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Abstract

We study the problem of extending an order-preserving real-valued Lipschitz map defined on a subset of
a partially ordered metric space without increasing its Lipschitz constant and preserving its monotonicity.
We show that a certain type of relation between the metric and order of the space, which we call
radiality, is necessary and sufficient for such an extension to exist. Radiality is automatically satisfied
by the equality relation, so the classical McShane–Whitney extension theorem is a special case of our
main characterization result. As applications, we obtain a similar generalization of McShane’s uniformly
continuous extension theorem, along with some functional representation results for radial partial orders.
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1. Introduction

The most important continuous extension theorem for order-preserving functions is
Nachbin’s extension theorem (of [27]). This theorem considers a partially ordered
topological space, and gives conditions under which a continuous and order-preserving
real-valued function defined on a compact subset of such a space can be extended to
the entire space in such a way as to remain continuous and order preserving. It has
found profound applications, especially in the field of decision theory. (The references
for the present discussion are provided in the body of the paper.)

Another extension theorem of great importance is the famous McShane–Whitney
extension theorem (of [22] and [32]), which shows that any Lipschitz map defined
on a subset of a metric space can be extended to the entire space without increasing
the Lipschitz constant of the original map. This theorem paved the way toward
various types of Lipschitz extension theorems for Banach space-valued Lipschitz
maps, presently a topic of active research in geometric functional analysis. In addition,
it has recently been pivotally used in the literature on machine learning and metric data
analysis.
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2 E. A. Ok [2]

The primary objective of this note is to understand to what extent a Nachbin-type
generalization of the McShane–Whitney theorem is possible. To state our query
precisely, consider a 1-Lipschitz real-valued function f on a subset S of a metric
space X. Now suppose X is endowed with a partial order �, and that f is order
preserving (in the sense that f (x) ≥ f (y) for every x, y ∈ S with x � y). The problem
is to determine under what conditions (that do not depend on S and f ) one can extend
f to an order-preserving 1-Lipschitz map on X. Our main result (Theorem 3.1, below)
says that this is possible if, and only if, � satisfies a rather demanding condition,
which we call radiality. (We actually prove a slightly more general result that covers
�∞(T) valued-maps as well, for any nonempty set T.) Radiality of � demands that
if x � y while z � y does not hold, then the distance between x and z is larger than
that between y and z (and similarly for the case where not y � x but y � z). While
it is obviously strong, this condition is necessary for the sought monotonic Lipschitz
extension theorem. Moreover, when � is total, it reduces to radial convexity, which is
commonly used in the field of topological order theory. Finally, the equality ordering is
radial, so our extension theorem generalizes the McShane–Whitney extension theorem
(just like Nachbin’s theorem generalizes the Tietze extension theorem).

We also present some applications of our monotonic Lipschitz extension theorem.
First, we show that every radial partial order on a (compact) metric space can
be represented by means of a (compact) collection of order-preserving Lipschitz
functions. An immediate corollary of this is that every radial partial order is closed.
Second, we prove that on any radial partially ordered σ-compact metric space X,
there is a strictly increasing Lipschitz map F (in the sense that F(x) > F(y) for every
distinct x, y ∈ X with x � y). Finally, we combine our extension theorem with the
recent remetrization approach introduced by Beer [4] to show that if � is a radial
partial order on a metric space X, then any bounded (or more generally, Lipschitz for
large distances), order-preserving, and uniformly continuous map on a subset of X
can be extended to a function on the entire space in such a way that it remains order
preserving and uniformly continuous. Radiality can actually be relaxed substantially
in this result, but characterizing those metric posets on which such an extension is
possible is presently an open problem.

2. Preliminaries

2.1. Posets. Let X be a nonempty set. A preorder on X is a reflexive and transitive
binary relation on X, while a partial order on X is an antisymmetric preorder on X. We
refer to the ordered pair (X,�) as a poset if � is a partial order on X. (In this context,
X is called the carrier of the poset.) A preorder on X is total if any two elements x and
y of X are �-comparable, that is, either x � y or y � x holds. A total partial order on X
is said to be a linear order on X; in this case, we refer to (X,�) as a loset.

Let (X,�) be a poset. For any x ∈ X, we define x↓ := {z ∈ X : x � z} and
x↑ := {z ∈ X : z � x}. (A set of the former type is said to be a principal ideal in (X,�),
and one of the latter type is called a principal filter in (X,�).) In turn, for any S ⊆ X,
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[3] Order-preserving extensions of Lipschitz maps 3

we define the �-decreasing closure of S as S↓ :=
⋃

x∈S x↓, and define the �-increasing
closure S↑ of S dually. In turn, S is said to be �-decreasing if S = S↓ and �-increasing
if S = S↑.

Given any poset (X,�), we denote the asymmetric part of � by 	, that is, x 	 y
means y � x � y. We also define the binary relation �• on X as

x �• y if and only if not y � x.

Thus, x �• y means that either x 	 y, or x and y are not �-comparable. It is plain that �•

is an irreflexive relation. In general, this relation is neither symmetric nor asymmetric,
nor is it transitive. When � is total, however, �• equals 	.

A function f : X → Y from a poset X = (X,�) to a poset Y = (Y ,�) is said to be
order preserving if for every x, y ∈ X,

x � y implies f (x) � f (y).

