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We investigate the dynamics and energy production capability of a flexible piezoelectric
plate submerged close to the free surface and exposed to incident head gravity waves and
current. A theoretical model is derived in which the flag and its wake are represented
with a vortex line while the body of the fluid is considered to be inviscid. The model is
employed to describe the hydrodynamic interactions between a flexible plate, its wake,
gravity incident waves and the current. The model reveals two distinct vibration states of a
piezoelectric device corresponding to almost similar optimal energy production levels. The
first is associated with the cantilever fluttering mode of the plate, with limited dependency
on the plate’s flexibility across different Froude numbers and incoming wave frequencies.
The other resembles the flow-induced flapping mode in more flexible plates, with the
energy output showing a higher dependency on plate flexibility. The concurrent existence
of these two energetic modes allows adjustment of the plate length to consistently achieve
the maximum energy production level across different flow conditions. The role of the
Froude number of the system’s responses is explored and correlated to the appearance of
gravity wave groups on the surface, each propagating with a different wavenumber. It is
shown that a submergence depth of less than half of the body length is required to reach
a high energetic condition in subcritical and critical flows. Finally, the optimal inductive
and resistive values are related to proper matching between flow, mechanical and electrical
time scales.

Key words: flow-structure interactions, vortex dynamics, wave-structure interactions

1. Introduction

The wave energy resource is significant and could supply 10–20 % of the world’s
energy demand (Aderinto & Li 2018). Different technologies have been proposed to
extract renewable energy from ocean current and ocean waves (Babarit 2017). Still, few
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technologies can harvest energy from these two resources concurrently. One promising
candidate is to use the coupling between fluid and structure in terms of vortex-induced
vibration, galloping and fluttering response to either directly enable energy transfer from
the incoming current (Zhu & Peng 2009) or actively modify the impedance of the device
to capture ocean energy more efficiently (Falnes & Kurniawan 2020; Ringwood 2020).
Deployable and flexible structures are good candidates to enhance the performance of
energy harvesting devices while addressing the reliability and survivability challenges
facing conventional designs based on rigid-body systems (Pecher & Kofoed 2017). The
flexible wave energy converters such as the wave carpet (Koola & Ibragimov 2003; Alam
2012) and piezoelectric wave energy converter (Jbaily & Yeung 2015) use the cyclic
wave action to generate an alternating current electrical energy. These devices are easily
adjustable and can be employed as wave attenuation devices and hybrid wave/current
energy harvesters on fixed and moving marine structures. They can also be combined with
other devices to enhance the locomotion of marine vehicles (Collins et al. 2021).

A flexible thin structure with distributed wave energy converters, analogous to a
piezoelectric plate, is a canonical rendition of a wide range of the above multi-segmented
flexible energy harvesting concepts (Erturk & Inman 2011). Piezoelectric thin structures
are employed to harvest wave energy directly (Viet, Wu & Wang 2017; Mutsuda et al.
2019), or they are used as a model to study the asymptotic response of multi-segmented
conventional devices, such as M4 and Pelamis, wherein the energy is captured from
differential deformation of adjacent segments (Stansby, Moreno & Stallard 2015; Peng
et al. 2020). These systems, in the limit of many interconnecting bodies, resemble
the canonical piezoelectric plate with infinitesimal neighbouring electrical circuits in
which a simple mathematical model can capture the role of mechanical-to-electrical
conversion as well as the resistance capacitance and inductance components of the
electrical circuit (Doaré & Michelin 2011; Michelin & Doaré 2013). Another related
power harvesting system with similar principles is electro-active polymers (Babarit et al.
2013). All of these technologies have the advantage of transforming the mechanical
actuation to electrical output directly, and therefore eliminating the need for including
complex mechanical power take-off and power conversion systems (Renzi et al. 2021).
The coupled hydro-electro-mechanic response of these structures has been studied near
the free surface Renzi (2016), next to the vertical wall (Zheng et al. 2020), and as an
array of energy harvesters (Mutsuda et al. 2013). Furthermore, previous research has
explored using flexible plates as adjustable floaters and wave energy dissipation devices
(Selvan & Behera 2020; Zheng et al. 2021). In particular, the use of floating plates
for harvesting wave energy is explored in Michele et al. (2020) and Michele, Zheng
& Greaves (2022), wherein a theoretical model based on structural mode shapes of
a circular plate is proposed to examine the wave power extraction capacity of these
concepts.

In a recent study conducted by Mougel & Michelin (2020), it was discovered that
the flapping dynamics of a flexible plate in potential flow is influenced significantly by
the presence of the free surface and resonant conditions between the plate and surface
gravity waves. Moreover, previous research by Renzi (2016) highlighted that optimal
energy harvesting by a piezoelectric plate in a purely harmonic incoming wave relies
on constructive matching between the plate’s natural frequency and the wave frequency.
Building upon these findings, the current study explores how the flow interaction among
a flexible piezoelectric plate, its wake, and the free surface can be utilized to manipulate
the dynamic characteristics of hybrid wave/current energy harvesters and enhance their
energy capturing efficiency.
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Hybrid wave/current energy capture by a piezoelectric plate

A closely related problem is a hydrofoil oscillation near the free surface as a passive
propulsor or energy harvesting device (Rozhdestvensky & Ryzhov 2003). Grue, Mo &
Palm (1988) and Crimi & Statler (1964) conducted a mathematical study on the propulsion
of a moving and oscillating foil in close proximity to a free surface under two different
scenarios: with incoming waves and without incoming waves. In the absence of incoming
waves and a stationary free surface, the study revealed that the momentum transfer between
the foil and the flow could result in either positive or negative values, leading to an increase
or decrease in the thrust force. However, regardless of the specific scenario, the generation
of waves always results in a significant amount of wasted energy. With the presence of
surface waves, it was shown that potentially, up to 75 % of the incoming wave energy
could be captured and leveraged towards propulsion. Similarly, it has been explored that
prescribed deforming fishes near the free surface can benefit from the surface waves to
adjust their propulsion (Reece & Siekmann 1964; Fish & Rohr 1999; Shoele & Zhu 2015).
It is interesting to study how through proper selection of structural parameters, one can take
advantage of the combined effects of current and wave for energy harvesting applications
and achieve optimal operating conditions.

