Frequency distributions of mean daily intakes of food energy and selected nutrients obtained during nutrition surveys of different groups of people in Great Britain between 1968 and 1971

BY SYLVIA J. DARKE, MOLLY M. DISSELDUFF AND G. P. TRY

Department of Health and Social Security, Alexander Fleming House, Elephant and Castle, London SE16BY

(Received 30 April 1980 - Accepted 30 May 1980)

1. Nutrition surveys were made in Great Britain between 1968 and 1971 of 1321 pre-schoolchildren aged 6 months to 4.5 years, 321 primary schoolchildren (10-11 years), 178 secondary schoolchildren (14-15 years), 792 secondary schoolchildren (14-15 years), 435 women in the second trimester of pregnancy, 443 elderly people (65-74 years), 384 elderly people (75 years and over).

2. The studies included a 7 d weighed dietary record and all subjects except some of the pre-schoolchildren were medically assessed for evidence of malnutrition. Among the children there were no clinical signs of undernutrition, 4% of the boys and 7% of the girls were described as obese. In the survey of elderly people 3% were malnourished but in each case malnutrition was associated with clinical disease.

3. Percentage frequency distribution curves of mean daily intakes (averaged for 7 d) were obtained for total food energy, total protein, animal protein, fat, carbohydrate, calcium, iron, retinol, thiamin, riboflavin, nicotinic acid, pyridoxine, vitamin C and vitamin D.

4. Comparison of the distribution of food energy intakes with 1969 recommendations (Department of Health and Social Security, 1969) showed that the mean of the distribution was less than the 1969 recommendation for energy. From the age of 12 months, results indicated that males had larger intakes of food energy than females.

5. Comparison of the distributions for protein, Ca, Fe, retinol, thiamin, riboflavin and vitamin C with the recommendations for these nutrients revealed that appreciable numbers of people had intakes less than the recommendations without signs of malnutrition.

There have been few published results from recent nutrition studies of population groups of any size in the United Kingdom apart from a study of pre-schoolchildren in Newcastleupon-Tyne (Black *et al.* 1976), a survey of Kent schoolchildren aged 8–15 years (Topp *et al.* 1972), studies of schoolchildren in Glasgow aged 14 years (Durnin *et al.* 1964; Durnin *et al.* 1974) and of smaller groups of elderly people (Stanton & Exton-Smith, 1970; Exton-Smith *et al.* 1972).

In 1963 a study of 450 pre-schoolchildren aged 6 months-5 years (Ministry of Health, 1968) was made to test the method for a series of nutrition surveys of population groups in the United Kingdom. The main surveys (six in all) were made between 1968 and 1971 and were of people who could have been at risk of malnutrition. Some, but not all, have been reported (Department of Health and Social Security, 1972, 1975). In this paper, we present the centile distributions of mean daily intakes of food energy and of selected nutrients. These results may be of some use for purposes of comparison with similar measurements made at other times.

EXPERIMENTAL

Subjects

Pre-schoolchildren. In 1967–68, a sample of pre-schoolchildren aged 6 months-4.5 years was randomly selected from thirty-nine areas in Great Britain (Department of Health and Social Security, 1975). The areas were regarded as corporately representative of the country as a whole and dietary information was obtained from 1321 children.

0007-1145/80/3518-3005 \$01.00 © 1980 The Nutrition Society

244 SYLVIA J. DARKE, MOLLY M. DISSELDUFF AND G. P. TRY

Primary schoolchildren. Between I January and 31 March 1971, a sample of boys and girls aged 10-11 years from primary schools in Bristol, Croydon and Sheffield was studied. In each of the three areas, three schools were chosen by the Principal School Medical Officer on the basis of his local knowledge as being likely to have the largest proportion of children whose parents' income was such that they would just not qualify for the benefit of free school meals. The samples were randomly selected from all children in the schools who were of the required age; 163 boys and 158 girls took part.

Secondary schoolchildren Newcastle-upon-Tyne. A sample of schoolchildren aged 14-15 years who were from one-parent families in Newcastle-upon-Tyne was studied between February and July 1970 together with a control sample, matched for sex and month of birth, of children living with both parents. Information was obtained from ninety-three boys and eighty-five girls.

Secondary schoolchildren Birmingham. From 1 September 1970 to 31 August 1971, a study was made of schoolchildren aged 14–15 years who were randomly selected from all schools situated in the south-east area of Birmingham. This city was chosen as an example of a large industrial conurbation and the south-east postal district was selected because the area extended from the crowded city centre to the outer suburbs. Dietary information was obtained from 390 boys and 402 girls.

Pregnant women. In 1967-68 a sample of 435 women who were 6-7 months pregnant was selected from thirty-nine areas in Great Britain. The sample was not nationally representative.

