. In summer 2015, new WNV-confirmed cases
were reported in southern France in 49 horses and
one human [15]. In most countries, including
France, the surveillance of WNV is mainly passive
(i.e. examination of clinically affected cases of spe-
cified diseases only in the population). However, the
performance of passive surveillance systems suffers
from frequent under-reporting especially for the sur-
veillance of exotic diseases which have a low probabil-
ity of occurrence [16]. This may result in a failure to
identify the disease and thus, the main challenge in
improving early detection of WNV outbreaks is the
development of more efficient early detection systems
for limiting the consequences of a WNV outbreak in
both equine and human populations.

Syndromic surveillance is defined as the (near) real-
time collection, analysis, interpretation and dissemin-
ation of non-specific health-related data to enable the
early identification of potential threats like a disease
[17]. Nervous syndromes in horses are considered to
be an early indicator of WNV outbreaks [18, 19]
and, using them in a syndromic surveillance system,
might be one of the most cost-effective surveillance
systems in the European context [20]. In France, the
passive French surveillance system RESPE [Réseau
d’Epidémio-Surveillance en Pathologie Equine; the
French network for the surveillance of equine diseases
(http://www.respe.net/)], collects declarations from
veterinary practitioners registered as sentinels
throughout France. Data on nervous signs observed
in French horses have been collected since 2006.
More than 550 sentinel veterinarians are involved,
providing coverage of 92 out of 96 French regions.
The veterinarians complete a standardized question-
naire online and send standardized samples for
laboratory diagnosis. Diagnostic tests for WNV,
equine herpes virus serotype 1 (EHV-1), and other
types of herpes viruses (EHV-sp) [21] are systematic-
ally implemented for each declaration of nervous
signs. Using routinely collected RESPE data in an
early detection surveillance system could lead to the
timelier implementation of protective measures before
laboratory test results. Currently, the collected
RESPE data on nervous signs are mainly used to

produce alerts when cases with positive laboratory
diagnoses are identified. The data are also used for
basic syndromic surveillance: an alarm is triggered
when four declarations are reported in the same week,
or threedeclarations reportedeachweek for twoconsecu-
tive weeks. This alarm threshold was set arbitrarily and
alarms may result in the initiation of epidemiological
investigations depending on the context of the declara-
tions. However, the reliability of this threshold has
neverbeenassessedand theabilityof theRESPEnervous
syndrome database to serve as a routine syndromic sur-
veillance system is currently unknown.

Our objective in this study was to assess whether or
not RESPE data can be used as a routine syndromic
surveillance system for the detection of WNV out-
breaks in France testing several pre-processing meth-
ods and detection algorithms to model time-series
data. We evaluated system performances using simu-
lated and authentic data and compared them to
those of the surveillance system currently in place.

METHODS

Data characterization

In the RESPE database, nervous signs in horses are
defined as any signs of impairment of the central ner-
vous system, i.e. ataxia, paresis, paralysis and/or recum-
bency, and/or behavioural disorder. Cases, or an
unusual cluster of cases, with ‘atypical’ expression
(colic, lameness, excitement, falling, muscular atrophy)
can also be considered after the most common aetiolo-
gies for these signs have been excluded. These signs
can indeed be the clinical manifestation of a central ner-
vous systemdisease.Nervous disorderswith evidence of
traumatic or congenital origins are excluded.

Data on nervous signs in horses were available from
RESPE for every calendar day from 1 January 2006 to
16 October 2015, totalling 653 declarations. However,
in the remainder of the study, the time series was
aggregated into weekly counts due to the low per-day
count. Monthly aggregation was not considered, as
the main objective of this surveillance system was
early detection.

Tests for WNV and EHV are routinely carried out
on horses that present nervous signs, and the database
contains positive laboratory results mainly for EHV-1
but also some WNV cases. The EHV-1-positive cases
were either isolated cases, i.e. not associated with
other positive cases, or from a cluster of cases that
could represent a true outbreak.
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Models

We split the data into three sets:

. Set 1. Data from 2006 to 2010 were used to train
our models.