If Y is (R,≥), where ≥ is the usual order, we refer to f simply as �-increasing. Note
that the indicator function of any �-increasing subset of X is an �-increasing map.

2.2. Normally ordered topological posets. A topological poset is an ordered pair
(X,�) where X is a topological space and � is a partial order on X such that � is closed
in X × X (relative to the product topology). In turn, a normally ordered topological
space is an ordered pair (X,�), where X is a topological space and � is a partial
order on X such that for every pair of disjoint closed subsets A and B such that A
is �-decreasing and B is �-increasing, there exist disjoint open subsets O and U of X
such that O is �-decreasing and contains A, and U is �-increasing and contains B. If,
in addition, � is closed in X × X, we refer to (X,�) as a normally ordered topological
poset.

In his seminal work, Nachbin [27] studied such spaces and obtained the following
generalization of the classical Tietze extension theorem.

THE NACHBIN EXTENSION THEOREM. Let (X,�) be a normally ordered topological
poset. Then for every compact subset S of X, and every �-increasing and continuous
f : S→ R, there is an �-increasing and continuous F : X → R with F|S = f .

This is a truly powerful extension theorem, which holds true also when � is not
antisymmetric (see [25]). It is used extensively in decision theory; see, for instance,
[8, 14, 15, 29], and references cited therein. We should also emphasize that a similar
order-theoretic generalization of the Gillman–Jerison theorem on the characterization
of C∗-embeddings was recently obtained by Yamazaki [33].

2.3. Partially ordered metric spaces. A partially (respectively, linearly) ordered
metric space is an ordered triplet (X, d,�) such that (X, d) is a metric space and (X,�)
is a poset (respectively, loset). If, in addition, � is a closed subset of X × X, we refer to
(X, d,�) as a metric poset (respectively, metric loset).
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A partially ordered metric space (X, d,�) is said to be radially convex (or the partial
order � on (X, d) is radially convex) if

x 	 y 	 z implies d(x, z) ≥ max{d(x, y), d(y, z)} (2-1)

for every x, y, z ∈ X. This concept builds an appealing connection between the order
and metric structures to be imposed on a given set. Indeed, such partially ordered
metric spaces have received some attention in topological order theory (see [5, 10, 30],
among many others), and are often used in the topological analysis of smooth
dendroids (see [17]).

In what follows, we need to work with a strengthening of radial convexity. We say
that a partially ordered metric space (X, d,�) is radial (or that the partial order � on
(X, d) is radial) if

x �• y 	 z implies d(x, z) ≥ d(x, y) (2-2)

and

x 	 y �• z implies d(x, z) ≥ d(y, z). (2-3)

While radiality is more demanding than radial convexity, these concepts coincide when
the partial order at hand is total.

LEMMA 2.1. A linearly ordered metric space is radial if and only if it is radially
convex.

Indeed, if (X, d,�) is a linearly ordered metric space, then �• = 	 by definition of
�•, so in this case, (2-1) is equivalent to (2-2) and (2-3) put together.

2.4. Examples of radial metric posets. If we order and metrize any nonempty
subset of R in the usual way, we obtain a radial metric loset. In addition, it is plain that
every partially ordered discrete metric space is radial, and the equality relation on any
metric space is radial. However, easy examples show that ordering R2 coordinate-wise
and endowing it with the Euclidean metric yields a radially convex metric poset that is
not radial.

Before proceeding further, we present a few more examples.

EXAMPLE 2.2. Consider the poset (X,�) where X := {x1, x2, x3, x4}, x1 	 x2 	 x4, x1 	
x3 	 x4, and x2 and x3 are not � -comparable. (This poset is isomorphic to (2S,⊇) for
any doubleton S.) For any a, b ∈ (0, 1), define da,b : X × X → [0, 1] by the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a a 1
a 0 b 1 − a
a b 0 1 − a
1 1 − a 1 − a 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose ij th term is dab(xi, xj), i, j = 1, . . . , 4. Then, da,b is a metric on X if and
only if min{a, 1 − a} ≥ 1

2 b. In fact, under this parametric restriction, (X, da,b,�)
is a radially convex metric poset. In addition, if 1 − a < b < a, this metric poset
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satisfies condition (2-3), but not (2-2), while if a < b < 1 − a, then the opposite
situation ensues. (In particular, this shows that there is no redundancy in our
definition of radiality.) Consequently, (X, da,b,�) is a radial metric poset, provided that
min{a, 1 − a} ≥ b.

EXAMPLE 2.3. Let T be a tree with a finite set X of vertices and root x0 ∈ X. The
path-metric on X (induced by T) is defined as

ρT (x, y) := the length of the path between x and y in T .

(Since T is a tree, there is a unique path between any two of its vertices.) We define
dT : X × X → {0, 1, 2} by setting dT (x, y) := min{ρT (x, y), 2} if x and y are on the same
path whose one endpoint is x0, and dT (x, y) := 1 otherwise. It is readily checked that
dT is a metric on X. Finally, we define the partial order � on X by

x � y if and only if y is on the path between x0 and x.

Then, (X, ρT ,�) is a radially convex metric poset (which need not be radial), while
(X, dT ,�) is a radial metric poset.