Elderly. A study of elderly people in 1967/68 included 396 men and 431 women who were living in their own homes or with relatives from four different areas in England and two in Scotland (Department of Health and Social Security, 1972). The subjects were all 65 years of age or over and in one area (the London borough of Camden) they were all 70 years or over.

Methods

All the studies were cross-sectional in design and the survey method has been described (Ministry of Health, 1968; Department of Health and Social Security, 1972, 1975). Trained dietary investigators visited each respondent in their own home in order to explain the purpose of the survey and to make periodic checks on the keeping of the dietary records. Full participation in a study yielded socio-economic information, and a weighed record of all food (solid and liquid) ingested for a period of seven consecutive days. A specially designed food composition table (available on request from Mrs M. M. Disselduff at the Department of Health and Social Security) was used in the surveys. The table identified over 600 food codes each of which had an attributed figure for energy value and certain nutrients. The mean daily intakes of food energy and nutrients were calculated for each individual from the weighed amounts of all food and drink consumed in the survey week.

Except for some pre-schoolchildren, all subjects were assessed medically for clinical signs of malnutrition and height, weight and skinfold measurements were made. In surveys of elderly people a blood sample was taken for biochemical and haematological analysis, and radiology of the metacarpal was done. The results of these findings are reported elsewhere.

RESULTS

Medical assessment

None of the children were described as of poor nutritional status, a few were described as fair but the large majority were assessed as of good nutritional status. Approximately 4 %

					Boys									Girls				
						Centile									Centile			
	Mean	đ	Sth	Ioth	25th	Soth	75th	goth	95th	Mean	SD	Sth	roth	2Sth	Soth	75th	90th	95th
Energy: MJ	5.05	I • 22	3.24	3-54	4.24	4-90	51-5	6.49	1-31	4-74	91-1	3.11	3.42	16.8	4.58	5.32	6 0.9	689
kcal	1207	162	773	847	1014	1172	1374	1551	1746	1133	277	742	817	935	1094	1271	454	647
Total protein (g)	37-8	10.4	22-8	25-6	30.2	36-5	42-7	52.2	57-9	35-3	9.4	23-0	25.0	£.67	33-8	40.5	44'9	20 .1
Animal protein (g)	27.4	8.6	14.0	16.2	20.9	26-7	32.8	39-4	43.2	26-0	8-7	14-6	16.3	20.4	1.52	1.0£	35·I	39-4
Fat (g)	51-2	15.2	28.0	33.8	40.5	49-2	58-0	70-6	76-6	48-7	13-6	29.6	32.5	40.4	46-8	53-9	65.2	9-12
Carbohydrate (g)	157	42	2	104	126	154	181	214	223	146 1	4	87	IOI	117	141	166	197	218
Calcium (mg)	744	233	379	459	553	725	888	1041	1174	704	272	389	445	537	656	819	958	990
Iron (mg)	2	3.4	3.3	3.6	4.7	6.3	8:2	10-8	13-4	6 .5	3.1	3.5	3.6	¢ 4	5.7	7-7	6.6	6-11
Retinol (µg)	821	570	202	334	443	616	898	1641	1888	798	623	249	287	414	366	865	869	1 940
Thiamin (mg)	0-63	0.32	0.34	0.40	0.48	0.55	0-72	0-89	66.0	0-57	0.30	9E .0	98.0	0:44	0-52	0-64	0.78	0-88
Ribofiavin (mg)	12.1	9 <u>.</u> 6	9.0	11.0	0.88	11.1	1:34	17-1	06-1	01.1	0.46	65-0	6-67	18.0	10.1	1-27	1-54	1-73
Nicotinic acid (mg)	6-56	5.54	3.05	3.45	4.21	5.53	7-57	60-0I	11.45	5-78	3.01	2.86	3.20	3.89	4.99	6.98	8-17	9.52
Pyridoxine (mg)	0-65	9 6.0	0.36	14.0	0.49	0 . 60	0-74	0-87	00· I	0.60	0.21	0-34	66.0	0.49	0-57	0-68	08.0 80	o-88
Ascorbic acid (mg)	42-6	34.9	10-8	13.3	18·8	28.4	5.55	9-06	1.911	41-0	31-3	11-5	14.3	E-61	32-2	48-7	87.8	7-201
Cholecalciferol (µg)	3.14	3-85	EE-0	0.46	0-74	1.44	4-14	8-14	12-09	3-84	4:96	0:30	0.42	0.77	ş	4.54	10-47	12-17

Nutrient intakes in Great Britain 1968-1971 Table 1. The mean daily intake, standard deviation and 5th to 95th centiles for total food energy and selected nutrients obtained from a 7 d weighed dietary study of 149 boys and 154 girls aged 12–23 months in 1967–68