. Set 2. Data from 2011 to 2013 were used to validate
our models, simulate nervous signs time series and
evaluate detection performances using simulated
time series and outbreaks.

. Set 3. Finally, raw data from 2014 and 2015 were
used to evaluate detection performances using real
data as if a syndromic surveillance system was
implemented on the field based on models estimated
using sets 1 and 2. WNV outbreak occurring in
France in autumn 2015 [15] was used to test our sys-
tem with a real outbreak.

Data cleaning (set 1)

The raw time series from 2006 to 2010 was designated
TS0. We investigated three methods for the removal
of aberrations present in TS0 in order to obtain an
outbreak-free baseline. In the first method, we
retained only the 452 cases with no positive labora-
tory results (TS1). The second method consisted of
removing all data linked to historical EHV-1 out-
breaks, based on information from the RESPE web-
site (TS2). This method did not remove single
positive cases but only the positive cases associated
with a cluster of other positive cases. In our third
method, extreme values from TS0 were removed
using the approach of Tsui and colleagues [22],
which assumes that, after the data have been fitted
to a regression model, data points above the 95%
confidence interval of the model prediction represent
an outbreak (TS3). The authors used Serfling’s regres-
sion model [23], which is a linear regression model
that uses sine and cosine terms to account for seasonal
variation. With our own data, we followed the pro-
posal of Dórea and colleagues [24] and used a
Poisson regression, which they considered an appro-
priate method to capture baseline activity while min-
imizing the influence of aberrations present in the
dataset. The data were thus first fitted to a Poisson
distribution (see model in the Supplementary mater-
ial) and then values above the 95% confidence interval
were removed. In TS1, TS2, and TS3, the values of
the weeks considered to be part of an outbreak were
not just removed but instead replaced by the average
of the four previous weeks. The four time series are
shown in Figure 1.

The explainable patterns (such as global linear trends
and seasonality) were investigated in each time series
(TS0, TS1, TS2, TS3) in order to assess the impact of
pre-processing methods on the dataset. We generated
summary statistics by month and year, and performed
moving average and autocorrelogram analysis [25].

Model training (set 1) and validation (set 2)

Modelling was attempted using generalized linear
regression models (GLMs) that were appropriate for
count data [Poisson and negative binomial (NB)
regressions] and Holt–Winters generalized exponential
smoothing (HW). For GLMs the evaluated models
included different types of seasonality through the
use of sinusoid functions with one, two, or three per-
iods/year and season or month as factorial variables.
To account for differences between years, we also cal-
culated the average counts over 53 consecutive weeks
(histmean). To ensure that an ongoing outbreak would
not influence the estimate, we used a 10-week guard
band for the calculation of histmean. A list of tested
variables is available in the Supplementary material.

AlternativeGLMswere evaluatedon the trainingdata
from 2006 to 2010 using Akaike’s information criterion
(AIC) [26]. For theHWmethod, the optimal parameters
were determined through minimization of the squared
prediction error [27]. The best models were then evalu-
ated and compared using the autocorrelation and partial
autocorrelation functions of the residuals (ACF and
PACF, respectively) and the root-mean-squared error
(RMSE). ACF is the linear dependence of a variable on
itself at two points in time and PACF is the autocorrel-
ation between two points in time after removing any lin-
ear dependence between them [28]. ACF and PACF are
used to find repeating patterns (e.g. seasons) in a dataset.
RMSE is a measure of the difference between the values
predicted by a model and the values actually observed
from the environment that is being modelled [29]. This
criterion was calculated for the differences between the
observations and the predicted values within both the
calibration period (RMSEc) from 2006 to 2010 and the
validation period (RMSEv) from 2011 to 2013. In either
case, the lower the criterion, the better the predictive per-
formance of the model.

Outbreaks detection

Simulated baselines and outbreaks (set 2)

We simulated 500 sets over 3 years. The model previ-
ously fitted to the raw historical baseline TS0 was used

1046 C. Faverjon and others

https://doi.org/10.1017/S0950268816002946 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816002946


to predict value for each week of 2011, 2012 and 2013.
Then, for each of our simulated years, the weekly
number of nervous cases was randomly sampled
from a Poisson distribution with a mean defined by
the previous predicted value.