EXAMPLE 2.4. Let A and B be two disjoint bounded subsets of a metric space (Y , d).
Let �A and �B be radially convex linear orders on (A, d) and (B, d), respectively. Let
� be the disjoint sum of �A and �B, that is, � is the partial order on X := A � B with
x � y if and only if either x �A y or x �B y.

Now pick any number θ ≥ max{diam(A), diam (B)}, and consider the function D :
X × X → [0,∞) with

D(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
d(x, y) if (x, y) ∈ A2 or (x, y) ∈ B2,
1
2θ otherwise.

It is easily checked that D is a metric on X. In fact, (X, D,�) is a radial partially ordered
metric space.

EXAMPLE 2.5. Let I stand for the unit interval [0, 1], and take any set J that does
not intersect I. Define the partial order on X := I � J with x � y if and only if either
(x, y) ∈ J × I or {x, y} ⊆ I and x ≥ y. (In other words, � agrees with the usual order
on I, and puts anything in J above all numbers in I. No two distinct elements of J are
�-comparable.) Define d : X × X → [0,∞) as follows: (i) d|I×I is the absolute value
metric on I; (ii) d|J×J is the discrete metric on J; (iii) d(x, y) := 1 + y if (x, y) ∈ J × I;
and (iv) d(x, y) := 1 + x if (x, y) ∈ I × J. Then, (X, d,�) is a radial partially ordered
metric space.

In passing, we note that it may be a mistake to think of the radiality property
as prohibitively strong. In the context of metric data analysis and machine learning
(see [9, 13, 16]), one often works with finite metric spaces or metric graphs (relative
to which the Lipschitz extension problems are by no means trivial). As shown by
Examples 2.2 and 2.3 above, the radiality property may turn out to be considerably
less demanding in those sorts of environments.
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2.5. Lipschitz functions. For any real number K ≥ 0, a function f : X → Y from
a partially ordered metric space X = (X, dX ,�X) to a partially ordered metric space
Y = (Y , dY ,�Y ) is said to be K-Lipschitz if for every x, y ∈ X,

dY ( f (x), f (y)) ≤ KdX(x, y). (2-4)

We say that f is Lipschitz if it is K-Lipschitz for some K ≥ 0. The smallest K ≥ 0 such
that (2-4) holds for every x, y ∈ X, is called the Lipschitz constant of f . For excellent
treatments of the general theory of Lipschitz functions, see [11, 31].

We denote the set of all K-Lipschitz maps from X to Y as LipK(X, Y), but write
LipK(X) for LipK(X,R). In turn, the sets of all order-preserving members of LipK(X, Y)
and LipK(X) are denoted as LipK,↑(X, Y) and LipK,↑(X), respectively. Throughout this
note, we consider these as metric spaces relative to the uniform metric. This makes
these spaces complete, but, in general, not separable.

2.6. The monotone Lipschitz extension property. We say that a partially ordered
metric space (X, d,�) has the monotone Lipschitz extension property if for every
nonempty S ⊆ X, every K > 0, and f ∈ LipK,↑(S), there exists an F ∈ LipK,↑(X) with
F|S = f . In this terminology, the classical McShane–Whitney extension theorem can
be viewed as saying that (X, d,=) has the monotone Lipschitz extension property. Our
primary objective in this note is to see exactly to what extent we can replace = with a
partial order on X in this statement.

REMARK 2.6. When (X, d,�) has the monotone Lipschitz extension property, we can
always ensure the achieved extension has the same range as the function to be extended,
provided that the range of the function is closed. To see this, take any F ∈ LipK,↑(X)
and S ⊆ X, and assume F(S) is closed. Where m := infx∈S F(x) and M := supx∈S F(x),
the map G : X → [m, M] defined by

G(x) := max{min{F(x), M}, m},

is an �-increasing K-Lipschitz map with G|S = F|S.

3. Monotone Lipschitz extensions

Unless a partially ordered metric space is totally ordered, or it is finite, its radiality
seems like a fairly demanding condition. Nevertheless, our main finding in this note
shows that this condition is necessary and sufficient for any such space to possess the
monotone Lipschitz extension property.

THEOREM 3.1. A partially ordered metric space (X, d,�) has the monotone Lipschitz
extension property if and only if it is radial.

PROOF. Suppose (X, d,�) is not radial. Then, there exist three points x, y, z in X such
that either

x �•y 	 z and d(x, z) < d(x, y), (3-1)
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or

x 	 y �• z and d(x, z) < d(y, z). (3-2)

Assume first the case (3-1), set S := {x, y}, and define f : S→ R by f (x) := d(x, y) and
f (y) := 0. Then, f ∈ Lip1,↑(S), but for any 1-Lipschitz extension F : X → R of f ,

F(z) ≥ F(x) − d(x, z) > f (x) − d(x, y) = 0 = F(y),

which means F is not �-increasing. If, however, (3-2) holds, we set S := {y, z}, and
define f : S→ R by f (y) := d(y, z) and f (z) := 0. Then, f ∈ Lip1,↑(S), but for any
1-Lipschitz extension F : X → R of f ,

F(x) ≤ F(z) + d(x, z) < d(y, z) = F(y),

which means F is not �-increasing. This proves the necessity part of the assertion. The
sufficiency part is a special case of a more general result that we establish below. �

There does not seem to be an easy way of getting around the radiality require-
ment for the monotonic Lipschitz extension problem. For a partially ordered metric
space (X, d,�) that is not radial, the argument above shows that it may not be
possible to extend an �-increasing 1-Lipschitz map on a compact and �-increasing
(or �-decreasing) set S ⊆ X to an �-increasing 1-Lipschitz map on X.