This paper employs a mathematical model of a flexible piezoelectric plate placed at a
finite depth below the free surface to study the energy harvesting regimes. Wide ranges of
incoming wave frequency, submergence depth and current are investigated. The effects of
mechanical and electrical parameters on the energy transfer between flow and structure are
quantified, and major response modes are examined. Finally, the conclusion and discussion
about future directions are presented.

2. Problem formulation

2.1. Configuration
We consider the dynamics of a two-dimensional thin neutrally buoyant flexible plate of
length 2b, with b being the half-chord length placed in a uniform axial flow of velocity u
and density ρ at a distance H beneath the mean free surface (figure 1). The flow is assumed
to be incompressible, inviscid and infinitely deep. The infinite depth assumption is made to
simplify the theoretical modelling. In addition, the infinite depth assumption is appropriate
for the current problem since, in the anticipated energy harvesting applications, the plate’s
length is much smaller than the water depth. Here, we assume the clamped boundary
condition at the leading edge, and the free boundary condition at the trailing edge of
the plate. In addition, it is considered that both surfaces of the plate are covered with
infinitesimal piezoelectric patches with segmentation lengths much smaller than b. Each
segment is attached to an independent energy harvesting system with linear resistance R,
capacitance C, and inductance L elements. The sandwich plate’s mass per unit length is
ms, and its equivalent bending stiffness is kb. Since the plate is very thin, the inertial effect
of the plate mass is negligible and therefore is not considered.

2.2. Governing equations
It is assumed that the oscillation amplitudes and the amplitudes of the incoming waves are
small. This allows us to use linearized equations of the plate and flow boundary conditions.
We denote the vertical deflection of the plate with Y(x, t), and the electric voltage
difference between a small piezoelectric patch on the top and bottom surfaces of the flag
with V(x, t). The piezoelectric patch is connected to the output circuit with resistance and
inductance elements, as shown in figure 1. It is assumed that Y(x, t) = O(εpb) � b for a
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Head incident wave

u
H

y

x
l = 2b

L R

Figure 1. Schematic configuration of a piezoelectric plate beneath the free surface in uniform flow exposed
to an incident harmonic wave. In this study, the incident wave is assumed to propagate in the direction of the
current, which is also referred to as the head wave (Grue & Palm 1985).

small εp value. Here, εp is related to incoming wave amplitude as εp ≈ A0/b, with A0 being
the incoming wave amplitude. For a thin submerged plate, the structural inertial effects are
negligible compared to the bending effect and fluid forces; therefore, the flag is assumed to
be massless. Furthermore, it is assumed that the gravity and buoyancy forces cancel each
other for the neutrally buoyant flag considered in this study, and the initial configuration
of the plate is force-free. The non-dimensional variables shown with ˆ are defined as

x̂ = x
b
, Ŷ = Y

b
, t̂ = ut

b
, V̂ = V

u
√

ρb/C
. (2.1a–d)

Here, the non-dimensionalization is done based on b, b/u, ρ, u
√

ρb/C and u
√

ρbC
as reference length, time, density, voltage and charge density. Henceforth, we adopt the
same notation for the non-dimensional variables x, t, Y and V as their dimensional
counterparts, for brevity. The non-dimensional linearized electrical-mechanical equations
of the piezoelectric plate can be written as (Xia, Michelin & Doaré 2015; Shoele & Mittal
2016)

1
U∗2

∂4Y
∂x4 − α

U∗
∂2V
∂x2 = −[P], (2.2)

β
∂2V
∂t2

+ ∂V
∂t

+ βτ 2V + αβ

U∗
∂4Y

∂x2 ∂t2
= 0, (2.3)

where U∗ is the non-dimensional free-stream velocity, α is the coupling coefficient, β

quantifies the resistant property of the electrical circuit, and τ represents the inductance
property of the electrical circuit (Thomas, Deü & Ducarne 2009; Xia et al. 2015). These
characteristic parameters are defined as

U∗ = ub

√
ρb
kb

, α = χ√
kbC

, β = CuR
b

, τ = b

u
√

CL
, (2.4a–d)

where χ is the coupling coefficient of piezoelectric patches, and [P] = P+ − P− is the
pressure jump across the thin plate. The clamped and free boundary conditions at x = −1
and x = 1 are defined as

Y = 0,
∂Y
∂x

= 0 at x = −1, (2.5)

1
U∗

∂2Y
∂x2 − αV = 0,

1
U∗

∂3Y
∂x3 − α

∂V
∂x

= 0 at x = 1. (2.6)

As a starting point in describing the flow, we follow the procedure proposed by Crimi &
Statler (1964). The flow is assumed to be potential, and the effect of viscosity is confined to
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Hybrid wave/current energy capture by a piezoelectric plate

the thin two-dimensional vortex sheet along the plate and the deformable free vortex sheet
associated with the wake of the plate. The former part is known as the bounded vortex
sheet, and the latter is the free vortex sheet. This model is originally proposed to study
the dynamics of thin aerofoils and flexible plates (Thwaites & Meyer 1960; Nitsche &
Krasny 1994; Pullin & Wang 2004; Alben 2008b). Moreover, because the plate deflection
is of the order of O(ε), the wake is approximately in the y = 0 plane. As will be discussed
shortly, this model can be used to relate the average flow velocity in the fluid domain to the
vortex sheet strength Λ using the Biot–Savart kernel (Saffman 1995). Knowing Λ along
the plate, the pressure jump across the plate, [P], can be calculated from the unsteady
Bernoulli equation as

− ∂[P]
∂x

= ∂Λ

∂t
+ ∂Λ

∂x
at y = 0. (2.7)

A potential function Φ(x, y, t) is used to specify the perturbed flow caused by the
presence of the plate, its wake and the incoming waves and current. The velocity potential
satisfies the Laplace equation inside the flow region and linearized boundary conditions
on the free surface (Haskind 1954; Grue et al. 1988; Newman 2018):

∇2Φ(x, y, t) = 0, (2.8)

∂η

∂t
+ ∂η

∂x
= ∂Φ

∂y
at y = h, (2.9)

∂Φ

∂t
+ ∂Φ

∂x
= −1

Fr2 η at y = h, (2.10)

where η(x, t) is the height of the free surface disturbance, h = H/b is the normalized
submergence depth, and Fr is the Froude number, defined as

Fr = u√
gb

= u√
gl/2

, (2.11)

with g being the gravitational acceleration. Equation (2.9) is known as the kinematic
boundary condition, and (2.10) is known as the dynamic boundary condition of the free
surface. The derivations of (2.8)–(2.10) are given in Appendix A.