We simulated500WNVoutbreaksbasedonhistorical
datafromfivepreviousEuropeanoutbreaks:Frenchout-
breaks in 2000 [13], 2004 [18], 2006 [14], an Italian out-
break in 1998 [30], and a Hungarian outbreak in 2008
[31].TheFrenchoutbreak in2015waspreserved toevalu-
ate detection performances using real data (set 3).The
mean weekly count of nervous-symptom cases in horses
was calculated from the five historical outbreaks for an
outbreak period covering a total of 12 weeks, from the
first positive case detected to the last positive case
detected (see Fig. 2). The weekly number of WNV
cases of a simulated outbreak was randomly sampled
from a Poisson distribution with a mean defined by the
previous mean weekly count.

Simulated outbreaks were randomly inserted in
each set of 3 simulated years (see examples in
Fig. 3). A total of 1500 years containing a total of
500 outbreaks were evaluated.

Authentic baseline and outbreak (set 3)

Raw data from 2014 and 2015 were used for the
assessment of algorithm performances using authentic

baseline and WNV outbreak going from week 33 to 44
(Fig. 4). Data from 2006 to 2013 were used to predict
value for each week of 2014 and 2015. The three meth-
ods for the removal of aberrations previously tested
were also applied to 2011, 2012 and 2013 in order to
obtain complete outbreak-free baselines. These four
new baselines from 2006 to 2013 were named TS0′,
TS1′, TS2′ and TS3′ according to the method used
in the previous section for the removal (or not) of
aberrations.

Regarding WNV outbreak in autumn 2015 [15],
only cases collected by RESPE were considered.
Performances of our detection algorithm for this
specific outbreak were assessed using the best alarm
threshold previously identified with simulated data.

Detection algorithm

All eight combinations of pre-processing and forecast-
ing methods were evaluated on their ability to detect
disease outbreaks: GLMs applied to TS0, TS1, TS2,
and TS3; and HW applied to TS0, TS1, TS2, and
TS3. The outbreak detection method used was based
on a multiple of the upper limit of the confidence
interval of the prediction based on Serfling’s approach
[23]. The alarm threshold was thus defined as the pre-
dicted number of cases in a given week plus a multiple
of the standard error of the model prediction. If the

Fig. 1. Four time series used. TS0, raw data; TS1, only the cases with no positive laboratory results for WNV or EHV-1;
TS2, outbreaks removed based on historical data; TS3, extreme values above the 95% confidence interval deleted.
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actual observed value was above the threshold, an
alarm was triggered. A 6-week guard band was used
to ensure that detection algorithm was not disturbed
by the first weeks of outbreak signal.

The detection performances of the surveillance sys-
tem currently in place were also evaluated using as
detection algorithm the RESPE’s protocol: an alarm
is triggered when four declarations are reported in

Fig. 2. European West Nile virus outbreaks and nervous signs in horses. Number of confirmed cases per week between
the first detected case and the last detected case. Dashed grey line indicates outbreak in Italy, 1998 [30], dotted black line
indicates outbreak in France, 2004 [18], solid black line indicates outbreak in France, 2000 [13], dashed black line
indicates outbreak in France, 2006 [14], solid grey line indicates Hungarian outbreak, 2008 [31]

Fig. 3. Four examples of simulated data between 2011 and 2013 with one simulated outbreak inserted in each simulated
dataset. Outbreak time periods are identified by dotted lines.
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the same week, or when three declarations are
reported in each of two consecutive weeks.

Quantitative assessment

We first calculated sensitivity based on the number of
outbreaks detected out of all inserted outbreaks and
denoted this Se_out. An outbreak was detected when
it triggered at least one true alarm, defined as a
week that produced an alarm and that was a part of
an epidemic period. Se_out was calculated as:

Se out = Out/ Out+No Out( ), (1)
where Out is the number of outbreaks detected and
No_Out is the number of outbreaks not detected.