245

S	YL	VI	A	J	•	D	A	R	K	E	',	M	10	0	C)	Ľ	с М .	Dis	SE	LD	UF	F	A	NJ	D	G	.	P.	3	[R	Y	
		95th	7-67	1833	6.55	41.6	82.9	250	1052	1.01	1984	1:27	18: 1	12.00	8 2	E.66	02.01	ıa7d		ſ	95th	8-35	(995 266)	58:4	10	280	949	10.5	00.0	ŝ	12.93	10.1
		90th	6-85	1636	50.4	37-7	73-7	211	877	6.6	1285	16.0	ŝ	10.27	80 0 0	80.4 4	9 £.0	ed fron			goth	7.44	-11J	51.90	82.2	239	856	1.6°1	0.87	1-37	06.01	0.92
		75th	66.5	1432	43.2	E.1E	61-3	192	757	Ë	728	0-13	87.1	10.4	92-0	43.4	4 7	obtaine			75th	6.45	1540	43.9	6.69	201	669	- 	0.72	1-14	8.13	84.0
	Centile	Soth	60.S	1217	37-1	25.8	53.5	1 60	620	ŝ	4 <u>9</u> 6	19.0	ġ,	6.17	69 9	20.2		trients		Centile	Soth	15.5	1317 (37.0	1 1 1 1 1 1 1	180	5 94	6.0 TO	0.60	0.95	8	8
		2Sth	4-59	1096	32.2	20.9	44:9	140	536	4.9	8	0 40	0.78	4-78	0.53 1	16-2	71.0	ted nu	Girls	}	25th	4-87	1104	9-02	47.0	155	496	5.3 376	0.50	11-0	5-36	0.57
		Ioth	4.11	6 89	27.6	18.2	40.0	121	439	4.0	274	5	0-02	3.97	0-43	1.61	4	d selec nths			roth	4-40	1051	E-07	40-9 7	138	397	4.3 207	0.43	I9-0	4.47	0.40
		Sth	3-68	878	23-0	15.4	34-4	Iod	398	3.4	234	0-35	<u>8</u>	3:30	66.0	12:0	46.0	irgy an 47 moi			Sth	4-10	980	25.5	37-6	125	330	4.0	0.40	0-53	3-94	643
		SD	06-1	310	10.5	8-7	16-o	4	210	, ; ?	035 	0-51	5	3.10	0.20	37-9	10.4	ed 36-			ß	6 † .1	355	5.0F	98	48	202	2-I	0.24	0-36	5 .0	0-70
	-	Mean	5-37	1284	38.5	1.72	5.55	167	3 <u>6</u> ,	4 .9	704			02.0		38.9	50.7	total for girls ag			Меал	5.80	LaEI	7-6£	9.95 9.95	186	618	6-6 6	9.0 10	. S	7-29	60.0
		95th	8-70	2079	58-8	42.7	87-4	266	1039	£.11	1577	81.1	1-74	00-EI	80. I	80.9	0/-6	ttiles for and 262			95th	01.6	174	94.4 79.8	5.80 F.80	294	088	11:3 1:13	-/- I-25	1-84	14-28	1 .14
		goth	7-50	1793	\$2.0	37.2	78-8	240	6 6	9.2	1155	8 8	1.45	10.04	16.0	2-60	60.0	5th cer			goth	4 -8	910	1.66	86.7	259	964 1	1.01	80.1	1-62	12.23	E0.1
		75th	6-35	1518	44·5	31-7	67-0	210	977	1-1	200	0-74		9. e	0.00	41-7	£1.7	th to 9 of 270			75th	90-2	1088	24.4	73-4	229	811 1	611 011	- 1 8-0	1-37	05 -6	0.00
	Centile	Soth	5.49	1312	38.6	26-3	56.0	174	§.	6.5 0	\$ \$		6. o	9.38	60.0	25.3	4	1 and 5 v study		Centile	Soth	6.20	1481	42'3 78.6	E.19	861	665	1.1	09.0	III	7.46	64.0
		25th	4-68	7111	6.IE	21.2	45.2	146	523	5.5	389	0 4 0	ER-O	5 ^{.01}	0.50	19 . 2	4/-0	eviation dietar	Boys		2Sth	5.42	1295	4.5E	90 90	1/1	554	20 C	73-0	0.88	5:97	0.07
		Ioth	4-08	975	26.8	17-8	37-3	127	425	4:5	8 900	0.42 7	000	4.17	0. 4 4	14-3	0.45 0	dard di eighed			roth	4.68	6111	6.67	9.67	149	448	4. 2.4	0.47	12-0	4.88	0
		Sth	3-86	922	1.52	0.51	34-2	114	358	3.9	2	0.31	19.0	8	0.40	12.7	05.0	e, stan W			Sth	4.27	1020	0.97 19.91	18-7	138	404	4.5 2	0.42	0-63	400	410
		8	1.49	357	0.01	0.6	17-8	51	216	2.4	430	0.75	66.0	3.15	0.0	31.0	70.E	y intak			05	1.58	378	1.21	20.2	6	225	2.0 6,0	0.27	6£.0	3.35	0.00
	-	Mean	5.73	1370	7-9E	27:4	57-9	182	678	98 , 0	6 50	50.0 1	ê.	2.02	2.0	E.9E	67.7	ean dail		l	Mean	6-40	1529	43.9	, 1 1 2 1 2	304	704	4.1.4	5L-0	91.1	8-26	14.0
		-	ergy: MJ	kcal	tal protein (g)	imal protein (g)	(E)	rbohydrate (g)	lcium (mg)	in (ing)	tinol (µg)	itamin (mg)	ooflavin (mg)	cotinic acid (mg)	idoxine (mg)	corbic acid (mg)	DISCRICITICION (HB)	tble 3. The m				rgy: MJ	kcal	ial protein (g) imel arotein (g)	(g) (g)	bohydrate (g)	cium (mg)	n (mg) incl ()	amin (mg)	oflavin (mg)	otinic acid (mg)	doxine (mg)