The velocity potential Φ also satisfies the no-penetration boundary condition on the
surface of the piezoelectric plate (Alben 2008a,b),

∂Y
∂t

+ ∂Y
∂x

= ∂Φ

∂y
at y = 0, (2.12)

and finally, the flow velocity should be finite at the trailing edge. To achieve this, a free
vortex is shed from the trailing edge of the plate, and the strength of the newly shed
vortex is determined from the Kutta condition at the trailing edge of the piezoelectric
plate (Saffman 1995).

Assuming a harmonic incoming wave, we can express Φ as a summation of two
harmonic potential functions,

Φ(x, y, t) = Re[(φ0 + φ1) eiωt], (2.13)

where Re means the real part of the equation. Here, φ0 and φ1 are functions of spatial
coordinates only, where φ0 is the known harmonic potential function of the incident
wave with the non-dimensional angular frequency ω, and φ1 is velocity potential due
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to disturbed flow as a result of the inclusion of the piezoelectric plate in the flow field.
We can further divide φ1 into three components, φ1 = φW

1 + φI
1 + φF

1 , where φW
1 is the

contribution to the potential from the plate and its wake, φI
1 is the contribution from the

image system of φW
1 outside the free surface, and φF

1 is the contribution from the free
surface when there is no incoming wave. In particular, in order to satisfy the free surface
conditions in our problem, the image system consists of a vortex sheet identical to vortex
sheets in the plate, and its wake is assumed at h above the free surface. The combined
effect of the real vortex sheet and its image ensures that φW

1 + φI
1 = 0 on the mean free

surface, therefore φF
1 is the primary function that describes the perturbed free surface.

In this study, we consider only incoming waves propagating in the positive x-direction.
These waves are known as the head wave, while if the incident wave propagates opposite
to the current direction, then it is known as the following wave (Grue & Palm 1985). The
incoming head wave elevation η0 is expressed as

η0 = A0 sin (ωt − k0x) , (2.14)

where A0 is the non-dimensional amplitude of the incoming wave, k0 is the wavenumber
of the admissible head wave (Haskind 1954),

k0 = 1
2 Fr2 [1 + 2ω Fr2 −

√
1 + 4ω Fr2], (2.15)

and φ0 can be expressed as

φ0(x, y) = A0√
k0 Fr

ek0( y−h) e−ik0x. (2.16)

Since the incident wave and consequently the motion of the body are harmonic,
the vortex strength along the body and in the wake can be expressed as
Λ(x, t) = Re[γ (x) eiωt], allowing the non-dimensional φW

1 and φI
1 to be related to γ (x)

through (Crimi & Statler 1964)

φW
1 (x, y)=− 1

2π

∫ 1

−1
γ (x′) tan−1

(
y

x − x′

)
dx′ − iωΓ̄

2π

∫ ∞

1
e−iω(x′−1) tan−1

(
y

x − x′

)
dx′,

(2.17)

φI
1(x, y)= − 1

2π

∫ 1

−1
γ (x′) tan−1

(
y − 2h
x − x′

)
dx′ − iωΓ̄

2π

∫ ∞

1
e−iω(x′−1) tan−1

(
y − 2h
x − x′

)
dx′,

(2.18)

where Γ̄ is the harmonic amplitude of total circulation of the plate (i.e. Γ = Re[Γ̄ eiωt]),
related to γ as

Γ̄ =
∫ 1

−1
γ (x′) dx′. (2.19)

Finally, φF
1 (x, y) can be expressed as

φF
1 (x, y) = i

2π Fr2

∫ 1

−1
γ (x′) G(x′; x, y) dx′ + ωΓ̄

2π Fr2

∫ ∞

1
e−iω(x′−1) G(x′; x, y) dx′,

(2.20)
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Hybrid wave/current energy capture by a piezoelectric plate

where G(x′; x, y) is the fundamental solution for an oscillating point vortex beneath the
free surface (Tan 1955, 1957) and is given by

G(x′; x, y) =
∫ ∞

0
eσ( y−2h)

[
eiσ(x−x′)

(σ − σ1)(σ − σ2)
− e−iσ(x−x′)

(σ − σ3)(σ − σ4)

]
dσ

+ D1 exp
(
σ1
[
y − 2h + i(x − x′)

])+ D2 exp
(
σ2
[
y − 2h + i(x − x′)

])
+ D3 exp

(
σ3
[
y − 2h − i(x − x′)

])+ D4 exp
(
σ4
[
y − 2h − i(x − x′)

])
,

(2.21)

where

σ1,2 = 1
2 Fr2

[
1 − 2ω Fr2 ±

√
1 − 4ω Fr2

]
,

σ3,4 = 1
2 Fr2

[
1 + 2ω Fr2 ±

√
1 + 4ω Fr2

]
.

⎫⎪⎪⎬
⎪⎪⎭ (2.22)

Here, σ1 to σ4 are the wavenumbers of possible wave trains created as a result of the
insertion of the plate, and D1 to D4 are complementary coefficients that are calculated
such that G(x′; x, y) provides the correct radiation free surface condition at x → ±∞.
Further information can be found in Reece (1963).

The relations of φW
1 , φI

1 and φF
1 to the vortex strength along the body and in the wake

γ ((2.17), (2.18) and (2.20)) can be used to express the no-penetration boundary condition
(2.12) along the plate (−1 ≤ x ≤ 1) based on γ as

−iω ξ(x) − ∂ξ(x)
∂x

+ ∂φ0(x, y)
∂y

∣∣∣∣
y=0

= 1
2π

−
∫ 1

−1

γ (x′)
x − x′ dx′

+ 1
2π

∫ 1

−1
γ (x′)

[
x − x′

(x − x′)2 + (2h)2 − i
Fr2 Gy(x′)

]
dx′

− iωΓ̄

2π

∫ ∞

1
e−iω(x′−1)

[
1

x − x′ + x − x′

(x − x′)2 + (2h)2 − i
Fr2 Gy(x′)

]
dx′, (2.23)

where Y(x, t) = Re[ξ(x) eiωt], and Gy(x′) = ∂G(x′; x, y)/∂y|y=0. Here, −
∫

is used to denote
the Cauchy principle value integral. Similarly, other equations can also be written based on
the normal modes of time-periodic variables. Using the notation [P](x, t) = Re[[p](x) eiωt]
and V(x, t) = Re[v(x) eiωt], (2.2), (2.3) and (2.7) are combined into(

