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Abstract

We give a transcendence measure of special values of functions satisfying certain functional
equations. This improves an earlier result of Galochkin, and gives a better upper bound of
the type for such a number as an 5-number in the classification of transcendental numbers by
Mahler.

1991 Mathematics subject classification (Amer. Math. Soc.) 11 J 82.

1. Introduction

Let K be an algebraic number field of finite degree. Let / (z ) be a function
which is transcendental over C(z) and holomorphic in some neighborhood
U of the origin, and satisfies the functional equation

(1.1) f{Tz) = A/(
Z'ff

{,Z\\ , Tz = z\r € N, r > 2),

where At{z, y) = an{z)y + ai2{z) € K[z, y](i — 1 ,2) . Suppose that the
coefficients of / (z ) in its Taylor series expansion at the origin all lie in the
field K.

Let a £ U be an algebraic number with 0 < \a\ < 1 satisfying

(1.2)
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for any A: (k = 0, 1, 2, . . . ) . This condition allows us that A2(T
ka, f(Tka))

# 0 for any k{k = 0, 1, 2, . . . ) •
In the notation as above, Mahler proved in [4] that the number / ( a ) is

transcendental. In [2], Galochkin considered a quantitative version of this
result and gave the following transcendence measure of f(a):

THEOREM (Galochkin [2]). In the notation as above, further, let P(x) e
Z[z] be any nonzero polynomial whose degree is at most d and whose height
is at most H. Put

b = x[l logL(a), c = log\a\~l andx0 = [K(a) : Q],

where x{ is the degree of a and L(a) is the length of a. Then we have

for all sufficiently large H.

Our main purpose is to sharpen this estimate. To state our results, we recall
usual notation and the definition of Mahler's S-numbers (cf. Schneider [6]).

For any algebraic number a with minimal denning polynomial Q(x) =
ao(x - a)(x -a')---(x- a{x~l)) e Z[x](a0 > 0 ) , we denote by den(a) the
denominator of a , that is, the least positive integer d such that da is an
algebraic integer, by |a| the house of a , that is, the maximum of the absolute
values of the roots of Q(x), and by M(a) the Mahler measure of a, that
is the number which is defined by

x-i
M{a) = a0 JjMax(l, |a(0|),a{0) =a.

For any polynomial P (in any number of variables) whose coefficients
are algebraic numbers, we denote by degx P the degree of P in the variable
x, by H(P) the height of P, that is, the maximum of the houses of the
coefficients of P, and by L{P) the length of P, that is, the sum of the houses
of the coefficients of P. For any algebraic number a with minimal defining
polynomial Q, we put dega = degQ, H{a) = H(Q) and L(a) = L(Q).

Now we recall the definition of Mahler's 5-numbers. Let a> be any com-
plex number. Then we define a function wd(co, h) by

wd(co, h) = Mm{\P((o)\; P(x) e Z[x], degP <d,

H{P) < h and P(a) # 0}.

Further, we define wd(co) and w(co) by

— \oe.wAa), h) wAco)
wAa>) = limsup r -

24 and w(co) - limsup ^
d h-+oo log/? d
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Then a number to is transcendental if and only if w(co) is positive. Then,
according to the classification of Mahler, a transcendental number co is called
an S-number if w(co) is finite (that is, wd(co)/d is bounded as a function of
d). For any S-number co, we define the type of co by the supremum of the
sequence {wd(co)/d}de^. In this terminology, Galochkin's theorem states

that the number f(a) is an 5-number of type at most (2r +1) bc~lXQ •
In the present paper, we shall prove the following theorems.

THEOREM 1. Let K be an algebraic number field of finite degree. Let
f(z) be a function which is transcendental over C(z) and holomorphic in
some neighborhood U of the origin, and satisfies the functional equation (I.I)
with atj{z) G K[z]. Suppose that the coefficients of f(z) in its Taylor series
expansion at the origin all lie in the field K. Let a e U be an algebraic
number with 0 < |a| < 1 such that (1.2) holds for any k(k = 0 , 1 , 2 , . . . ) .
Put

(1.3) b = X~l logM(a), c = loglaf1 and Xo = [K(a) : Q],

where X\ is the degree of a and M(a) is the Mahler measure of a. Then,
for any positive integer d, we have

(1.4) wd(f(a)) <{r(l

In particular, the number f(a) is an S-number of type at most

COROLLARY. In the above theorem, suppose K = Q and a = I/a (a €
Z, \a\ > 2). Then, for any positive integer d, we have

wd(f(a)) <{r(l + l/V?)2 + \}d - 1.