Setting � as the equality relation in Theorem 3.1 yields the classical McShane–
Whitney extension theorem. The following is another straightforward corollary.

COROLLARY 3.2. A linearly ordered metric space (X, d,�) has the monotone Lipschitz
extension property if and only if it is radially convex.

REMARK 3.3. It was shown by Mehta [23] that every topological loset (X,�) is a
normally ordered topological space. Therefore, specializing the Nachbin extension
theorem to the context of metric spaces, we find: Given any metric loset (X, d,�)
and any compact S ⊆ X, every �-increasing f ∈ C(S) extends to an �-increasing
F ∈ C(X). Corollary 3.2 can be thought of as the reflection of this result in the context
of Lipschitz functions. It says that if we add radial convexity to its hypotheses, we
get an order-preserving Lipschitz extension of any order-preserving Lipschitz function
defined on any (possibly noncompact) subset of X.

The Lipschitz extension problem for Banach space-valued maps on a metric space
is a rather deep one, and is the subject of ongoing research in metric space theory and
geometric functional analysis. However, there is one special case of the problem that
is settled by the McShane–Whitney theorem in a routine manner. This is when the
Lipschitz maps to be extended take values in the Banach space �∞(T) of all bounded
real functions on some nonempty set T . (This generalization is of interest, because
every metric space can be isometrically embedded in �∞(T) for some T.) Precisely
the same holds for the monotone Lipschitz extension problem as well where we
consider �∞(T) as partially ordered coordinate-wise. (For any u, v ∈ �∞(T), we write
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u ≥ v whenever u(t) ≥ v(t) for every t ∈ T). We now prove the sufficiency part of
Theorem 3.1 in this more general context.

THEOREM 3.4. Let (X, d,�) be a radial partially ordered metric space. For any K ≥ 0,
let S be a nonempty subset of X and f : S→ �∞(T) an order-preserving K-Lipschitz
map. Then, there exists an order-preserving K-Lipschitz map F : X → �∞(T) with
F|S = f .

PROOF. We assume S � X, for otherwise, there is nothing to prove. Similarly, the claim
is trivially true when K = 0, so we may assume K > 0. Moreover, it is enough to
prove the assertion for K = 1, for then the general case obtains by applying what is
established to the map K−1 f .

The following proof is patented after the typical way one proves the Hahn–Banach
theorem. In the initial stage of the argument, we take an arbitrary x ∈ X\S and extend
f to an order-preserving 1-Lipschitz function on S ∪ {x}. To this end, consider the
functions ax : T → [−∞,∞] and bx : T → [−∞,∞] defined as

ax(t) := sup{ f (z)(t) : z ∈ S ∩ x↓}

and

bx(t) := inf{ f (y)(t) : y ∈ S ∩ x↑}.

If S ∩ x↓ = ∅, then ax(t) = −∞ for every t ∈ T , while S ∩ x↑ = ∅ implies bx(t) = ∞ for
every t ∈ T . On the other hand, if both S ∩ x↓ and S ∩ x↑ are nonempty, monotonicity
of f yields −∞ < ax(t) ≤ bx(t) < ∞ for all t ∈ T . In all contingencies, then, [ax(t), bx(t)]
is a nonempty interval in the set of all extended reals.

We next define the functions αx : T → [−∞,∞] and βx : T → [−∞,∞] by

αx(t) := sup{ f (z)(t) − d(x, z) : z ∈ S}

and

βx(t) := inf{ f (y)(t) + d(x, y) : y ∈ S}.

(These are the McShane and Whitney extensions of f , respectively.) In this case, both
αx(t) and βx(t) are real numbers for every t ∈ T . In fact, as f is 1-Lipschitz, for every
y, z ∈ S,

f (z)(t) − f (y)(t) ≤ ‖ f (z) − f (y)‖∞ ≤ d(z, y) ≤ d(x, y) + d(x, z),

whence f (z)(t) − d(x, z) ≤ f (y)(t) + d(x, y), for all t ∈ T . Conclusion: −∞ < αx(t) ≤
βx(t) < ∞ for all t ∈ T .

We claim that

αx(t) ≤ bx(t) and ax(t) ≤ βx(t) (3-3)

for every t ∈ T . To see this, suppose αx(t)> bx(t) for some t ∈ T . Then, there exist
y ∈ S∩x↑ and z ∈ S such that f (y)(t) < f (z)(t) − d(x, z). It follows that f (y)(t) < f (z)(t),
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so y � z does not hold (because f is �-increasing). Thus: z �• y 	 x. Since (X, d,�) is
radial, therefore, d(x, z) ≥ d(y, z). This entails

f (y)(t) < f (z)(t) − d(x, z) ≤ f (z)(t) − d(y, z),

and hence, ‖ f (z) − f (y)‖∞ ≥ f (z)(t) − f (y)(t) > d(z, y), contradicting f being
1-Lipschitz. We conclude that αx(t) ≤ bx(t) for all t ∈ T , as claimed. The second
inequality in (3-3) is established analogously.