1 + α2βω2

βω2 − iω − βτ 2

)
∂4ξ

∂x4 = −U∗2[p], (2.24)

iωγ + ∂γ

∂x
= −∂[p]

∂x
, (2.25)

with the boundary conditions

ξ = ∂ξ

∂x
= 0 at x = −1, (2.26)

∂2ξ

∂x2 = ∂3ξ

∂x3 = 0 at x = 1, (2.27)

finite velocity (Kutta condition) at x = 1. (2.28)
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The system (2.23)–(2.25) along with boundary conditions (2.26)–(2.28) is solved for ξ ,
[p] and γ . The electrical power output from the piezoelectric plate is

Ẇe = 1
β

ω

2π

∫ 2π/ω

0

∫ 1

−1
V2(x, t) dx dt = 1

2β

∫ 1

−1
|v(x)|2 dx. (2.29)

The non-dimensional power input from the incoming wave is calculated from (2.30) for
the wave train progressing in the direction of u, commonly referred to as the ‘head wave’:

Ẇw = Ew
∣∣cg + 1

∣∣ . (2.30)

In this relation, Ew = 1
2 A2

0/Fr2 is the incoming wave energy density, and cg = 1/(2
√

k0 Fr)
is the group velocity of the head wave. In addition, the mean thrust force acting on the
piezoelectric plate, T̄ , can be computed from

T̄ = T̄p + S̄, (2.31)

where T̄p is the thrust force due to the pressure difference along the plate, given by

T̄p = ω

2π

∫ 2π/ω

0

∫ 1

−1
[P](x, t)

∂Y
∂x

(x, t) dx dt = 1
2

∫ 1

−1
[p](x) ξ∗(x) dx. (2.32)

Here, ξ∗ is the complex conjugate of ξ , and S̄ is a non-dimensional suction force at the
sharp leading edge of the plate, pointing in the minus x-direction. The suction force is
calculated by applying the Blasius formula to a small circle Rδ0 of radius δ0 surrounding
the leading edge. In particular, we can write S = 1

2

∮
Rδ0

Ψ ′2(z) dz, where z = x + iy is the

complex number representing position in the x–y plane, and Ψ ′(z) = u − iv is the complex
velocity (Saffman 1995).

The mean energy equation, averaged in time, in its non-dimensional form can be
expressed as

Ẇw = Ẇe + T̄ + Ē, (2.33)

where Ē is the summation of mean wasted energy from the wake of the plate and scattering
surface waves from the inclusion of the plate below the free surface. To quantify the overall
efficiency of the piezoelectric plate, we define the energy harvesting efficiency ηP:

ηP = Ẇe

Ẇw

. (2.34)

2.3. Numerical method
For the numerical simulation, m + 1 Chebyshev–Lobatto collocation points are chosen to
discretize ∂2ξ/∂x2 along the plate:

xj = − cos
(

jπ
m

)
, with j = 0, . . . , m. (2.35)

Knowing [p] at the jth collocation point, ∂2ξ/∂x2 can be computed easily from (2.24)
along with the boundary conditions at the free end of the plate (2.27). Then, by integrating
∂2ξ/∂x2 twice and incorporating the boundary conditions at the fixed end ((2.27) and
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Hybrid wave/current energy capture by a piezoelectric plate

(2.26)), the plate deflection ξ(xj) can be computed. To solve (2.23), we employ a Glauert
series solution for γ ,

γ (θ) = 2

⎡
⎣a0 cot

θ

2
+

∞∑
j=1

aj sin (jθ )

⎤
⎦ , (2.36)

with θ = −arccos(x), and rewrite (2.36) as

1
2π

−
∫ 1

−1

γ (x′)
x − x′ dx′ =

⎡
⎣a0 −

∞∑
j=1

aj cos (jθ )

⎤
⎦ . (2.37)

We employ Fourier cosine series representations of variables, and group the coefficients
of cos(jθ) terms to obtain an infinite set of equations to solve for the coefficients. In
particular, the governing equation for γ (2.23) can be written as the set of algebraic
equations for ai:

ai −
∞∑

j=0

Qijaj = ri, (2.38)

where Qij coefficients account for the second and third terms in the right-hand side of
(2.23) as highlighted in Crimi & Statler (1964). In (2.38), ri is obtained from the cosine
Fourier expansion coefficients of the left-hand side of (2.23) and can be computed from

ri = [C−1]ik LHS(xk), (2.39)

where LHS(xk) is the summation of all terms on the left-hand side of (2.23) at the
collocation point xk along the plate. The transformation matrix Cij is defined as

Cij =
⎧⎨
⎩

1, if j = 0,

− cos
(

ijπ
m

)
, if j ≥ 1.

(2.40)

Similarly, upon inserting (2.36) in (2.25), the pressure distribution on the plate can be
expressed as

[p] = −2

⎡
⎣a0 cot

θ

2
+

∞∑
j=1

bj sin (jθ)

⎤
⎦ , (2.41)

where

bj =

⎧⎪⎨
⎪⎩

a1 + iω
[
3a0 + a1 + a2

2

]
, if j = 1,

aj + iω
2j

[
aj+1 − aj−1 + 2 (2a0 + a1) (−1)j+1] , if j ≥ 2.

(2.42)

It appears from (2.41) that [p] is singular at the leading edge x = −1, therefore from
(2.24), ∂4ξ/∂x4 is singular at the leading edge. This does not pose a problem as (2.24)
is evaluated only for the internal nodes. In particular, we solve the second-order equation
(2.24) for ξxx, and replace the equations on the boundary nodes of x0 and xm with the
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Figure 2. (a) Dependence of thrust force on the heaving frequency of a horizontal plate below the free surface,
for Fr = 0.25 and h = 0.5, 1, 3, ∞. Dashed lines are for Grue et al. (1988); magenta circular symbols are
the numerical prediction for Zhu, Liu & Yue (2006) obtained for ah/b = 0.05, with ah being the heaving
amplitude. The other symbols are for the current model. (b) Comparison of the thrust force for different incident
wavenumbers between the current model (symbols) and Grue et al. (1988) (dashed lines) for a fixed plate
with h = 1 and Fr = 0.25 and 5. Here, A0 and k0 are the non-dimensional amplitude and wavenumber of the
incident wave.

two boundary conditions at the free end of the plate, ξxx(xm) = ξxxx(xm) = 0, to solve the
following system of m + 1 equations:(

1 + α2βω2

βω2 − iω − βτ 2

)
Dxxξxx = −U∗2[p], for j = 1, . . . , m − 1, (2.43)

ξxx(xm) = 0, (2.44)

Dx ξxx(xm) = 0, (2.45)

where Dx and Dxx are the first- and second-order Chebyshev differentiation matrices.
Following the convergence study, 21 Chebyshev–Lobatto nodes along the plate length are
found to be sufficient to discretize the governing equations. Similarly, the series expansions
in (2.36) and (2.41) are also truncated to contain only the first 21 terms.

