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IDEMPOTENTS IN COMPLEX BANACH ALGEBRAS 

G. N. HILE AND W. E. PFAFFENBERGER 

1. Introduction. The concept of the spectrum of A relative to Q, where A 
and Q commute and are elements in a complex Banach algebra & with 
identity /, was developed in [1]. A complex number z is in the Q-resolvent 
set of A if and only if A — zl — z~Q is invertible in £$\ otherwise, z is in the 
Q-spectrum of A, or spectrum of A relative to Q. One result from [1] was 
the following. 

THEOREM. Suppose no points in the ordinary spectrum of Q have unit 
magnitude. Let C be a simple closed rectifiable curve which lies in the 
Q-resolvent of A, and let 

(*) J : = - P " 1 Jc(A-zI- zQ)-\ldz + Qdl) 

where P is defined as 

(t) P-= / 2 | = 1 & + zQT\ldz + Qdl). 

Then J is an idempotent which commutes with A and Q\ moreover, J = 0 if 
and only if the interior of C belongs to the Q-resolvent set of A, and J = I 
if and only if the Q-spectrum of A lies entirely interior to C. 

(Here P plays the role of the constant liril in the ordinary spectral 
theory. The ordinary spectrum of P is a subset of the set {277-/, —277/}.) 

The question arises as to whether all idempotents which commute with 
A can be obtained using this more general concept of the spectrum. It is 
well known that in the case of the usual spectrum, there exist elements A 
with connected spectrum and where many nontrivial idempotents 
commute with A, but where the functional calculus of the usual spectrum 
cannot retrieve these idempotents using integration of the resolvent. 

In this paper we prove that for every idempotent / which commutes 
with A there exists an element Q which commutes with A such that / can 
be retrieved as in the above theorem. This result is satisfying in that it 
demonstrates that disconnected g-spectra exist at least in the same 
abundance as there are nontrivial idempotents which commute with A. 
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2. Generation of idempotents by integration. We let sp A denote the 
ordinary spectrum of A, spQ(A) the (^-spectrum of 4̂> a n d r e s ^ ( ^ ) 
the £)-resolvent set of A. 

THEOREM 1. Let 38 be a complex Banach algebra with identity /, and let A 
be an invertible element in &. Suppose J is any nontrivial idempotent in & 
which commutes with A. Then there exists an element Q in & which 
commutes with A and J, with no points in sp Q of unit magnitude, such 
that 

(*) J = -P~l Jc(A - zl ~ zQy\ldz 4- Qdz) 

for some circle C about the origin which lies in res^(^4 ). 

Proof Let us consider Q of the form Q = qj for some fixed complex 
number q. For X in C we set 

S(X) : = A - XI - XQ = A - XI - XqJ. 

Let ^ * be a maximal commutative subalgebra of $8 containing A and Q. 
Let O^* denote the set of all algebra homomorphisms of ^ * onto C. Then 
for each a in O^* we have from J2 = J that o(J) = 0 or o(J) = 1. 
Now 

o(S(X) ) = o(A) - X - Xqo(J) 

and À e sp Q(A) if and only if o(S(X) ) = 0 for some a, which means that 
for some o in <Ê>̂ *, 

o(A) - qo(A)o(J) 

i - \q\
2wt 

So from the above we conclude that 

^{A) = \x = i - \q\MJ)\2 a e «D^J 

By Corollary 1 [1], spp(A) is a nonempty compact subset of C. We choose 
q so that \q\ ¥= 1; then since 

sp.4 = {a(A)\a e O^*} 

(see [2], Theorem 3.1.6), and 0 £ sp A, we have spg(A) is bounded away 
from 0 in C. 

We now break spQ(A) into two sets, corresponding to o(J) = 0 and 
o(J) = 1; namely, we define 

S0:= {X = o(A)\o(J) = 0 and o <= $^*}, 

f oQ4) - qa(A)i ,„ 
5, : = | A = j—'a(-0 ^ * anc* 

i - kr 
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Then clearly $PQ(A) is the union of S0 and S^ and since / is a nontrivial 
idempotent in 3& it follows that both S0 and Sx are nonempty subsets of 
spQ(A). 