In view of these observations, we conclude that the intervals [ax(t), bx(t)] and
[αx(t), βx(t)] overlap for every t ∈ T . We define F : S ∪ {x} → �∞(T) as

F(w)(t) :=

⎧⎪⎪⎨⎪⎪⎩
f (w)(t) if w ∈ S,
θ(t) if w = x,

where θ(t) is an arbitrarily picked real number in [ax(t), bx(t)] ∩ [αx(t), βx(t)] for any
t ∈ T . Then, F is 1-Lipschitz, because for any y ∈ S,

f (y)(t) − d(x, y) ≤ αx(t) ≤ F(x)(t) ≤ βx(t) ≤ f (y)(t) + d(x, y),

and hence |F(x)(t) − F(y)(t)| ≤ d(x, y) for all t ∈ T , that is, ‖F(y) − F(x)‖∞ ≤ d(x, y). In
addition, for every y ∈ S with y � x, we have f (y)(t) ≥ bx(t) ≥ F(x)(t), and similarly,
for every z ∈ S with x � z, we have f (x)(t) ≥ ax(t) ≥ F(z)(t), for all t ∈ T . Thus, F is
order-preserving as well.

The proof is completed by a standard transfinite induction argument. LetF stand for
the set of all (A, F) such that S ⊆ A ⊆ X and F ∈ Lip1,↑(A, �∞(T)) with F|S = f . Since it
includes (S, f ), this collection is not empty. In addition, it is easily verified that (F ,�)
is an inductive poset where (A, F) � (B, G) if and only if A ⊇ B and F|B = G. So, by
Zorn’s lemma, there is a �-maximal element (A, F) in F . In view of the first part of
the proof, we must have A = X. �

REMARK 3.5. By setting θ(t) := max{ax(t),αx(t)} for all t ∈ T in the proof above,
and modifying the transfinite induction part of the proof in the obvious way, we
find that there is a smallest order-preserving K-Lipschitz map F : X → �∞(T) with
F|S = f in the context of Theorem 3.4. That there is also a largest such F is established
analogously.

REMARK 3.6. There are various generalizations of the Lipschitz property, and
the construction above adapts to some of these. To wit, Miculescu [24] considers
(K, g)-Lipschitz functions that are functions f from a metric space (X, dX) to another
metric space (Y , dY ) such that dX( f (x), f (y)) ≤ KdY (g(x), g(y)) for every x, y ∈ X.
Theorems 3.1 and 3.4 may be modified in the obvious way to account for such
functions as well.

REMARK 3.7. Given Theorem 3.1, it is natural to inquire if the monotonic Lipschitz
extensions of real functions can be carried out locally. To state the problem, we
recall that a real map on a metric space X = (X, d) is called pointwise Lipschitz if
for every y ∈ X, there exist Ky ≥ 0 and δy > 0 such that | f (x) − f (y)| ≤ Kyd(x, y) for all
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x ∈ X with d(x, y) < δy. The question is: if (X, d,�) is a radial partially ordered metric
space, S a nonempty closed subset of X, and f : S→ R is an �-increasing pointwise
Lipschitz map, does there exist an �-increasing pointwise Lipschitz map F : X → R
with F|S = f ? If � is the equality relation, the answer is known to be yes; see, for
instance, [12, 19]. The first part of the proof above also adapts to show that the answer
is yes so long as we add only finitely many points in the extension. That is, minor
modifications of that part of the proof yield the following fact.

Let (X, d,�) be a radial partially ordered metric space and S a nonempty closed
subset of X with |X\S| < ∞. Then, every �-increasing pointwise Lipschitz map on S
can be extended to an �-increasing pointwise Lipschitz map on X.

Unfortunately, the transfinite inductive step of the proof above fails to deliver this
result without the requirement |X\S| < ∞.

4. Functional representations of radial orders

For any nonempty X, F ⊆ RX , and x, y ∈ X, we write F (x) ≥ F (y) to mean f (x) ≥
f (y) for every f ∈ F . For any such collection F , the binary relation � on X defined by
x � y if and only if F (x) ≥ F (y), is a preorder on X. Conversely, for every preorder �
on X, there is a family F with x � y if and only if F (x) ≥ F (y) for every x, y ∈ X. (For
any z ∈ X, define fz : X → {0, 1} by fz(x) := 1 if x � z and fz(x) := 0 otherwise. The
claim follows by setting F := { fz : z ∈ X}.) In this case, we say that F represents �.
In several applied mathematical fields, such as decision theory and the theory of
optimal transportation, it is important to determine the structure of the families of
real functions that may represent a given preorder in this sense.

As an easy consequence of Theorem 3.1, we find that any radial partial order
on any metric space can be represented by a family of order-preserving 1-Lipschitz
real-valued functions.

PROPOSITION 4.1. Let (X, d,�) be a radial partially ordered metric space. Then, there
exists anF ⊆ Lip1,↑(X) that represents �. If (X, d) is compact, we can chooseF in such
a way that it is compact and supF∈F ‖F‖∞ ≤ diam(X).