We also calculated Se_wk, the sensitivity based on
the number of weeks in an epidemic period in which
an alarm was triggered. Se_wk and specificity (Sp)
were calculated as:

Se wk = TP/ TP+ FN( ), (2)
Sp = TN/ TN+ FP( ), (3)
where TP is the number of true positive alarms, TN
the number of true negative alarms, FP the number
of false-positive alarms, and FN the number of false-
negative alarms.

A receiver-operating characteristic (ROC) curve
was generated in R by testing various alarm thresh-
olds, and the area under each curve (AUC) was also
calculated [32]. The time to the first true alarm within
an epidemic period was also evaluated in order to
assess the efficiency of early detection.

Implementation

Models were implemented in R x64 version 3.0·2 [33].
Dynamic regression was performed with the functions
glm (package ‘stats’), glm.nb (package ‘MASS’ [34]),
and stlf (package ‘forecast’ [35]). The expected num-
bers of counts at time t were estimated with the predict
functions of the respective packages. The expected
numbers of outbreak-related cases were estimated
with the fitdist function of the package ‘fitdistrplus’
[36]. AUCs were estimated with the auc function of
the package ‘flux’ [37].

RESULTS

Baseline characterization

At the week level, all baselines showed a significant
increasing number of declarations. However, this
trend was mainly due to the first years of data collec-
tion. A significant seasonal effect was also present in
all time series: the number of declarations appeared
highest in November, December, and January com-
pared to other months. However, this seasonality
was weak and principally apparent in the raw TS0
data, due to EHV-1 and EHV-sp outbreaks present
in the dataset during the winters (see Supplementary
material for details).

Assessment of models

The data from 2006 to 2010 for each time series were
fitted to their respective appropriate regression model,

Fig. 4. Raw data from 2014 to 2015 with West Nile virus outbreak identified with dotted lines.
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using variables that accounted for seasonal effects.
For the Poisson as well as the NB regression, the
best fit was obtained for all time series with the simple
model:

Number of cases � sin 2π∗week/53
( )

+ cos 2π∗week/53
( )+ log histmean( ). (4)

NB and Poisson regressions performed equally well
for all time series, with the exception of TS0 (raw
data), for which the NB model provided a better fit
(AIC 749 vs. 761).

The details of differences between the smoothing
performance of the best GLMs obtained and HW
are presented in the Supplementary material. In all
regression methods used, TS0 produced the worst
results, while TS1 generated the best-fitting para-
meters. TS2 and TS3 yielded intermediary results,
with better performances for TS3 than for TS2.

Outbreak detection

Simulated data

The results show that the AUCs of all methods and
time series are small when the sensitivity used is
based on the number of weeks within an epidemic per-
iod that produced an alarm (Se_wk) (see Table 1).
This is consistent with the fact that first and last
weeks within an epidemic period have very few cases
which are difficult to detect. Using Se_wk, the ROC
curves are similar between the different time series
but the GLM always outperformed the HW method
(see Fig. 5 and Table 1). By using instead the percent-
age of outbreaks detected (with at least one alarm)
among all the outbreaks inserted (Se_out), the
AUCs for all combinations of time series and methods
improved to 0·98. The AUCs are similar for each pre-
processing and forecasting method but the ROC,
activity monitoring operation curve (AMOC) and

free-response ROC curve (FROC) curves show differ-
ences (see Figs 6–8). The HW method outperformed
the GLM in terms of detection performance using
TS1 (i.e. better balance between sensitivity and specifi-
city, and better balance between percentage of out-
breaks detected and average number of false-positive
alarms per year), and the GLM outperformed the
HW method using TS0, TS2 and TS3 (i.e. better bal-
ance between sensitivity and specificity, and better
balance between timeliness and average number of
false-positive alarms per year).