3. Validation

To validate the present model, we compare the thrust force of the plate with Grue et al.
(1988) for the scenarios in which the plate undergoes periodic heaving motion close
to the calm free surface without any incident wave in figure 2(a). Four submergence
depths, h = 0.5, 1, 3, ∞, are tested, while the Froude number is fixed at Fr = 0.25 for all
cases. The non-dimensional amplitude of heaving motion is denoted ah/b. In addition, the
numerical results of the same problem for a three-dimensional foil beneath the free surface
by Zhu et al. (2006) are also included. In Zhu et al. (2006), the heaving motion of a thin
NACA0005 foil, with a large span-to-chord length ratio 10 and a small heaving amplitude
ah/b = 0.05, is simulated for the submergence depth h = 1. The large span-to-chord ratio
of this numerical result creates a practically two-dimensional flow field similar to the
conditions examined here. The present result compares well with previous analytical and
numerical results. The maximum difference for h < 1 cases is less than 3 %, while the
maximum difference of 15 % is seen between our prediction and reported values in Grue
et al. (1988) for high frequency and small h = 0.5 cases.
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Figure 3. (a–c) The average electrical power output and lateral deflection amplitude (lines), and (b–d) energy
efficiency versus ω and U∗ for three representative values: Fr = 0.1, 1, 10. Other parameters are fixed at α =
0.5, β = 1, τ = 0 and h = 1.0. The regions close to ω Fr2 = 1

4 are marked with a purple line since the proposed
linear solution is not valid due to abrupt changes of surface wave propagation modes (Palm & Grue 1999).

In addition, we cross-compare our predictions with the reported values of a fixed plate
exposed to the incident waves, as shown in figure 2(b). Here, the plate is kept fixed at its
initial position, and the thrust forces for different incoming wavenumbers are compared to
reported values in Grue et al. (1988). The submergence depth is h = 1, and Fr = 0.25, 5
are tested. The prediction from the current method follows closely the previously reported
values, with maximum error less than 10 %.

4. Results

In the following, we investigate how the characteristic parameters influence the vibration
behaviour and energy harvesting capabilities of the piezoelectric plate energy harvester.

4.1. Effects of reduced velocity
The bending rigidity of a piezoelectric plate is characterized using the non-dimensional
reduced velocity U∗ presented in (2.4a–d). In figures 3(a–c), the electrical power output

Ẇe and the ratio of maximum lateral deflection of the plate to the incident wave amplitude
Δ/A0 are plotted for a wide range of 10−2 < U∗ < 102 and 10−2 < ω < 10 for three
representative Froude numbers: Fr = 0.1 (subcritical flow), Fr = 1 (critical flow), and
Fr = 10 (supercritical flow). Here, Δ is defined as the peak-to-peak lateral deflection of the
plate, defined as Δ = ymax − ymin, where = ymax and ymin are the maximum and minimum
lateral positions of the plate. The immediate regions of ω Fr2 = 1

4 are removed from the
plots with the purple line. At this condition, the radiative waves originating from the plate
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switch from σ1 to σ4 waves to include only σ3 and σ4 waves, hence the proposed linear
solution stops being valid (Palm & Grue 1999). All other parameters are fixed at their
representative values h = 1.0, α = 0.5, β = 1 and τ = 0.

For the subcritical flow, the output energy is impacted mainly by the wave frequency,
and changes only marginally with the flexibility of the plate, represented by U∗.
Nonetheless, for higher frequencies, two distinct maxima are observed for all Fr cases:
one at U∗ > 1 resembling the flow-induced flapping mode of the plate, and the other at
U∗ < 1 related to the cantilever resonance mode of the plate, hereafter referred to as the
fluttering mode. Looking at subcritical flow with Fr = 0.1 in figure 3(a), we can see that
while Ẇe decays quickly as ω decreases below 1, the maximum deflection of the plate is
almost independent of U∗ in this range if the plate vibrates with the flapping mode. On the
other hand, contour lines with similar Δ/A0 have a linear trend in the log10(ω)–log10(U

∗)
plane if the plate oscillates in its fluttering mode. The exception is an isolated small region
at higher U∗ and ω ≈ 2 where there is a sudden increase in the flapping amplitude and the
electrical energy output. The same observation can be made across different Fr numbers,
wherein the maximum harvested energy is localized at a narrow range of frequencies and
U∗. In this condition, the convective time scale of the problem and the encountered wave
frequency takes a particular ratio that promotes better energy transfer from the flow to the
plate.

The energy harvesting efficiencies ηP, for Fr = 0.1, 1, 10, are shown in figures 3(d–f ).
The energy harvesting efficiency increases with ω when Fr is small and the flow is critical
or subcritical. When ω Fr2 < 1

4 , the energy harvesting efficiency shows larger sensitivity
to ω compared to U∗. On the other hand, when ω Fr2 > 1

4 (the right-hand side of the
purple line of Fr = 1 cases, and the entire region of Fr = 10 cases in figure 3b), ηP is
affected by both U∗ and ω. In this case, only one new surface wave σ2 will be generated
in addition to the incident head wave σ4, and both of these waves propagate downstream.
The incoming wave transmits partially to the electrical energy, while the rest of the energy
propagates in the downstream direction as new types of waves.