https://doi.org/10.1079/BJN19800037 Published online by Cambridge University Press

Table 4. The mean daily intake, standard deviation and 5th to 95th centiles for total food energy and selected nutrients obtained from a 7 d weighed dietary study of 435 pregnant women in the 6th-7th month of pregnancy in 1967-68

						Centile			
	Mean	SD	5th	ıoth	25th	50th	75th	90th	95th
Energy: MJ	9.01	2.10	5.22	6.35	7.63	9.04	10.28	11.60	12.56
kcal	2152	503	1325	1517	1822	2159	2456	2771	3000
Total protein (g)	70.2	16.7	43.8	49.6	59.0	70.3	80.7	92.3	<u>98</u> ∙0
Animal protein (g)	47.8	14.3	26-1	31.0	37:5	46-8	56.2	65.6	71.7
Fat (g)	97.9	26.4	55.7	65.1	80·0	96-6	113.5	130.6	I4I·2
Carbohydrate (g)	260	69	143	172	211	264	304	344	370
Calcium (mg)	959	320	470	547	740	946	1168	1363	1522
Iron (mg)	11.7	3.1	6.8	8.3	9.2	11.2	13.2	15.4	17.1
Retinol (µg)	1269	975	424	516	679	961	1493	2485	2924
Thiamin (mg)	1.04	0.58	0.65	0.20	0.85	1.03	1.50	1.38	I.47
Riboflavin (mg)	1.60	0.67	0.78	0.92	1.14	1.21	1.30	2.30	2.54
Nicotinic acid (mg)	14.30	5.30	7.90	8.88	10.89	13-41	16.41	20.34	23.27
Pyridoxine (mg)	1.52	0.35	0.24	o-88	1.08	1-24	I·45	1.66	1.80
Ascorbic acid (mg)	54.9	24.7	22.7	28·0	37.7	49 [.] 7	68·2	89·o	102-3
Cholecalciferol (µg)	2.28	2·0I	0.64	0.76	1.15	1.66	2.24	4.40	6.06

of the boys and 7% of the girls were assessed as obese. No clinical signs of specific nutrient deficiencies were seen. The nutritional status of most of the elderly subjects was also satisfactory; a few (3%) were malnourished but in each case this was due to co-existent clinical disease.

Energy and nutrient intakes

Tables 1-9 show the fifth to the ninety-fifth centiles for the mean daily intakes of food energy by males and females separately in the different population groups. As early as 12-23 months of age there was a statistically significant difference (P < 0.05) in the mean energy intake between the sexes; the mean energy intake of the boys being, as for older males, greater than that of the girls of the same age. The differences were more pronounced in the older age-groups.

Tables 1-9 also show, for males and females separately in the different population groups, the fifth to the ninety-fifth centiles for the mean daily intakes of total protein, animal protein, fat, carbohydrate, calcium, iron, retinol, thiamin, riboflavin, nicotinic acid, pyridoxine, ascorbic acid and ergocalciferol.

DISCUSSION

The most important finding of the surveys was that none of the children studied showed clinical signs of undernutrition. Undernutrition, diagnosed in 3% of the elderly subjects, was associated with debilitating disease.

Food energy intakes

In general, except for pre-school boys and elderly men, the means of the distribution for each sample were lower than those recommended (Department of Health and Social Security, 1969) so that more than half the group had daily intakes which were less than the recommended amount. These findings confirm those for children under 4 years of age (Black *et al.* 1976); for schoolchildren aged 7-17 years in Kent (Cook *et al.* 1973); for schoolchildren aged 14 years in Glasgow (Durnin *et al.* 1974), and for the elderly (Exton-