With the HW approach, the optimal balance
between Se_out and specificity (Sp) was obtained
when the alarm threshold equaled the upper limit of
the confidence interval of the standard error of the
model prediction multiplied by a constant close to
1·7 (Fig. 9). This alarm threshold detected more
than 99% of the inserted outbreaks with an average
time-to-detection of <3 weeks, and it produced
between two and four false-positive alarms per year.
The associated specificity was >0·96. Alarm thresh-
olds based on constants higher than 1·7 had a lower
Se_out (around 80% of outbreaks detected) and
needed more time to produce the first true alarm (>3
weeks). With the GLM, the optimal balance between
Se_out and Sp was obtained when the alarm threshold
equalled the upper limit of the confidence interval of
the standard error of the model prediction multiplied
by a constant between 2 and 2·5 (see Fig. 9). Exact
value varies according to the time series considered
but, to detect at least 98% of the inserted outbreaks
with an average time-to-detection close to 3 weeks,
the associated specificity varied between 0·94 and
0·97 for a constant varying between 2·15 and 2·6
and a number of false-positive alarms between two
and four per year.

Median performances obtained using the current
RESPE alarm threshold were: Se_out equalled 99%,
Sp near 90%, an average timeliness of 2·14 weeks,

Table 1. Median value, 25th and 95th percentiles of the AUC (area under the receiver-operating characteristic
curve) estimated for each pre-processing and forecasting method using Se_wk or Se_out

AUC TS0 TS1 TS2 TS3

Se_out GLM 0·988 (0·987–0·988) 0·985 (0·983–0·986) 0·988 (0·987–0·988) 0·988 (0·987–0·988)
HW 0·986 (0·985–0·987) 0·987 (0·986–0·987) 0·985 (0·985–0·986) 0·987 (0·986–0·987)

Se_wk GLM 0·780 (0·768–0·787) 0·765 (0·759–0·772) 0·776 (0·770–0·782) 0·776 (0·770–0·783)
HW 0·750 (0·744–0·757) 0·755 (0·750–0·760) 0·747 (0·741–0·754) 0·753 (0·747–0·759)

Se_wk, sensitivity based on the detection of every week which is a part of an epidemic period, Se_out, sensitivity based on the
number of outbreaks detected out of all inserted outbreaks; GLM, generalized linear model; HW, Holt–Winters.
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and between four and five false-positive alarms per
year. These detection performances were consistent
with those obtained with our models (see Figs 5, 7
and 8) and even outperformed them regarding
Se_wk which reached 53% for an associated Sp of
90% when our regression models obtained a Se_wk
below 50%.

Authentic data

To test our systems on real data, we used as a constant
the value previously identified as providing optimal
balance between Se_out and Sp, i.e. 1·7 for HW,
and 2 for GLMs. Using these constants, all methods
tested were able to detect the WNV outbreak. All
time series using GLMs gave an alarm 4 weeks after
the 2015 WNV outbreak started (week no. 37), had
a specificity between 0·86 and 0·90 and produced
more than four false alarm per year. Using the HW
method, all time series gave an alarm 6 weeks after
the outbreak started except TS1′ which was able to
trigger the first alarm after 4 weeks. Their specificity

ranged from 0·93 to 0·95 and their number of false-
positive alarms was between two and three per year.
The weekly sensitivity, Se_wk, was low for all meth-
ods tested and ranged from 0·12, for HW associated
with TS0′ and TS2′, to 0·37 for TS1′ using HW and
GLMs.

The alarm threshold currently used by RESPE also
provided its first alarm on week 37 (i.e. 4 weeks after
the start of the WNV outbreak). Its weekly sensitivity
equalled 0·37 for a specificity of 0·95 and two false-
positive alarms raised per year.

DISCUSSION

Our study shows that the RESPE data on nervous
signs in horses could be used as an alarm system for
WNV outbreaks in France. Regression models (i.e.
GLMs or HW) and current RESPE alarm thresholds
were able to detect WNV outbreaks and they per-
formed similarly when we considered for regression
models an alarm threshold defined to obtain the best