PROOF. Assume |X| > 1, which implies �•� ∅, for otherwise, there is nothing to
prove. For any x, y ∈ X with x �• y, define fx,y ∈ R{x,y} by fx,y(x) := d(x, y) and
fx,y(y) := 0, and note that f ∈ Lip1,↑({x, y}). We apply Theorem 3.1 to extend fx,y to an
�-increasing 1-Lipschitz real-valued map Fx,y on X. Next, define F := {Fx,y : x �• y}.
Then, x � y implies F(x) ≥ F(y) for all F ∈ F simply because every member of F is
�-increasing. Conversely, if x � y does not hold, we have F(x) < F(y) for some F ∈ F ,
namely, F = Fy,x.

Now suppose (X, d) is compact. Put K := diam(X), and note that K ∈ (0,∞). Next,
for any fixed e ∈ X, define

G :=
{ 1

K
(F − F(e)) : F ∈ F

}
.
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Then, |G(x)| = |G(x) − G(e)| ≤ K−1d(x, e) ≤ 1 for every x ∈ X, so ‖G‖∞ ≤ 1, for every
G ∈ G. Moreover, G ⊆ Lip 1/K,↑(X) and G represents �. Then,H := K cl(G) is a closed
and bounded set of 1-Lipschitz bounded functions that represents �. Since any subset
of Lip1(X) is equicontinuous, applying the Arzelà–Ascoli theorem yields the second
claim of the proposition. �

As an immediate consequence of Proposition 4.1, we obtain the somewhat surpris-
ing fact that every radial partially ordered metric space is, per force, a metric poset.

COROLLARY 4.2. Every radial partial order on a metric space X is a closed subset of
X × X.

The concepts of ‘radial partially ordered metric space’ and ‘radial metric poset’ are
thus identical. We adopt the latter terminology in the remainder of the paper.

We next apply our main extension theorem to show that a radially convex linear
order on a σ-compact metric space can be represented by a Lipschitz function. The
main ingredient of the argument is contained in the following observation.

LEMMA 4.3. Let (X, d,�) be a radial metric poset. Then, for any compact subset S
of X, there is a G ∈ Lip1,↑(X) such that ‖G‖∞ ≤ diam(S) and

G(x) > G(y) for every x, y ∈ S with x 	 y.

PROOF. Take any compact S ⊆ X, and use Proposition 4.1 to find a compact, and
hence, separable, F ⊆ Lip1,↑(S) such that (i) supF∈F ‖F‖∞ ≤ diam(S) and (ii) x � y
if and only if F (x) ≥ F (y) for every x, y ∈ X. Let (Fm) be a sequence in F such
that {F1, F2, . . .} is dense in F . We define G :=

∑
n≥1 2−nFn. It is readily checked

that G ∈ Lip1,↑(S). In addition, if x, y ∈ S satisfy x 	 y, then F(x) > F(y) for some
F ∈ F (because F represents �). Consequently, since {F1, F2, . . .} is dense in F
relative to the uniform metric, there exists an n ∈ N with Fn(x) > Fn(y), which implies
G(x) > G(y). To complete the proof, we extend G to X by using Theorem 3.1, and recall
Remark 2.6. �

THEOREM 4.4. Let (X, d,�) be a radial metric poset such that (X, d) is σ-compact.
Then, there is a Lipschitz function F : X → R with

F(x) > F(y) for every x, y ∈ S with x 	 y. (4-1)

PROOF. By hypothesis, there exists a sequence (Sm) of compact subsets of X such
that S1 ⊆ S2 ⊆ · · · and S1 ∪ S2 ∪ · · · = X. We may assume |S1| > 1. Put Kn := diam
(Sn), and note that Kn ∈ (0,∞) for each n. By Lemma 4.3, for every n ∈ N, there is a
Gn ∈ Lip1,↑(X) such that ‖Gn‖∞ ≤ Kn and Gn(x) > Gn(y) for every x, y ∈ Sn with x 	 y.
We define F ∈ RX by F(x) :=

∑
n≥1 2−nK−1

n Gn. It is plain that F(x) > F(y) for every
x, y ∈ X with x 	 y. Moreover, F is K−1

1 -Lipschitz. Indeed, for any x, y ∈ X,
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|F(x) − F(y)| ≤
∑
n≥1

1
2nKn

|Gn(x) − Gn(y)| ≤
∑
n≥1

1
2nK1

d(x, y) ≤ 1
K1

d(x, y)

since K1 ≤ Kn for each n. �

COROLLARY 4.5. Let (X, d,�) be a radially convex metric loset such that (X, d) is
σ-compact. Then, there is a Lipschitz function F : X → R with

x � y if and only if F(x) ≥ F(y)

for every x, y ∈ X.
This result has the flavor of the continuous utility representation theorems of

decision theory. Indeed, it provides a rather easy proof of the following well-known
result of that literature.
COROLLARY 4.6. Let � be a closed total preorder on a compact metric space
X = (X, d). Then, there exists a continuous map u : X → R such that

x � y if and only if u(x) ≥ u(y)

for every x, y ∈ X.