Now since sp A is bounded away from 0 in C and S0 c sp A, it is clear 
that if we choose q large enough and positive, q > 1, then Sx can be made 
so close to 0 in C that Sx n S0 = 0, and also such that there exists a circle 
C about 0 in C with Sx and S0 lying interior and exterior to C, 
respectively. 

Having chosen such a fixed q, we will now show that if we parametrize 
C as a simple closed rectifiable curve in a counterclockwise direction, then 
J can be reproduced by formula (*). By Theorem 12 [1] we know that the 
element K as defined by the right side of (*) is a nontrivial idempotent in 
96 which commutes with A and Q; therefore if we write 

K := -P~] Jc (A - zl - Iqjy\ldz + qJdz), 

we have two cases to consider: 
Case 1. Suppose a e $^* and o(J) = 0; then a(v4) G S0 and o(A) lies 

exterior to C, implying that 

o(K) = -a(p-]) Jc (a(A) - z)~xdz = 0. 

Case 2. Suppose a G O^* and o(J) = 1; then we have 

o(K) = -o(P~X) Jc [a(A) - z - zq]-\dz + qdz). 

We let <j>(z) : = z + Iq and note that o(A) — z — Iq = 0 only at 
2\ h0:=(a(A) - qo(A))/(\ - \q\% 

with h0 lying in Sx and hence in the interior of C. Since g is real we have 
<t>(hQ) = o(A ), and so we can write 

X a(K) = -a(P~l) fc[a(A) - z - Iq] \dz + qdz) 

where from (f) 

X-i=i "C) = /,.-,,[*(*)] '^(z)-
Therefore, from the scalar version of Theorem 7 [1] (with 96 = C, g = q, 
f(z) = 1), we obtain a(X) - 1. 

By cases 1 and 2 we now have o(K) = 1 when o(J) = 1 and a(X) = 0 
when a( / ) = 0. Therefore 

o(J — K) = 0 for all a in $^*, 
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which implies sp(7 — K) = {0} and 

||(7 -Kf\\Un-•* 0 as n —» oo. 

Now 

(J - K)2 = J -- 2JK + K, (J - K)3 = J - K, 

and by induction, (J - K)ln+X = J - K for ail positive integers n. But 
then 

\\J - K\\V2n + x - > 0 a s « - ^ o o , 

which means ||J - # | | - 0, / = K. 

The case of a singular element 4̂ is handled in the following. 

THEOREM 2. Let 38 be a complex Banach algebra with identity I, and let 
A e 38 with 0 e sp >4. Suppose J is a nontrivial idempotent in 38 
which commutes with A. Then there exists a scalar /? and an element Q in 
38 which commutes with A and J, with no points in sp Q of unit magnitude, 
such that 

J = -P~x Jc (A - £/ - zl - JQ)~\ldz + Qdz) 

for some circle C about the origin which lies in TQSQ(A —/?/). 

Proof. Choose a scalar /? such that 0 £ sp(/4 — fil) and then apply 
Theorem 1 to A — fil. 

A generalization of Theorem 1 now follows. 

THEOREM 3. Let 38 be a complex Banach algebra with identity I, and let A 
be an invertible element in 38. Suppose that 

JX + -J2 + ... + jn = i 

is a finite resolution of the identity in 38; that is, each Jt is a nontrivial 
idempotent, and JtJ- = 0 for i ¥= j . Further suppose that each Jt commutes 
with A. Then there exists an element Q in 38 which commutes with A and each 
Jt, with no points in sp Q of unit magnitude, and a sequence of concentric 
circles Cx, C2, . . . , Cn, of decreasing radii and each centered at 0, such 
that 

J, -= -p~ » 
Jc-ci+, 

(A - zl - ZQ) \ld z + Qdz), 

i = 1, 2 , . . . . » - 1, 

Jn- = -P~ - ' £ . « - - zl --zQ) ~\ldz + Qdz). 