Fig. 5. Receiver-operating characteristic (ROC) curves for each pre-processing and forecasting method representing
median Se_wk (sensitivity based on the number of weeks within an epidemic period detected), plotted against median
specificity, Sp. Error bars show the 25% and 75% percentile of the point value over 1500 simulated years and 500
simulated outbreaks. Blue point shows RESPE’s current performances. GLM, Generalized linear model; HW, Holt–
Winters.
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balance between sensitivity, specificity and timeliness.
The results obtained with simulated data indicated
that such surveillance systems could detect >98% of
WNV outbreaks with a specificity >94%, a timeliness
between 2 and 3 weeks and an average number of four
false alarms per year. According to our results, the
alarm threshold currently used by RESPE is thus
probably the best threshold that system managers
could have found using a fixed alarm value through-
out the year. These results are encouraging but this
timeliness corresponds to the time needed to obtain
a laboratory confirmation after clinical suspicion [15,
18]. Using such alarm thresholds would thus only be
of interest if WNV laboratory tests are not systematic-
ally implemented, which is currently not the case
within RESPE. A better timeliness could be reached
if the alarm threshold was modified. However, using
a fixed value throughout the year as an alarm thresh-
old does not take into account the seasonal variation
in the number of cases reported. Regression
approaches are able to deal with data seasonality
and trend and they are thus more flexible and

adaptable. Considering the specific situation of
RESPE, even if regression models are more complex
to implement than a fixed alarm threshold, they are
also more interesting when the surveillance priority
is not to reach the optimal balance between sensitivity,
specificity and timeliness (e.g. surveillance priority
could be to obtain better timeliness even if the number
of false alarms increases).

Our study reveals differences in the time series and
smoothing methods tested. As expected, the pre-
processing methods that were used to remove past out-
breaks present in the dataset modified the seasonality
of the time series. Indeed, outbreaks of EHV-1 that
were present in TS0 were mainly reported during win-
ter, which is consistent with reports of seasonal pat-
terns of disease outbreaks from a recent consensus
statement [38]. Removing these outbreaks from the
TS0 data decreased the impact of season on the base-
line and improved the smoothing performance of the
two forecasting methods tested using TS1, TS2 and
TS3. GLMs always provided better detection perfor-
mances than HW except when using TS1. The higher

Fig. 6. Receiver-operating characteristic (ROC) curves for each pre-processing and forecasting method representing
median Se_out (sensitivity based on the number of outbreaks detected out of all inserted outbreaks), plotted against
median specificity, Sp. Error bars show the 25% and 75% percentile of the point value over 1500 simulated years and 500
simulated outbreaks. HW, Holt–Winters; GLM, generalized linear model.
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specificity of TS1 compared to other time series might
be explained by the positive trend and the resulting
values of the variable ‘histmean’, which were smaller
in TS1 than in TS0, TS2 and TS3. These results high-
light the fact that pre-processing methods have an
impact on the choice of best detection algorithms.
However, TS0 obtained similar detection perfor-
mances to time series in which outbreaks had been
removed. It might be explained by the fact that data
from 2011 to 2013 used to simulate our 1500 baselines
were raw data that contained positive equine herpes-
virus cases. Such an approach may decrease the detec-
tion performances of our outbreak-free time series (i.e.
TS1, TS2, TS3) compared to raw data (TS0), but it
also provides an estimation of system performances
under more realistic circumstances. Our detection per-
formances must be thus interpreted as performances
for WNV outbreak detection and not as performances
for the detection of WNV and equine herpesvirus.
Finally, in our study, the removal of aberrations
from raw data was useful to improve our models but
not to improve WNV outbreaks detection perfor-
mances. To our knowledge, this is the first time that

the impact of past aberration removal is considered
in syndromic surveillance and further work should
be conducted to explore the impact and usefulness
of such work.

This is the first time that an assessment of system
performance has been implemented for WNV sur-
veillance using simulated data and real data. In pre-
vious studies, assessment of timeliness, sensitivity and
specificity of surveillance have occasionally been
evaluated but only based on a limited number of
real WNV outbreaks [8, 39–44] which did not
allow any conclusions to be drawn regarding overall
system performance as also highlighted by
Saegerman et al. [19]. We believe that our study
helps to fill this gap and we hope that it will promote
the development of such clinical surveillance system
which might be one of the most cost-efficient systems
for WNV early detection [19, 20]. Moreover, it is still
difficult to identify specific clinical signs for WNV
suspicion [45]. Promoting a surveillance system able
to deal with unspecific signs, like nervous signs,
would be thus especially relevant for WNV early
detection.