247

1adie 5. <i>1 ne met</i>	un aauy	intake	e, stant weigl	iara ac ied die	Plation tary St Boys	i ana 5 udy of	163 bo	Sin cer ys and	nues jor I 158 giri	loiai jo	0 <i>a ene</i> 11-01	rgy and years i	1 1971	ea nui Girls	sman	onaine	u Jron	a / a
	l					Centile				l					Centile			
	Mean	8	Sth Sth	Ioth	2Sth	soth	75th	goth	95th	Mcan	8	sth	Ioth	25th	Soth	75th	goth	95th
Energy: MJ Leal	80.6	I-63	6-34	66.9	7-95	9'I3 7'R'	IO-23	E0-11	11-72 2801	8-02 1016	1.56	5-25	6.02	1-03 676 1	7-86	9.02	10.20	10.77 573
Total protein (g)	62'4	12.5	42.2	45.5	53.5	62-0	1.3	- 8-8L	84.0	55.4	£.11	38.3	42.3	47.4	54:5	. 1 .29	10.5	75.4
Animal protein (g)	1.66	6.6	24.5	25-8	31-7	0.66	45.4	51-4	55.1	35.6	9.2	22.2	24-2	28.6	35.0	40.7	49.2	52.0
Fat (g) Carbobydrate (o)	1.96 L	0-61 84	59-9	224	75.0	90'4 202	104.5	115'3 366	122.5	62'0 252	19'9 4 2	52'I 162	1.10	211	253	95'2 282	318	1179 245
Calcium (mg)	1 %	23I	514	1 85	762	ł Ś	1042	2211	1274	187	224	46	495	637	778	56	080	204
Iron (mg)	8.01	2.6	6.8	6.2	0.6	10.7	12.1	I4-3	5.51	2-6	2.3	6.5	0.2	8:2	\$.6	L.01	12.3	13.6
Retinol (µg)	893	548	384	6 0	527	724	1071	1497	1821	812	453	337	379	509	707	166	363	580
Thiamin (mg)	60. I	0.78	0.0	6.72	0.85	8	1.15	1.40	0 5 .1	99.0	0.21	6.53 6	8	0-74	0.04	66.0	1.14	77.1
Kibonavin (mg) Nicetiais sold (ma)	1.43	0.40	10.0	16.0	11.1	141	1.70	56.1	09.91		94.6		69-0 9-9-9	19.9	11-1		0/.1	16.1
Nicotific acid (mg)	61.11	E1.6	713	20.1	6r.6	54.01	70.71	4 6.01	05.01	10.6	94.0	11.0		10.1	97 F	3		-1-5-1
ryridoxine (mg) Assochio acid (ma)	1.10		04.0	20.0	3	01.1		14.1	1.25	۲ بې	67.0	74.0	9.36		1.14	01.1 9	66.1	141 70:6
Ascoroic aciu (111g) Cholecalciferol (11g)	- 04 99-1	1:02	-5.4 0.67	0.80 280	1.08	1.44	1-92	2-52	3.22	141	-9 4	0.58	0.72	200 100	02-1	9. 8. 1.	2.22	3.06
Table 6. <i>The mea</i>	m daily wei	intake ighed o	, stand dietary	ard de study	viation of 92 b	and Si boys an	h to 9: 1d 85 g	sth cen irls ag	tiles for ed 14.5	total foc years in	od ene. Newci	'gy and Istle-up	select	ed nut ie in 19	rients c 970	obtaine	d from	a7d
)	•	•	Boys	•	1	I				I		Girls	•			
	l				ł	Centile			[l				} }	Centile			ſ
	Mean	. 8	Sth	Ioth	25th	soth	7.5th	90th	95th	Меап	8	Sth	roth	25th	Soth	75th	goth	95th
Energy: MJ	61.11	06.2	7-68	8:44	6.35	81.11	12.60	14.33	14-65	8.64	1-83	5.55	6-67	7:34	8.62	08.6	Lz.11	12-28
kcal	2674	549	1835	2016	3234	2671	3000	3423	3500	2063	437	1325	1 12 12 12 12 12 12 12 12 12 12 12 12 12	753	to 59 2	2340	2692 2.5	933
Total protein (g)	75.1	15.2	53.7	54.7	04-5 3-1-6	73.7	65.7	5.19	98:4 6e:6	37.1	12:0	37.0	42.0	50.9	58.0	08.0	0.19	80-9 62-7
Fat (g)	114-6	5.67 7.67	- 9 8 7	4.11	6.66	6-011	133.4	0.091	163·4	8-16	22.2	57.4	6 - 7	29.9	87.0	105.2	117.4	9-671
Carbohydrate (g)	356	82	162	263 - 63	288	343	407	465	501	264	61 920	159	186	225	258 20:	312	337	360 206
Calcium (mg) Iron (mg)	950 13-4	300	514 8-6	500 9.4	1.11	y31 12 ⁻⁸	15.2	111	13/0	6.01	517 L.Z	3/0 6.1	435 7'3	2.6	9.01	035 12:4	14.8	090 16-2
Retinol (µg)	832	539	280	312	502	708	959	1406	1875	737	414	313	346	481	628	850	133	6I 3
Thiamin (mg)	91-1	0.27	16-0	0-81	0-93	81.1	1-33	I-54	1-63	06.0	0.24	•.St	0.59	0-72	0.87	1.04	1:20	66.1
Kiboffavin (mg) Nicotinic acid (ma)	10.1	0.50	40.0	96.01	12-1	13.20	16-1	24.2	09-01	19:01 10:01	44.0	0.22 9	00.D	0.00	101.1	14-21	00.T	56.1
Pyridoxine (mg)	; i	IE o	16.0	90. 1	1-22	1.33	1:55	, 6 , 1	1.98	51.1	67.0	0.75	, 0 , 8	16.0	01.1	1:34	15.1	i ét
Ascorbic acid (mg) Cholecalciferol (110)	58:3 2:10	37-2	26.5	30.0 90.0	39 ⁻²	49-8 1-73	62.2 2.50	88-3 A-30	128-5	47 ⁻² 2-18	26.0	1.61	21:4	33.1	42-3 1-86	26·I	9.69 3.45	87-6 4-37
CUUCKARINITEL VI UNE	21.7	3	202	5		2.	1	۶, ۲	しつお	1	2.	202	2,		· ·	, ,	ì	5