Proof. Let 

Q- = 9\J\ + QiJi + . . . + iJn 
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for fixed scalars q]9 q2, . . . , qn, with no qi having unit magnitude. Then, as 
in the proof of Theorem 1, 

S(X) : = A -XI -XQ = A -XI - X(qxJx + . . . + qnJn). 

Let ^ * be a maximal commutative subalgebra of & containing A and Jx, 
J2, . . •, Jn, and again let <1>«̂* denote the set of all algebra homomorphisms 
of ^?* onto C. For each a in <&%* we have 

1 = a(I) = o(Jx + . . . + / „ ) = a ( / , ) + . . . + a(/„); 

moreover, since each 7, is idempotent, o(Jt) = 0 or 1 for each J,. Thus for 
any o in 0^,*, a is 1 at one and only one Ji9 and is 0 at all other / / s . Since 
each Jk is nontrivial, there exists for each k in 1 ^ k ^ « at least one a^ in 
$^* such that 

°k(A) = * anc* °M) = 0 for / ¥= k. 

Furthermore, for such ak9 ok(S(X) ) = 0 if and only if 

ak(A) - X - Xqkok(Jk) = 0, 

= ok(A) - qkok(A) 

i - kk\
2 

Recall that 

{o(A)\o G O^*} = sp.4, 

and that sp 4̂ is compact and bounded away from 0 since A is invertible. 
We now look at mappings Fk9 k = 1,. . . , n, from C into C, defined by 

1 - \qk\ 

We would like to choose the scalars q]9 . . . , qn so that ^ ( s p A), 
F2(sp A), . . . , F„(sp A) lie in disjoint annuli centered at 0. 

Suppose sp A is contained in the annulus about 0 with boundaries 

z,(0) = rxe
ie and z2(0) = r 2 ^ , 

and with 0 < rx < r2, 0 ^ 0 < 27r. An analysis of i7^ shows that the image 
of such an annulus under the map Fk is an elliptical annulus about 0 
whose boundaries are the images of the boundaries of the original annulus. 
Therefore, 

*( * } 1 - \qk\
2 

0 „ -id /AU „ „~IU\ 

—7i(e - qke ) , 
4k\ 
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IW»)|- r\ ,2.\e
W-qke-

11 - \qk\ I 

r ' H " \qk\ 
'1 

|1 - \qk\
2\- • " " 1 + \qk 

Also, for gA. > 1, 

\Fk(r2e
l6)\ < - _ ^ _ j - 0 + fe|) 

U " Iftll * qk- 1 

i J0 We choose qx = 2 so that ^ ( s p ,4) lies inside the annulus between — ë 
and r2e

l by the above analysis. 
Next we choose q2 > qx where q2 is the smallest positive integer such 

that 

r2/(q2 - 1) < rx/3; 

then F2(sp A) lies in an annulus which is closer to 0 than the annulus 
which contains ^ ( s p A). Continuing in this manner we choose q3 > q2 

where q3 is the smallest positive integer such that 

r2/(q3 - 1) < rx/(q2 + 1). 

We continue this process n times to obtain the desired n annuli about 0. 
We name these annuli Ax, A2, . . . , An. 

Finally we choose our circles Cx, C2, . . . , Cn such that Cx lies outside 
AX,C2 lies between Ax andA2, C3 lies between A2 and,43, etc., until Cn lies 
between An_x and An. We then have concentric circles Cx, . . . , Cn of 
decreasing radii such that Fx($p A) lies between Cx and C2, ^F2(sp ^ ) n e s 

between C2 and C3, etc., until Fn(sp A) lies inside Cn. Making an analysis 
of integrals similar to that in the proof of Theorem 1, we arrive at the 
listed integral formulas for Jx, J2, . . . , Jn in terms of integrals around 
the circles Cx, C2, . . . , Cn separating the g-spectrum of A. We omit the 
analogous details. 
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