Figure 4(a) shows the locations of the two highest values of ηP in the ω–U∗ plane for
different Fr numbers. The first branch is located at high U∗ > 1 values, and the second
branch is observed at U∗ < 1. The highest achievable ηP is always observed for higher
Fr cases, while its magnitude along both branches remains close. The position of the
optimal case in the first branch follows a power law with exponent ≈ −0.52, and shifts
to lower U∗ and higher ω regimes with the decrease of Fr. The changes along the second
branch are less dependent on U∗, with power-law exponent −0.27. The plate undergoes
different modes of vibration along each of these branches. The plate exhibits a classical
travel wave deflection pattern reminiscent of the flag flapping problem along the first
branch. Yet the plate vibrates at much smaller U∗ compared to that associated with the
fluttering instability of light flags (Alben 2008a). In this case, with an increase of Fr,
the place of maximum lateral deflection is relocated along the length while the vibration
amplitude reduces (figure 4b). On the other hand, the optimal cases along the other branch
consistently vibrate in their fluttering modes, as shown in figure 4(c). In this case, the
interaction between the first natural frequency of the immersed plate and the frequency of
the propagating surface wave increases the oscillation amplitude, and consequently results
in a higher level of harvested energy.

The results suggest that one can practically change the plate length to attain maximum
energy harvesting efficiency in two distinct response modes, flapping and cantilever
fluttering modes. In particular, from the definitions of non-dimensional parameters, we
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Figure 4. (a) The locations of the most energy efficient conditions in ω − U∗ parametric space with the
changes of Fr. (b) Snapshot of the plate deflection over one cycle along the first branch (flapping case), with
time instances marked from light to dark colour for a unit incoming wave amplitude. (c) Mode of flutter along
the second branch.

can show that U∗ ∝ b3/2, ω ∝ b−1 and Fr ∝ b−1/2, and therefore depending on the flow
speed and structural parameters, the plate length can be controlled to place the system
on the first optimal branch. Otherwise, the system can also be switched to the cantilever
model to maintain maximum energy harvesting efficiency. Also, when the incoming wave
spectrum is broadband, the cantilever fluttering mode will continue delivering maximum
attainable energy. On the other hand, to benefit from the flapping mode, it is necessary to
perform a complex control of U∗, perhaps by adjusting the flow velocity or, equivalently,
the advancement speed of the plate.

4.2. Effects of Froude number
The interaction of the surface wave and the submerged plate is highly dependent on the
Froude number Fr. Figure 5 compares Ẇe and Δ/A0 as functions of Fr and ω for three
representative reduced velocities, 0.1, 1 and 10, selected from the results discussed in the
previous subsection. All other parameters are fixed at their representative values α = 0.5,
β = 1, τ = 0 and h = 1. For the stiff plate (figure 5a), below the critical line of ω Fr2 = 1

4 ,
the harvested energy is mainly a function of ω, while for the cases above the critical line,
the harvested energy is primarily a function of Fr. In this case, the plate is actuated in
its cantilever fluttering mode. Vibration amplitude follows a trend similar to that of Ẇe.
At U∗ = 1, the vibration mode starts switching from fluttering to flapping, and the region

with higher Ẇe extends to lower ω and higher Fr cases (figure 5b).
For the very flexible plate with U∗ = 10 shown in figure 5(c), both Ẇe and Δ/A0 are

predominantly functions of ω, and Fr dependency is observed only over a narrow region
in the parametric space. In this case, the energy-producing region shrinks along the ω

axis but occurs over a wider range of Fr values. The vibration mode comprises travelling
flapping modes with one, two or three nodes along the plate length.

The variations of ηP with ω and Fr are shown in figure 5(d–f ). For lower U∗ cases,
different from Ẇe, the region with large energy harvesting efficiency ηP extends to higher
Fr ranges where the plate converts a higher percentage of the incoming wave to electrical
energy.

968 A31-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.583


K. Shoele

10–1 100
10–1

100Fr

Fr

10–1 100 10–1 100

10–1 100 10–1 100 10–1 100

–9

–8

–7

–6

–5

–4

–3

–2

10–1

100

10–1

100

10–1

100

10–1

100

10–1

100

–10

–8

–6

–4

–2

ω ω ω

L
in

e:
 l

o
g

1
0
 (
Δ

/A
0
)

log10 (Ẇe)
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Figure 5. Dependency of (a–c) Ẇe and Δ/A0, and (d–f ) ηP, versus ω and Fr for three representative U∗
values, 0.1, 1, 10. Other parameters are fixed at α = 0.5, β = 1, τ = 0 and h = 1.

A good correlation is identified between the amplitude of vibration and ηP. It is observed
that the highest efficiency in these cases is related directly to the amplitude of the fluttering
mode, and the highest efficiency could be found over a range of ω just before the dominant
vibration mode switching from flapping to fluttering mode. This trend changes at larger
reduced velocities, where the highest efficiency is concentrated at a narrow band of ω.

The region with high ηP and Ẇe coincides at ω ≈ 3, with much lower dependency on Fr.
It is found that for flexible plates, the wave cannot actuate the first fluttering mode due
to a large mismatch between the natural frequencies of the plate and the incoming wave,
and instead triggers and amplifies the flapping response of the plate. As a result, the plate
harvests simultaneously the energy from the wave and current, and reaches much higher
ηP.

4.3. Effects of submergence depth
The plate’s submergence depth changes its receptivity to the waves. Figure 6 shows
the dependency of Ẇe and Δ with the submergence depth and the wave frequency
for subcritical, critical and supercritical conditions. Other parameters are fixed at their
reference values. For subcritical conditions, the results are almost independent of the
submergence depth if h < 2, equivalently when the submergence of the plate is less than its
length. The same behaviour is observed for all U∗ cases. The deviation is only for minimal

submergence depth where the region with high Ẇe extends to lower ω ranges. In contrast,
a larger dependency on the submergence depth can be found for critical and supercritical
flows. For these cases, the power output shows a higher decay with depth for less flexible
plates than more flexible ones. This is due to a change in the energy harvesting mechanism
from wave-induced fluttering motion in stiff plates to wave-triggering flapping motion in

968 A31-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.583


Hybrid wave/current energy capture by a piezoelectric plate

100

h

h

101
Fr = 10–1 Fr = 100 Fr = 101

Fr = 10–1 Fr = 100 Fr = 101

–8

–7

–6

–5

–4

–3

–2

100

101

100

101

100

101

100

101

100

101

–8

–7

–6

–5

–4

–3

–2

L
in

e:
 l

o
g

1
0
 (
Δ

/A
0
)

L
in

e:
 l

o
g

1
0
 (
Δ

/A
0
)

ω ω ω

log10 (Ẇe)
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Figure 6. Dependency of the average electrical power output and maximum plate deflection on the
submergence depth h for different incoming wave frequencies ω and selected Fr: (a–c) U∗ = 0.1, and
(d–f ) U∗ = 10. The electrical parameters are fixed at the base values α = 0.5, β = 1, τ = 0.

flexible plates. A flexible plate with flapping motion has a larger oscillation amplitude, and
as a result, the combination of wave actuation and flow-induced flapping results in a higher
amount of harvested energy, despite the wave energy itself decaying with submergence
depth. Yet the benefit of the flapping motion declines quickly with an increase of Fr, as
the available wave energy weakens very fast with the depth.