248 SYLVIA J. DARKE, MOLLY M. DISSELDUFF AND G. P. TRY

https://doi.org/10.1079/BJN19800037 Published online by Cambridge University Press

						λ	Īı	iti	ri	er	ıt	Ù	nt	ai	kε	?S	i	n	Great	Br	rita	in 🛛	196	5 8- :	[9	7	[
	-	oeth		6 8.0I	2601	1-1-1				105	14-0	2044	1.27	10.1	15-03	1.64	Brie a	1-28	۳ ۱ ۱			[95th	10-77	-272 82-3	2.65	136-9	300	1174	14.5			21:42	
		orth		61-01	2435	3.6					13.0	1423	91-1 1	Ģ	55.EI	1:40				lolfn			90th	61-6	9.1	53-3	121-4	277	[063	6.11	11.1	1.78	17.50	e
		1eth	1.2	81.6	102	640		- 16		0 802		878	101	1-32	11-75	1.21		2:27		numine.			7Sth	8-76	-1-1-5	47.4	104-5	235	952	0.1 Y		1.52	20.EI	
	Centile	eoth		7-98	1001	1.95				12	3.0	628	0.87	1.07	10.05	7 1.1	42:4		•			Centile	Soth	7.47		04	84.6	195	790	1.6		2 0I-I	10-30	
Girs		2 et h		6-65	1588	48.5		1	5	<u>6</u>		460	0-73	02.0	8.51	20.0	9.52	20.0		67-68	Women	ł	25th	96.9		34.4	4.14	161	629	7.5	,	500	8.46	ġ
		roth		5-61	1340	40.0				202	0.6	320	90	Ş	7.17	0.80	26.0	0.61	-	g in 19			Ioth	5-11 11-2	123	26.3	22.0	128	487	40 Q		, e	7.12	
		ţţ	ļ	3 ·0I	1197	17.5		2 0		130	2	273	0.56	95.0	9	0.72	20.8	0.46		r 87 un S livin			đ	4.13	18:2	22.8	47.5	901	434	5.0 787	5.0	3	6-25	
		, e		1-902	454	0.LI				328	2.7	574	0.20	0.71	30.5	22.0	27.0	86.1		14 year			8	191 146	14:4	9.11	5.97	61	1	0.7 Yuy	0.23	0.42	4.56	
	-	Mean		8 ^{.00}	1161	57.2	1.36		5	îŚ	1.01	780	0.03	1.13	10.53	71·1	48.8	18.1		red 65-		l	Mean	7:48 1-188	2.65	41.1	87-4	8	1 96	9.4	0.82	1.27	69.11	
	•	oth		14-58	3482	1.001	6410			4//	0.01	1033	99-1	2.46	20.52	70.I	010	4.46		vomen ag		ſ	95th	13-69 3270	6-201	2.62	162·8	383	1422	5-11-2 2-16-2	94-1	- 1	31-70	
,		ooth		14 .E1	3210	04.2			1 101	1361 1361	1-21	1358	I-50	2.20	18-04	1.82	26.6	3.78		1 225 H			90th	12-58 2006	6.96	68.1	150-3	355	1249	10.4	07.1	2.16	26-92	1.00
		7sth		11-74	2805	83.2				1062	9.71	1012	1-37	8. 1	15-58	19-1	P.19	59.6		nen and			7sth	11°18 2671	83.8	2.65	1 29·6	313	6/01	1307	121	1.8	16-61	0
	Centile	≮oth		91.01	2427	0.12	41.5		1 000	841	12.0	711	1.14	1:40	12-87	8E-1	7.07	1-68	, ,	f 213 n		Centile	Soth	9-81 2244	72.3	48-9	109'2	8	885	820	10.1	1-46	14.58	
Boys		2sth	•	8:53	2043	58.0	22.2		, y	. 2	1.01	526	96.0	0I-I	10-27	1.14	37.6	1.12		tudy of	Men		25th	8-33 1001	63.5	40.7	87-3	215	722	102	0.84	77.1	11-21	80.1
		toth		7-28	139	48.8	24.2		2.24	1 5		382	11.0	0.83	8.66	20.0	27.5	0.70	لم المسلم	etary s			Ioth	6-70 1600	53-8	34-7	68.5	175	574	513		96.0	68.6	0000
		t t		6-38	1524	43.8	21.4	i q		418	1.1	EOE	99.0	0.66	7-62	0.87	21.4	0.46		hed di			۲. ۲	5-62 1344	4 8.0	30-8	1-65	EH	474	111	0.50	88.0	8-37	9
		Q		2.47	589	17.4	13.7		5	200		6I0	0.35	0.57	4.23	0.35	20.7	1.67		weig			8	2-44 582	17-8	6.61	32-8	24	282	939	0.35	94	7.42	
l		Mean		10.25	2451	5 .1L	42-0		055	200	12.4	860	61-1	1.48	13.31	07-1	5.53	2.11	det.			l	Mean	9-82 2347	74-8	6.05	0.011	267	116	2.21	50.1		16.91	
				hergy: MJ	kcal	stal protein (g)	nimal protein (g)	tt (g)	arhohvdrate (o)	ucium (mg)	on (mg)	etinol (ug)	hiamin (mg)	iboflavin (mg)	icotinic acid (mg)	vridoxine (mg)	scorbic acid (mg)	holecalciferol (ug)						nergy: MJ kcal	otal protein (g)	nimal protein (g)	at (g)	arbohydrate (g)	alcium (mg)	con (mg) etinol (ue)	hiamin (mg)	iboflavin (mg)	licotinic acid (mg)	(and) entry

