
Canad. Math. Bull. Vol. 27 (3), 1984 

THE ABSOLUTE GALOIS GROUP OF A RATIONAL 
FUNCTION FIELD IN CHARACTERISTIC ZERO 

IS A SEMI-DIRECT PRODUCT 

LOU VAN DEN DRIES(1) AND PAULO RIBENBOIM(2) 

ABSTRACT. Let K be a field of characteristic 0 and t an indeter­
minate. It is shown that the absolute Galois group of K(t) is the 
semi-direct product of a free profinite group with the absolute 
Galois group of K. 

NOTATION. If K is a field, let K denote its algebraic closure, let ^(K) = 
Gal(K | K) be the profinite group of automorphisms of K which fix K; G(K) is 
called the absolute Galois group of K. 

Let K((t1/co)) = Um = i K((r1/m)) be the field of Puiseux series over K. 
If K is any field and t an indeterminate, we have the exact sequence of 

profinite groups 

(*) ®(HC(r)) >4 »(K(t)) 2* «(K) 

where i is the natural inclusion and IT is the restriction. If K has characteristic 
0, Douady proved [1] that ^(K(t)) is the free profinite group on a set which is 
in one-to-one correspondence with K. 

K o-

K o-

o K ( t ) 

o K ( t ) 

We shall prove here the following for K of characteristic 0: 
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THEOREM. The exact sequence (*) splits, that is there is a continuous 
homomorphism s : ^(K) -» ^(Kit)) such that IT ° s = identity. 

Proof. We identify »(JK) with Gal(K(t) | K(t)). Let a e «(X). We first extend 
a to an automorphism & of the field K((t1,0°)) of Puiseux series, by putting 

6-(a_.nrn/m + a_ n + 1 r n + 1 / m + • • • + a0 + c^f1/m + • • •) 

= o-(a_ n)r n / m+o-(a_ n + 1)r n + 1 / m + - • • + o-(a0) + cr(a1)f
1/m + - • • . 

Obviously cr»-><j defines an embedding of the group S(K) into the group 
Aut(K((0) | K(f)). 

Since K((t1/cc)) is algebraically closed (see for example, Walker [6]), we may 
consider K{t) as embedded into K((t1/QO)). Let s (a) be the restriction of & to 
Kit), so s(cr)G«(K(f)) and this defines the mapping s : «(K) -» «(K(f)). 
Clearly s is a group-homomorphism and 7r ° s = identity. 

Now we shall prove that s is continuous. It is equivalent to show that if 
a(t)eK({t1/0°)) is algebraic over K(t) there is a finite extension L\K, L^K, 
such that all coefficients of a are in L. 

This follows from the next proposition: 

PROPOSITION. Let K be a field of characteristic 0 and let L range over the 
subfields of K which are finite extensions of K. Then P= [J ^ L((t1/co)) is an 
algebraic closure of K((t)). 

Proof. If L = K(y)czK then L((tVm)) = K((t))(y, t1/m) hence P is algebraic 
over K((t)). The fact that P is an algebraically closed field may be inferred 
from a close reading of the constructive proof (in Walker [6]) that K((f1/co)) is 
algebraically closed. 

However, for the convenience of the reader we give an independent proof 
that P is algebraically closed. 

Let v be the valuation of P defined as follows: if a(t)eP, if r e Q is the 
smallest exponent of the non-zero terms of the Puiseux series a(t), we define 
v(a(t)) = r. The value group of v is Q and the residue field is K. Each subfield 
L((fI/m)) of P is henselian with respect to v, so P is also henselian. But, it is 
known that if a field is henselian with respect to a valuation with divisible value 
group and algebraically closed residue field of characteristic 0, then the field 
itself is algebraically closed; this concludes the proof. • 

REMARKS. (1) The splitting morphism is uniquely defined by the K(t)~ 
embedding of K(t) into K((t1/ao)). 

(2) We would like to know more about the s-action of ^(K) on the free 
profinite group ^(Kit)). In an attempt to determine this action we proceed as 
follows. After identifying each element a of K with the K-place having t — a as 
uniformizing parameter, we consider any finite subset S of K; since each such 
set is contained in a finite subset of K which is invariant under the action of 
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^(K), we may assume without loss of generality that S is invariant. Let K(t)s 

be the largest subfield of K(t) containing K(t) and such that all points of K\S 
are unramified in K(t)s \ K(t). 

Let 2FS = Gsl(K(t)s \ K(t)). It is known that &s is a free profmite group on a 
set with the same cardinality as S and ®(K(t)) is the inverse limit of the groups 
!Ws ( s e e Ribes [5]). Since S is invariant under the action of ^(K) then K(t)s is a 
Galois extension not only of K(t) but even of K(t), and we have the exact 
sequence of profmite groups: 

(**) &s »Gal(K(f) s | JK(0)-» «(K) 

(with the morphisms of inclusion and restriction). 
Once more, we have a splitting s : ^(K)—> Gal(K(f)s I K(t)), namely s(a) is 

the restriction of & to K(t)s. 
In order to determine the s-action of ^(K) on cFs it suffices to determine the 

action on a free generator set of 3*s. This has been done only in some special 
cases, cf. [1], [2], [3], [4]. 
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