The results suggest that the flapping mode reaches the highest energy production if the
plate is placed at h < 1 (half of the plate’s length) in subcritical and critical conditions.
The energy extraction efficiency plots depicted in figure 7 demonstrate that the highest
energy efficiency throughout the depth occurs when the system operates under near-critical
conditions and exhibits flapping mode vibration. The maximum attainable ηP is smaller for
stiffer plates, and concentrates near the free surface for higher Fr conditions. In practice,
these optimal conditions can be achieved with longer plates or faster incoming flow; in
both cases, it is beneficial to place the plate near the free surface.

4.4. Impact of electrical parameters
The coupling between a piezoelectric plate and a resonant circuit could substantially affect
the energy harvesting performance of the piezoelectric flag Xia et al. (2015). These effects
are related to α, the coupling coefficient, as well as β and τ , the resistive and inductive
properties of the electrical circuit. Figure 8 shows how electrical power output and the
maximum plate deflection change with ω across a wide range of the electromechanical
coupling parameter α. The other values are fixed at their nominal values. While α < 0.5
is expected in conventional piezoelectric materials, higher values can be achieved in
multi-segmented systems such as M4 and Pelamis with conventional mechanical energy
capturing derives. It is found that electrical power output is affected mainly by the wave
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Figure 7. Similar to figure 6, except that it shows the contour of ηP.

frequency at low Fr flow conditions and, to a much less degree, is dependent on α (figures
8a–c). The central role of having larger α is to expand the energetic range to smaller ω

while the energy level remains similar. The most energetic condition here is associated
with stiffer plates and higher frequencies.

On the other hand, the electrical power output is highly dependent on α for higher Fr
cases when the plate is in the supercritical condition (right of the purple line in figures
8d–f ). Here, the power output increases rapidly with α, and attains its maximum values at
α ≈ 3. However, the maximum energy output level is less than the value observed in the
subcritical condition. The maximum deflection of the plate is almost independent of the α

values, except for certain conditions of large α and stiff plates (figure 8a) where the large
electromechanical coupling results in higher effective bending stiffness and reduction of
the wave-induced vibration amplitude.

The effects of resistive and inductive properties of the plate, quantified with β and τ , are
shown in figure 9 for different U∗ values. In the following discussion, we focus specifically
on Fr = 0.1, h = 1 and α = 0.5 to represent the energetic condition of figure 8. Two
distinct ω values, 1 and 10, are tested, where it is found that the electric inductance
can enhance the output power over a narrow range τω ≈ 1. Over this range, there is
a destabilizing effect from the inductance, and as a result, the plate flutters with a
higher amplitude. This trend is intact across different U∗, suggesting that the inductive
properties can merely be adjusted based on the wave frequency, independent of the plate
flexibility, to reach a better energy harvester. The very large τ limit acts similarly to a short
circuit and results in minimal effective coupling between electrical and mechanical fields.
Consequently, the electric power output approaches zero regardless of β for τ 
 ω. On
the other hand, there is no inductance destabilization effect in small τ � ω regimes, and
the electric circuit is purely resistive. In this case, the output power is just a function of β

and reaches its maximum value when βω ≈ 1.
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(a) (b) (c)

(d ) (e) ( f )

10–1 100 10–1 100 10–1 100
10–1

100

101 –
3

–
4 –
5

–4–3

–
3

–
2

–
2

–
2

–2

–
2

–
2 –
3

–2

–3

–
4

α

10–1

100

101

10–1

100

101

–9

–8

–7

–6

–5

–4

–3

–2

L
in

e:
 l

o
g

1
0
 (
Δ

/A
0
)

–
1
0

–
1 –
1

–
1

–1

–
1

–
1

0

0

0
–1

–
2 –
2

–
3

–
3 –2

Figure 8. The effect of electromechanical coupling coefficient α on the average power output and plate’s
lateral deflection for three representative values U∗ = 0.1, 1, 10 in (a–c) the subcritical condition with
Fr = 0.1, and (d–e) the critical condition with Fr = 1. Here, h = 1.0, β = 1 and τ = 0.
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Figure 9. Dependency of the average electrical power output to inductive and resistive properties of the plate
for (a) ω = 1 and (b) ω = 10. Here, Fr = 10−1, h = 1.0 and α = 0.5, selected based on results in figure 8.

5. Conclusion

This work explores the energy production from a two-dimensional electromechanical
flexible plate placed in the proximity of a free surface and exposed to incident travelling
gravity waves and incoming current. The model represents a range of multi-segmented
hybrid current/wave energy harvesting devices. In order to capture the interaction between
the body, wake, and incident, diffracted and radiated gravity waves, a Green’s function of
a moving vortex near the free surface in inviscid flow is utilized. Through this theoretical
model, we identified the optimal conditions for energy production, and examined the
predominant vibration modes of flexible plates situated near the free surface.

Two distinct conditions with maximum energy production levels are identified: one
is associated with the cantilever fluttering mode of the plate, and the other is very
similar to the flow-induced flapping motion of the plate. The study demonstrates that
the optimal energy production regimes exhibit similar trends and are influenced by
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changes in the Froude number. However, these energetic conditions occur at different
non-dimensional flexibility values for the plate. The optimal flexibility for the cantilever
fluttering mode remains relatively consistent across various incoming wave frequencies
and Froude numbers. In contrast, the optimal flexibility for the flapping mode decreases
progressively as the wave frequency increases. This divergent behaviour between the two
modes provides valuable insights about selecting and adjusting the mechanical parameters
of hybrid wave/current energy harvesting devices.