Nutrient intakes in Great Britain 1968-1971

https://doi.org/10.1079/BJN19800037 Published online by Cambridge University Press

Table 9. The mean daily intake, standard deviation and 5th to 95th centiles for total food energy and selected nutrients obtained from a 7 d weighed dietary study of 179 men and 204 women aged 75 years and over living in 1967–68

					Men									Women				
	l				}	Centile									Centile			
	Mcan	QS	Sth	roth	25th	Soth	75th	90th	95th	Mean	ß	Sth	Ioth	25th	Soth	7Sth	goth	95th
Energy: MJ	8-80	16.2	5.04	5.94	7.35	8-78	26-6	09-11	12-77	18-9	1.72	41.4	4-59	5.55	6-78	7-76	0.6	10-08
kcal	2103	551	1204	1419	1755	2098	2382	1771	3051	1627	410	66	1097	1327	1619	1853	2149	2407
Total protein (g)	9-19	18-4	37-1	43.5	23.7	67:5	78-4	87-5	94.0	9.65	0.81	31.5	34.9	4 8	54.0	61.7	8.69	73.3
Animal protein (g)	45-9	14.1	1.62	28.2	36.6	44.7	55.1	64-I	68.5	37.4	10.4	7.91	5-22	30.3	37.6	43.2	1.05	54.3
Fat (g)	6-16	29-2	3 1.6	65.0	6.11	8.56	114-2	137.4	146-3	77-6	22.0	47.7	53·8	6.19	75.0	87-9	0.301	122.7
Carbohydrate (g)	244	73	137	154	194	240	287	327	347	187	59	16	112	148	183	224	255	287
Calcium (mg)	883	302	421	503	668	852	1064	1253	1349	726	253	359	418	557	698	856	1008	1172
Iron (mg)	6.01	3.7	<u>و</u> .1	6:S	8-7	9.01	12-9	14-9	1.91	8.8 2	2:5 2	4.5	5.4	6-5	8.4	6.6	6.11	12.7
Retinol (µg)	1094	741	430	512	644 4	880	1260	1892	2406	888	588	347	404	560	729	987	1387	2115
Thiamin (mg)	£6-0	62.0	0.49	0.56	0-74	06.0	1:09	1-27	1-45	0-74	0.23	0-41	0.48	0-50	0-72	080 80	1.02	1.13
Riboflavin (mg)	1-40	0.51	99. 9	0.80 0	1-03	1-34	11-1	2-06	2.36	1.13	66.0	o:26	99.0	0-87	60.I	1.29	14-1	1-86
Nicotinic acid (mg)	13-55	5.04	6.86	7-76	10.32	12-48	60-9I	19-51	23-43	10-18	3.80	5.47	6·18	7-62	9:35	56-11	14-33	17-78
Pyridoxine (mg)	81.1	0-36	0.63	0-72	0.92	L1·I	8E-1	1-58	1·86	£6.0	0-27	0-51	0-62	LL-0	16.0	1.08	1-27	1:42
Ascorbic acid (mg)	37-7	1.62	8.6	13.8	72-J	33-7	47-0	60-8	82-1	33-7	20.0	4.68	12-3	20-8	29.2	43.1	58-7	0.02
Cholecalciferol (µg)	2-68	2-13	0-63	0-75	1.26	96-1	3.11	5-42	7:68	5.00 7	64-1	0.50	£9.0	90 I	1.48	2.35	4.39	6-26