Fig. 7. Activity monitoring operation curves for each pre-processing and forecasting method representing median time for
outbreak detection, plotted against number of false-positive alarms per year. Error bars show the 25% and 75% percentile
of the point value over 1500 simulated years and 500 simulated outbreaks. Blue point indicates RESPE’s current
performance. HW, Holt–Winters; GLM, generalized linear model.
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In our study, results obtained with authentic data
were similar to those obtained with simulated data:
all algorithms tested were able to detect WNV out-
break in autumn 2015, the GLM always outper-
formed the HW method except for TS1, and
specificities using simulated and real data were close.
However, the number of false alarms per year esti-
mated with simulated data was higher than the num-
ber of false alarms observed with raw data from
2011 to 2013. This is consistent with the fact that
the simulated time series had more frequently high
counts than raw data. In further work, it would be
thus interesting to test and assess different methods
for simulating time series. In addition, median timeli-
ness and number of false alarms per year obtained
with simulated data were much better than perfor-
mances obtained with the authentic data. It might
be explained by the specific course of WNV French
outbreak in 2015 where the number of suspicions
reported during the first weeks was low compared to
previous WNV French outbreaks especially in 2000
[13, 18]. In addition, the number of cases declared to
RESPE was low compared to the total number of

real suspicions as, during this outbreak, the majority
of cases were declared to other institutions [15]. In
order to use RESPE data as an early detection system
for WNV, it would be necessary to reinforce aware-
ness of veterinary practitioners and horse-owners,
and to simplify the declaration process to encourage
declarations of suspect cases. Representativeness of
reported syndromes is a key point in syndromic sur-
veillance and we believe that our study will contribute
to strengthen awareness of French stakeholders
increasing RESPE representativeness for WNV
detection.

To conclude, data on nervous signs in horses col-
lected by RESPE can be used for the early detection
of WNV outbreaks in France. As such surveillance
system is based on unspecific clinical signs, it can be
an efficient way to complement the official French
notification system where each WNV suspect must
be reported. The RESPE network is not yet fully a
part of the French official diseases surveillance system
even if strong links already exist between RESPE and
the French ministry. Building a more integrated sys-
tem including human practitioners would be valuable

Fig. 8. Free-response ROC curves for each pre-processing and forecasting method representing the percentage of
outbreaks detected, plotted against the number of false-positive alarms per year. Error bars show the 25% and 75%
percentile of the point value over 1500 simulated years and 500 simulated outbreaks. Blue point indicates RESPE’s
current performance. HW, Holt–Winters; GLM, generalized linear model.

1054 C. Faverjon and others

https://doi.org/10.1017/S0950268816002946 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816002946


for both animal and human protection especially
because equines may be infected by WNV before
humans. In this study, we did not determine which
alarm threshold was the most efficient. Such a decision
would be made in real life by decision makers (e.g.
RESPE, official veterinary services, public health or
all together) and could be determined using cost-
efficiency analysis. However, the optimal alarm
threshold would also depend on the objectives of the
surveillance which could be to increase public aware-
ness for protecting human and animal health (e.g.
advice to protect against mosquitoes bites, promote
reporting of suspect cases), or to implement early pro-
tective measures like vector control or horse vaccin-
ation. Vaccination of horses is interesting regarding
protection of animals and it was proposed during
the French outbreak in 2015 in the Camargue area.
However, few horses were vaccinated at that time
because of the vaccine cost to the owner. The draw-
back of vaccination is to compromise the role of
equines as a sentinel for WNV. Similarly, horses living
in an area considered as endemic for WNV, like the
Camargue area, may also have a long-lasting

immunity and might not be efficient as sentinels for
the virus. Evaluating the seroprevalence of WNV in
equine populations would therefore be useful in deter-
mining which populations should receive extended
vaccination coverage, or which populations living in
an area considered as endemic, could still be used
for early warning using a syndromic surveillance sys-
tem based on clinical signs.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit https://doi.org/10.1017/S0950268816002946.
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