The vibration amplitude and electrical power output are highly dependent on the Froude
number. In particular, their contour plots show a distinct behaviour in the subcritical,
critical and supercritical flow conditions associated with Fr < 1, Fr = 1 and Fr > 1,
respectively. Moreover, the resultant surface waves from the plate presence in the flow,
based on the ω Fr2 = 1

4 condition, determines the energy output level and efficiency of
the piezoelectric plate. It is seen that the submergence depth should be smaller than the
plate length to reach a good energy production level. The dependency on the submergence
depth is more stringent for flow-induced vibration modes than the cantilever fluttering
mode.

The role of electrical parameters is more regular and does not modify substantially the
optimal energy-producing conditions. Nonetheless, a larger electromechanical coupling
coefficient modifies the dynamic characteristic of the system, especially more flexible
plates vibrating in their flow-induced flapping mode. It mainly broadens the frequency
range corresponding to near-maximum energy production behaviour. The optimal resistive
value of the electric network related to wave frequency βω ≈ 1 and the optimal electric
inductance is associated with near resonance condition in the electric network, namely
when τω ≈ 1.

The results provided in this paper could be helpful in the estimation of the operating
threshold of hybrid wave/current energy harvesting devices that resemble a piezoelectric
plate. It can also be employed to adjust the system’s parameters, in particular the length of
the device, to reach one of the highest energy-producing conditions. The current theoretical
prediction using the inviscid flow theory and linear approximation should be tested with
future experiments and fully nonlinear fluid–structure interaction simulations (Vahab,
Sussman & Shoele 2021). In addition, the proposed model and the dispersion relation
are insufficient to explore the energy production of the system at the critical condition
ω Fr2 = 1

4 , where a group of reflected and radiated waves combines into one wave with
a zero group velocity and no ability to transport wave energy. It would be an interesting
extension of this study to explore theoretically energy production under this condition.

The predictions from the current linear model suggest that with current piezoelectric
materials, the energy efficiency of the device is less than 5 %, much smaller than other
conventional hydrokinetic energy harvesters (Drew, Plummer & Sahinkaya 2009). It is
observed that with better-engineered electromechanical converters, and larger α coefficient
and with the use of the inductive elements in the electrical conversion unit, the energy
efficiency of the device can be much improved and becomes close to 40 %. The flexible
piezoelectric plates can also be employed as unsteady thrust-producing devices if they
are attached to the side of a boat or ship and undergo combined plunge and pitch
motions (Grue et al. 1988; Belibassakis & Politis 2013). In addition, these types of energy
converters have a unique property that they can be deployed or collected easily depending
on the sea condition. The current model can be employed to determine the performance of
hybrid wave/current energy harvesters as both the thrust-generating and energy-producing
devices in these conditions. The three-dimensional effects of finite-width plates could also
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modify wave diffraction and energy production. Including the three-dimensional effects
into the current framework is the subject of ongoing research.
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Appendix A

In this appendix, we assume that all variables are dimensional and we derive the most
general equation of the system, assuming inviscid irrotational two-dimensional flow with
y = 0 placed at the air–sea interface pointing upwards. The velocity u is expressed based
on the gradient of a scalar potential Φ, as u = ∇Φ, and the conservation of mass requires
that the potential satisfies Laplace’s equation

∇2Φ = 0. (A1)

The pressure can be calculated from,

− P
ρ

= gy + ∂Φ

∂t
+ 1

2
|∇Φ|2 + B(t), (A2)

where B(t) is an arbitrary function of t that can be omitted by redefining Φ without
affecting the velocity field.

We have two types of boundaries: the air–water interface, which is also called the free
surface, and the wetted surface of an impenetrable solid, which in this study is the surface
of a thin piezoelectric plate. Along both surfaces, the flow can have relative motion only
in the tangential direction, and the instantaneous equation of boundary conditions can be
written as

F(X (t), t) = y − ξ(x, t) = 0, (A3)

where ξ is the vertical coordinate measured from y = 0, and X (t) is a point on
the interfaces moving with velocity U . By taking the derivative of (A3), and with
the assumption of only tangential relative motion at the interfaces (equivalently
U · ∇F = u · ∇F), we can write the condition of moving surfaces as

∂ξ

∂t
+ ∂Φ

∂x
∂ξ

∂x
= ∂Φ

∂y
. (A4)

Equation (A4) defines the kinematic boundary conditions on the plate surface and also
on the free surface. On both boundaries, it is necessary to add the dynamic boundary
condition. On the free surface, with atmospheric pressure Pa, we can write

− Pa

ρ
= gη + ∂Φ

∂t
+ 1

2
|∇Φ|2 on y = η, (A5)

where η is the surface wave height. This equation can be combined with (A4), and
with the assumption of Pa = constant, we can write the dynamic condition on the free

968 A31-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2810-0065
https://orcid.org/0000-0003-2810-0065
https://doi.org/10.1017/jfm.2023.583


K. Shoele

surface as

∂2Φ

∂t2
+ g

∂Φ

∂t
+ ∂

∂t
u2 + 1

2
u · ∇u2 = 0 on y = η. (A6)

With the presence of a current with velocity uc along the x axis, we can use the
superposition technique and define Φ = Φw + ucx, where Φw is the velocity potential due
to the surface waves, and ucx captures the effect of the current. To linearize the problem,
we assume that certain physical scales of motion can be anticipated a priori, and define
the non-dimensional quantities

{x̂, ŷ} = 2π{x, y}
λ

, t̂ = ωt, η̂ = η

A
, Φ̂ = 2πΦ

Aωλ
, (A7a–d)

where λ, ω and A are the typical values of wavelength, frequency and free-surface
amplitude, respectively. We can rewrite (A1), (A3) and (A5) based on Φ̂w as

∇2Φ̂w = 0, (A8)

∂ξ̂

∂ t̂
+ uc

∂η̂

∂ x̂
+ ε

(
∂Φ̂w

∂ x̂
∂η̂

∂ x̂

)
= ∂Φ̂w

∂ ŷ
on ŷ = εη̂, (A9)

∂Φ̂w

∂ t̂
+
(

2πg
ω2λ

)
η̂ + ε

2
(∇̂Φ̂w)2 = − 2πPa

ρAω2λ
on ŷ = εη̂, (A10)

where ε = 2πA/λ is the wave slope. If we assume ε � 1, then we can drive the linear
equations to O(ε), which in their non-dimensional forms based on uc and b will be similar
to (2.8), (2.9) and (2.10).
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