PROOF. Define x := {y ∈ X : x � y � x} for any x ∈ X, and note that X := {x : x ∈ X}
is a partition of X. Then, the binary relation � ⊆ X × X defined by x � y if and only
if x � y, is a partial order on X. Let Hd stand for the Hausdorff metric on X. Then,
(X, Hd,�) is a compact metric loset. By the Carruth metrization theorem (of [10]),
there exists a metric D on X such that Hd and D are equivalent, and D(x, z) =
D(x, y) + D(y, z) for every x, y, z ∈ X with x 	 y 	 z. We may thus apply Corollary 4.5
to obtain an �-increasing and 1-Lipschitz F map on (X, D,�) such that x � y if and
only if F(x) ≥ F(y) for every x, y ∈ X. The map u : X → R with u(x) := F(x) fulfills
the requirements of the assertion. �

5. Monotone uniformly continuous extensions

5.1. A Monotone version of McShane’s uniformly continuous extension theorem.
As another application of Theorem 3.1, we prove a uniformly continuous extension
theorem in the context of radial metric posets. A special case of this theorem
corresponds to the monotonic version of McShane’s famous uniformly continuous
extension theorem for bounded functions.

For any metric spaces X = (X, dX) and Y = (Y , dY ), a function f : X → Y is said
to be Lipschitz for large distances if for every δ > 0, there is a Kδ > 0 such that
dY ( f (x), f (y)) ≤ KδdX(x, y) whenever dX(x, y) ≥ δ. This concept often arises with
extension and approximation problems concerning uniformly continuous functions;
see, for instance, [7, 18, 21]. In fact, a basic result of this literature says that every
uniformly continuous map on a Menger-convex metric space is, per force, Lipschitz
for large distances (see [7, Proposition 1.11]).

We need to make two observations about real-valued functions that are Lipschitz
for large distances. The first one is basic, and was noted explicitly in [18].
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LEMMA 5.1. Every bounded real-valued function on a metric space is Lipschitz for
large distances.

PROOF. For any bounded real-valued function f on a metric space X = (X, d), and
δ > 0,

| f (x) − f (y)| ≤
(2
δ
‖ f ‖∞

)
d(x, y)

for all x, y ∈ X with d(x, y) ≥ δ. �

Our second observation provides a characterization of uniformly continuous
real-valued maps that are Lipschitz for large distances. This characterization seems
new, but we should note that Beer and Rice [6] work out several related results. In the
statement of the result, and henceforth, ω f stands for the modulus of continuity of any
given real-valued function f on X = (X, d), that is, ω f : [0,∞)→ [0,∞] is the function
defined by

ω f (t) := sup{| f (x) − f (y)| : x, y ∈ X and d(x, y) ≤ t}.

LEMMA 5.2. Let X = (X, d) be a metric space and f ∈ UC(X). Then, f is Lipschitz for
large distances if and only if there exist nonnegative real numbers a and b such that
ω f (t) ≤ at + b for every t ≥ 0.

PROOF. For any a, b ∈ R, let ha,b denote the map t �→ at + b on [0,∞). Suppose first
that ω f ≤ ha,b for some a, b ≥ 0. Then, for any δ > 0, setting Kδ := a + b/δ yields

| f (x) − f (y)| ≤ ω f (d(x, y)) ≤ ad(x, y) + b ≤ ad(x, y) + b
(d(x, y)
δ

)
= Kδd(x, y)

for every x, y ∈ X with d(x, y) ≥ δ. Conversely, suppose f is Lipschitz for large
distances. Note first that uniform continuity of f entails that there is a δ > 0 with
ω f (δ) ≤ 1. In turn, by the Lipschitz property of f , there exists a K := Kδ > 0 such
that

| f (x) − f (y)| ≤ Kd(x, y) for all x, y ∈ X with d(x, y) ≥ δ.

We wish to show that ω f ≤ hK,1. To this end, fix an arbitrary t ≥ 0 and take any x, y ∈ X
with d(x, y) ≤ t. If d(x, y) < δ, then | f (x) − f (y)| ≤ ω f (δ) ≤ 1 ≤ hK,1(t). Otherwise,
| f (x) − f (y)| ≤ Kd(x, y) ≤ Kt ≤ hK,1(t). Conclusion: | f (x) − f (y)| ≤ hK,1(t) for any
x, y ∈ X with d(x, y) ≤ t. Taking the sup over all such x and y yields ω f (t) ≤ hK,1(t). �

A map f : X → R for which there exist a, b ≥ 0 with ω f (t) ≤ at+b for all t ≥ 0 is
sometimes called a function with an affine majorant. [6] investigates such functions
in detail. In fact, this concept already plays a prominent role in McShane’s original
article [22, page 841] where it is emphasized that when X is a normed linear space, a
uniformly extendable real function on a subset of X must have an affine majorant.
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We now proceed to show that the uniformly continuous extension theorem of
McShane [22] also generalizes to the context of radial metric posets. This is proved
most easily by adopting the remetrization technique of Beer [4, pages 23–25], which
derives the said extension from the McShane-Whitney theorem. For the sake of
completeness, we provide the details of Beer’s technique within the proof.

THEOREM 5.3. Let (X, d,�) be a radial metric poset and S a subset of X. Then, for
every �-increasing f ∈ UC(S) that is Lipschitz for large distances, there exists an
�-increasing F ∈ UC(X) with F|S = f .