In particular, the number f(a) is an S-number of type at most r(l + l/y/r)2 +
1.

By specializing our situation, we can also give good lower bounds of the
values wd(f(a)) for small d. Namely,we can prove the following theorem.

THEOREM 2. Let Fr(z) be the function defined by

( r e Z , r > 2 ) ,
v=0

and a be an integer with \a\ > 2. Put

(r - 2)/2 ifr is even,

fr is odd.
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Then we have

(1.6) wd(Fr(l/a)) = r-lford=l,...,d0,

(1.7) r - I <wd(Fr(l/a)) < - ^ for d = do+ I, ... , r - I,

and

(1.8) wd(Fr(l/a)) <{r(l + l/V~rf + l}d - I for d > r.

In particular, the number Fr(l/a) is an S-number of type at least r—\ and
at most r{\ + l/y/rf + 1.

REMARK. In the above theorem, we have the equality wl(Fr(l/a)) = r - 1
for any r > 3 . But according to a theorem of Shallit [7], the number Fr( 1 /a)
has the continued fraction expansion with bounded partial quotients, and
hence we have also the equality wl(F2(l/a)) — 1. We note that the above
mentioned equality wx{Fr{\la)) = r - 1 for any r > 3 is also deduced from
a theorem of Shallit [7].

The author would like to express his thanks to Professor Y. Morita for his
encouragement. He is also indebted to the referee for his valuable comments.

2. Preliminaries

In this section, we give two estimates for wd(co) (Lemmas 2 and 3 be-
low). The following lemma is Lemma 5 of Galochkin [2] (cf. also Giiting [3,
Theorem 6]).

LEMMA 1. Let ax, ... , as be algebraic numbers of degrees X\ > • • • > Xs •
Let K be an algebraic number field, and IK be its integer ring. Put x0 —
[K(al, ... , as): Q ] . Let A(xx, ... ,xs)€ IK[x{, . . . , xs] be a polynomial of
deg^ A < dt for each i. If A(ax, ... , as) / 0 , then we have

\A{a,, ... , as)\ > ^ f ^ M

REMARK. Checking the proof of Theorem 6 of Giiting [3], it is found that
we may use M(ai) in the above inequality instead of L{at) which is used by
Galochkin [2, Lemma 5] (and also used by Guting [3, Theorem 6]). Note that
we have the inequality Af(a(.) < L(aj) because of an inequality of Mahler
[5]-

The following lemma follows from the arguments of Galochkin [2].
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LEMMA 2. Let co be a complex number, and a be an algebraic number of
dega = X\ with 0 < |a| < 1. Let cp(k) be a function on N such that, for
sufficiently large keN, <p(k) is a strictly increasing positive valued function
tending to infinity, and such that there exists a positive number S satisfying

(2.1) hm sup r . . . = 6 < oo.
<P{k)

Let K be an algebraic number field, and denote by IK its integer ring. Put
Xo = [K(a): Q]. Let d be a positive integer, and E > 1 be a real number
satisfying

(2.2) \o%E>bxQd (b = x?\ogM{a)).

Suppose that there exists a sequence of polynomials {Rk{z, y)}k€fi such that
Rk{z, y) e IK[z, y] and deg Rk < m for any k with a certain positive
integer m, and such that Rk(z, y) satisfies

(2.3) logL(i?k) = o(9{k)),degz(Rk) < <p{k){\ +

as k -> CXD . Then we have

(2.4) wd(co)<
d xd/x

PROOF. It is convenient for our purpose to work with Koksma's func-
tion w*d instead of Mahler's function wd . Here we recall the definition (cf.
Schneider [6]). For a complex number co, we define a function w*d{co, h)
by

wd(co, h) - Min{|« - 0\; p € Q, deg£ < d, H{p) < h and co / £ } ,

where Q is the field of all algebraic numbers. Then we define wd(co) by

*, x ,. -\og{hwd(co, h))
w.(co) = hmsup r-

s-, .
d h-+oo log h

In what follows, we shall prove

(2.5) «,»

where co is a complex number which satisfies all the conditions in the lemma.
Since we have wd(co) < wd(co) + d - 1 (cf. Schneider [6, Hilfssatz 19]), this
proves the lemma.