Nutrient intakes in Great Britain 1968-1971

Smith et al. 1972; Lonergan et al. 1975). Many nutritionists have suggested that in an environment where the motor-car, television and domestic and industrial work-saving appliances are common, individual energy requirements are less than they were a decade or so ago. This implies that the recommended intakes for food energy were set too high in 1969. They have been reduced in a new report (Department of Health and Social Security, 1979).

Difference in energy intakes between the sexes

Sex differences in energy intake have been discussed by Durnin (1976). As expected, in these studies of schoolchildren and adults, mean energy intakes of men and boys were greater than those of women and girls of the same age. This difference between the sexes was allowed for above the age of 11 years in the Department of Health and Social Security (1969) recommendations but the results reported here showed that even in pre-schoolchildren from age 12 months onwards boys have higher energy intakes than girls of the same age. Widdowson (1947) and Black *et al.* (1976) also found that energy intakes of boys were larger than those of girls at this early age. The recommended daily amounts of energy for groups of people are now larger for males than for females from infancy onwards (Department of Health and Social Security, 1979).

Nutrient intakes

Recommendations for nutrient intakes were defined in the Department of Health and Social Security (1969) Report as amounts 'which are sufficient or more than sufficient for the nutritional needs of practically all people in a healthy population'. The distributions of the selected nutrient intakes reported here showed that many individuals in the different groups were eating less than the amount recommended without any signs of malnutrition. In addition the 1969 recommended amounts either approximated to or were less than the mean of the frequency distributions of intakes. The findings suggest that a more practical definition of the recommended amount of a nutrient would be the average amount of the nutrient which should be provided per head in a group of healthy people if the needs of practically all members of the group are to be met. This definition was agreed by the Committee on Medical Aspects of Food Policy (Department of Health and Social Security, 1979).

The authors acknowledge gratefully the help of Area Medical Officers and Principal School medical officers in the places in which they worked at the time of the pre-school and schoolchildren surveys, of the General Medical Practitioners who co-operated in the survey of pregnant women and of the Senior Physicians in Geriatric Medicine who assessed clinically the participants in the surveys of elderly people. Not least, they wish to thank all the subjects who took part so willingly in the surveys.

REFERENCES

Black, A. E., Billewicz, W. Z. & Thomson, A. M. (1976). Br. J. Nutr. 35, 105.

Cook, J., Altman, D. G., Moore, D. M. C., Topp, S. G., Holland, W. W. & Elliott, A. (1973). Br. J. prev. Soc. Med. 27, 91.

- Department of Health and Social Security (1969). Rep. Publ. Hlth. med. Subj. no. 120.
- Department of Health and Social Security (1972). Rep. Hlth. Soc. Subj. no. 3.
- Department of Health and Social Security (1975). Rep. Hlth. Soc. Subj. no. 10.
- Department of Health and Social Security (1979). Rep. Hlth. Soc. Subj. no. 15.
- Durnin, J. V. G. A. (1976). Proc. Nutr. Soc. 35, 145.
- Durnin, J. V. G. A., Lonergan, M. E., Good, J. & Ewan, A. (1974). Br. J. Nutr. 32, 169.
- Durnin, J. V. G. A., McLees, W. J., Yuill, S. A., Bushy, A. D., Gay, C. A. & Blake, E. C. (1964). Proc. Nutr. Soc. 23, xiv.

251

252 SYLVIA J. DARKE, MOLLY M. DISSELDUFF AND G. P. TRY

Exton-Smith, A. N., Stanton, B. R., & Windsor, A. C. M. (1972). Nutrition of Housebound Old People. London: King Edward's Hospital Fund for London.

Lonergan, M. E., Milne, J. S., Maule, M. M. & Williamson, J. (1975). Br. J. Nutr. 34, 517.

Ministry of Health (1968). Rep. Pub. Hlth. med. Subj. no. 118.

Stanton, B. R. & Exton-Smith, A. N. (1970). A Longitudinal Study of the Diets of Elderly Women. London: King Edward's Hospital Fund for London.

Topp, S. G., Cook, J. & Elliott, A. (1972). Br. J. prev. Soc. Med. 26, 106. Widdowson, E. M. (1947). Spec. Rep. Ser. med. Res. Counc. no. 257.

Printed in Great Britain