PROOF. Let H stand for the set of all increasing affine self-maps h on [0,∞) with
ω f ≤ h. By Lemma 5.2,H � ∅. We may thus define the map ϕ : [0,∞)→ R by ϕ(t) :=
infh∈H h(t). Clearly, ϕ is an increasing and concave (hence, subadditive) self-map on
[0,∞). Since f is not constant, ϕ(t) > 0 for some t > 0, so concavity of ϕ entails
ϕ(t) > 0 for all t > 0. We claim that ϕ is continuous at 0 (whence ϕ ∈ C([0,∞)))
and ϕ(0) = 0. To prove this, take any ε > 0. Since f is uniformly continuous, there
exists a δ > 0 with ω f (t) ≤ ε for every t ∈ [0, δ). In turn, as f is Lipschitz for large
distances, there exists a K > 0 such that | f (x) − f (y)| ≤ Kd(x, y) whenever d(x, y) ≥ δ.
Now consider the self-map h on [0,∞) with h(t) := Kt + ε. Clearly, ω f (t) ≤ h(0) ≤ h(t)
for all t ∈ [0, δ), while ω f (t) ≤ max{ε, Kt} ≤ h(t) for all t ≥ δ. It follows that h ∈ H .
Besides, ϕ(t) ≤ Kt + ε for all t ≥ 0, which implies inft>0 ϕ(t) ≤ ε. In view of the
arbitrary choice of ε, we conclude that inft>0 ϕ(t) = 0 = ϕ(0).

With these preparations in place, we now turn to the task at hand. Define
D : X × X → R by D(x, y) := ϕ(d(x, y)). Since ϕ(t) > 0 for all t > 0, it is obvious that
D(x, y) > 0 for every distinct x, y ∈ X, while ϕ(0) = 0 implies D(x, x) = 0 for all x ∈ X.
Moreover, D is clearly symmetric and it satisfies the triangle inequality (because ϕ is
increasing and subadditive). Thus, (X, D,�) is a partially ordered metric space. As ϕ is
increasing, this space is radial. In addition, | f (x) − f (y)| ≤ h(d(x, y)) for every x, y ∈ S
and h ∈ H , and it follows that | f (x) − f (y)| ≤ D(x, y) for every x, y ∈ S, that is, f is
1-Lipschitz on the metric space (S, D|S×S). By Theorem 3.1, therefore, there exists an
�-increasing F : X → R that is 1-Lipschitz on (X, D) with F|S = f . Besides, for every
ε > 0, continuity of ϕ at 0 ensures that there is a δ > 0 small enough that ϕ(t) < ε for
all t ∈ (0, δ), which means |F(x) − F(y)| < ε for all x, y ∈ X with d(x, y) ≤ δ. It follows
that F is uniformly continuous on the metric space (X, d). �

Since every bounded map on a metric space is Lipschitz for large distances
(Lemma 5.1), the following is a special case of Theorem 5.3. When � is taken as
the equality relation in its statement, this result reduces to McShane’s uniformly
continuous extension theorem for bounded real-valued functions.

COROLLARY 5.4. Let (X, d,�) be a radial metric poset. Every �-increasing, bounded,
and uniformly continuous map on a subset S of X can be extended to an �-increasing
and uniformly continuous map on X.
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As every continuous map on a compact metric space is uniformly continuous, an
immediate consequence of Corollary 5.4 is the following observation, which provides
a companion to Nachbin’s extension theorem.

COROLLARY 5.5. Let (X, d,�) be a radial metric poset, and S a nonempty compact
subset of X. Then, for every �-increasing f ∈ C(S), there is an �-increasing F ∈ UC(X)
with F|S = f .

At the cost of imposing the radiality property, this result drops the topological
requirement of being normally ordered in Nachbin’s extension theorem and, in
addition, it guarantees the uniform continuity of the extension as opposed to its mere
continuity.

5.2. The monotone uniform extension property. It should be noted that the
similarity of the statements of Theorem 3.4 and Corollary 5.4 is misleading. To clarify
this point, let us say that a partially ordered metric space (X, d,�) has the monotone
uniform extension property if for every closed S ⊆ X, and �-increasing and bounded
f ∈ UC(S), there is an �-increasing F ∈ UC(X) with F|S = f . The point we wish
to make is that this property is categorically different from the monotone Lipschitz
extension property. After all, the proof of Theorem 3.1 shows that a finite metric poset
has the monotone Lipschitz extension property if and only if that metric poset is radial.
In other words, finiteness of the carrier does not allow us to improve Theorem 3.1. By
contrast, one can inductively prove that every finite metric poset has the monotone
uniform extension property.

Recall that a UC-space (also known as an Atsuji space) is a metric space such that
every real-valued continuous function on it is uniformly continuous. (These spaces
were originally considered by [1, 26, 28], and were later studied extensively by [2, 3,
20], among others.) Various characterizations of UC-spaces are known. For instance,
a metric space X = (X, d) is a UC-space if and only if every open cover of it has a
Lebesgue number, which holds if and only if d(A, B) > 0 for every pair of nonempty
disjoint closed subsets A and B of X.) Now, an immediate application of Nachbin’s
extension theorem shows that if endowing a UC-space with a closed preorder yields
a normally ordered metric poset, then that poset has the monotone uniform extension
property.

The family of all partially ordered metric spaces with the monotone uniform exten-
sion property is thus much larger than that of radial metric posets. Characterization of
this family remains as an interesting open problem.
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