Let /? be any algebraic number with deg/? < d and //(/?) < h. Put
A = \co - f}\. We must give a good lower bound for A which leads to (2.5),
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We may assume A < 1 without loss of generality. Let s be any (small)
r\r»citii/A nnmhpr Putpositive number. Put

We may assume that R > 1 because of (2.2). Choose a positive integer k
such that
(2.6) R9(k-\)lxam < h < Rv(k)/Xom _

By taking a sufficiently large h as an upper bound for H(P), we may assume
that k is also sufficiently large. We claim that

(2.7) A > £

Indeed, if (2.7) is false, then by (2.3), we have

\Rk(a ,fi)\> \Rk(a, co)\ - \Rk(a, w) - Rk(a,

>E-9{k){1+c)-L(Rk)m(\(o\ + l)mA

Then, by Lemma 1 and (2.3), we have

\Rk(a ,co)\> \Rk(a, /?)| - \Rk(a, <o) - Rk(a, fi)\

> L(R )x-*°dM{a)~(x°dl

> M(a)~ix°d/x'Mk){l+e)h~x°m

Comparing this lower bound with an upper bound

\Rk(a, co)\ <

we conclude

Since this inequality contradicts (2.6), our claim is proved.
Now, by (2.1) and (2.6), we have

Hence, by (2.7), we obtain

Since we can take e arbitrarily small, this leads (2.5). The lemma is proved.

We need the following lemma to prove Theorem 2.
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LEMMA 3. Let co be a real number, Q > 1 be a real number, and r > 2
be an integer. Put E = Qr~x. Suppose that there exists a sequence of rational
numbers {PklQk^ktH sucn tnat Pk and ak> ® are relatively prime integers,
and satisfy

qk = QK and \qkco-pk\ = E

as k —> oo. Let dQ be the number defined by (1.5) in Theorem 2. Then we
have

(2.8) wd(a>) = r-lford=l,...,d0,

and

(2.9) r - 1 < wd(co) < ylL fOrd = d0+l,...,r-l.

This is a special case of Lemma 1 of Amou [1].

3. Proof of the theorems

PROOF OF THEOREM 1. Put co = f(a). Note that we may assume without
loss of generality that At(z, y) € IK[z, y](i = 1 , 2 ) . Let m and n be any
positive integers. By the theory of homogeneous linear equations, we can
construct an auxiliary polynomial R0(z, y) e IK[z, y], R0(z, y) ^ 0, such
that

(3.1) degzR0<n,degyR0<m and ordR0(z, f(z)) > (m+l)n,

where ordR0(z, f(z)) is the order of zeros of the function R0(z, f(z)) at
z - 0 . Since f{z) is transcendental over C(z), we have R0(z, f(z)) ^ 0,
and hence we can write ordR0(z, f{z)) = kn(m +1) for some X > 1. Then,
because of the functional equation (1.1) for f{z), for any positive integer
k , we can construct Rk{z, y) e IK[z, y] inductively by taking

Rk(z,f(z)) = A2(z, f{z))mRk_{{Tz, f(Tz)).

We can easily show that

(3.2) degzRk < e{k) := [nrk{\ +e(m, «)] and d e g y R k < m ,

where e(m, n) is a positive valued function of m, n e N satisfying e(m, n)
—* 0 as m/n —> 0. Further, by Lemma 3 of Galochkin [2], we have

(3.3) L(Rk) < (2L)mkL(R0) and \Rk(a, co)\ = e

as k -> oo, where L = Max{L(a (z)); i, j = 1,2} and c - log|a|~'
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We fix the following notation. Let S(m, n) be the set of all polynomials
R0(z,y) e IK[z,y], R0(z, y) ^ 0, satisfying (3.1). Put

X{m, n) = sup j + ordR0(z, /(z)); R0(z, y) e S(m, n) j .

Let X{m) be the number defined by

X(m) = lim sup X{m, n).
n—>oo

This number plays an essential role in our proof.
Put

m = [bc-l
Xod(l+'c)], r=l/V~r,

where b, c and Xo a r e the numbers defined by (1.3). In the following argu-
ment, we consider two cases.

CASE I. X{m) > \fr = x~~ . Let e be any (small) positive number. In this
case, there are infinitely many n satisfying X{m, n) > r~l. We take and fix
such an n with 1 +s{m, n) < {T(T~1 -e)}~1, where e(m, n) is the quantity
in (3.2). Then we have a sequence of polynomials Rk(z, y) e IK[z, y] for
keN satisfying (3.1), (3.2) and (3.3) with A > r~l. Put

i - c ( T ~ ' - e ) ( m + l ) , , , , , , - 1 s-l k

E = e and <p{k) = X(x - e) nr
for k € N. Because of our choice of m , we may assume that logE > bxod
by taking e small enough. Then, all of the conditions in Lemma 2 are
satisfied. Put y = bc~ Xo • Since we can take e arbitrarily small, applying
Lemma 2 to this situation and letting e —» 0, we obtain from (2.4) and from
our choice of m that

wd(a»-d+l<
-

1 -
rfyXod =

CASE II. X(m) < x l . Let e be any (small) positive number. We shall
construct a finite sequence of positive integers {«,}1 < ( < r which satisfies suit-
able conditions. First we take a positive integer «, with n{ > r/e such that,
for any n € N with n > n , , we have

\+e{m,n)< (1 - e)"1 and X{m, n) < T ~ ' ( 1 + 2e)/(l +e).

Next we take the least positive integer satisfying X(m, «1)«1 (1 + e) < n2.
Then we have

X(m, « , ) « T - i ,
l + e < ,; 2 2 < T l + 3e .

A(m « ) / !
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Further we can take positive integers n3, n4, ... such that ni+1 is the least
positive integer satisfying X(m, «,)«,(1 + e) < ni+l(i = 2, 3 , . . . ) . Thus we
obtain a sequence of positive integers {«,},GN satisfying

-- k(m, «,)«,.

for any i e N . Let t be the least positive integer satisfying

y <T(1 + 3e).
Note that the left-hand side of the above inequality is greater than 1. We
now have a finite sequence {ni}l<i<t which can be used below to define a
sequence of polynomials Rk(z, y) e IK[z, y] (k e N) and a function <p(k)
of k e N.

For any / e N with 1 < i < t, we take a polynomial /?( 0 ( z , y) € /^ [z , y]
such that

; J R , ) 0 < « , , deg,/?, 0 < / n

and

ord.R. 0(z, f(z))=k(m,ni)ni(m+l).

Then, for any positive integer j , we can construct Rt iz, y) e IK[z, y]
inductively by taking

R,j(z,f(z)) = A2(z, f{z))mRitj_x{Tz,f{Tz)).

Let us write any k e N as k — j(k)t + i(k) where i{k), j(k) are integers
with 0 < i(k) < t. In this notation, for any k e N, we define Rk(z, y) and

by

and by

(Km, nKk))nmr*k)(l - e)~l if i(k) ± 0,

1 X(m, n^n/^'1 (\ - e.)~x if i{k) = 0.

Put £ = e
c("I+1)(1-£) As in Case I, we may assume that log£ > bxod by

taking e small enough. Then Rk(z, y)(k e N), (p{k) and E satisfy the
conditions (2.1) with S < T ~ ' ( 1 + 3e), (2.2) and (2.3) in Lemma 2. Since we
can take e arbitrarily small, applying Lemma 2 to this situation and letting
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e —» 0, we obtain from (2.4) and from our choice of m that

= T " 2 ( 1 + T)2yXod = r(l

In any case, we obtain wd{a>) < {r(l + l/y/r)2bc~lxl + l}d - 1. This is
(1.4), and we have proved the theorem.

If K = Q and a = l/a{a e Z, \a\ > 2), then we have 6 = c and *0 = 1,
and hence the corollary follows.

REMARK. We can easily show as a corollary of the above proof that, for
any e > 0, the inequality

l
X

2
0 + \}d - 1

holds for infinitely many d .

PROOF OF THEOREM 2. Since the function fr(z) satisfies the functional
equation fr(z

r) = fr(z) - z, by the corollary of Theorem 1, we have (1.8).
Now, we show (1.6) and (1.7). Put co = fr(l/a). For any k e N, we define
a rational number pk/qk by

Then pk and qk > 0 are relatively prime integers, and satisfy

, . -(r-l)

\«kta-pk\ = a

as k -> oo. Put Q = a and E = ar~x . Then, by applying Lemma 3, we
deduce (1.6) and (1.7) from (2.8) and (2.9) of Lemma 3 respectively. This
completes the proof of the theorem.

About the number Fr(l/a), we conjecture that

and
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