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Mechanism of instability in non-uniform dusty
channel flow
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Particles in pressure-driven channel flow are often inhomogeneously distributed. Two
modes of low-Reynolds-number instability, absent in Poiseuille flow of clean fluid, are
created by inhomogeneous particle loading, and their mechanism is worked out here.
Two distinct classes of behaviour are seen: when the critical layer of the dominant
perturbation overlaps with variations in particle concentration, the new instabilities arise,
which we term overlap modes. But when the layers are distinct, only the traditional
Tollmien–Schlichting mode of instability occurs. We derive the dominant critical-layer
balance equations in this flow along the lines done classically for clean fluid. These
reveal how concentration variations within the critical layer cause the two particle-driven
instabilities. As a result of these variations, disturbance kinetic energy production
is qualitatively and majorly altered. Surprisingly, the two overlap modes, although
completely different in the symmetry of the eigenstructure and regime of exponential
growth, show practically identical energy budgets, highlighting the relevance of variations
within the critical layer. The wall layer is shown to be unimportant. We derive a minimal
composite theory comprising all terms in the complete equation which are dominant
somewhere in the flow, and show that it contains the essential physics. When particles
are infinitely dense relative to the fluid, the volume fraction is negligible. But for finite
density ratios, the volume fraction of particles causes a profile of effective viscosity. This
is shown to be uniformly stabilizing in the present flow. Gravity is neglected here, and
will be important to study in the future. So will the transient growth of perturbations due
to non-normality of the stability operator, in a quest for the mechanism of transition to
turbulence.
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1. Introduction

The dynamics of fluids laden with suspended particles has been a subject of investigation
for decades. When the particles are extremely small and in great number, the term
‘dusty flow’ is appropriate. Dusty shear flows are ubiquitous: occurring in environmental
phenomena like dust storms, snow avalanches and sediment transport in rivers, and in
industrial processes like the manufacture of fertilizers and various powders. Whether such
a flow will be laminar, turbulent or in an unsteady transitional state is of great interest for
a variety of reasons, and the first step is to study the stability of the laminar base state.

Saffman (1962) was the first to propose a formulation for the stability of a
pressure-driven laminar channel flow, of a fluid containing dust particles in dilute
suspension. The dust particles were uniformly distributed across the channel width.
Subsequently, Michael (1964) conducted numerical computations, validating the
conclusions of Saffman (1962). Isakov & Rudnyak (1995) extended the study of Michael
(1964) with improved numerical accuracy. Boronin & Osiptsov (2008) studied uniform
particle loading with a finite volume fraction modelled by a corrected Stokes drag,
including the effects of viscosity variations due to perturbations in particle concentration,
and found destabilization compared with the dusty-gas results of Isakov & Rudnyak
(1995). In a later study, Klinkenberg, De Lange & Brandt (2011) noted that the critical
Reynolds number increases to high levels with strengthening of loading in a uniform
particle distribution. Nevertheless, at a Reynolds number of a few thousands, loading of
particles can enhance the transient growth for three-dimensional perturbations. Nath, Roy
& Kasbaoui (2024) found that, in simple shear flow, non-uniformly distributed particles
destabilize the flow through an inviscid mechanism. This is in contrast to our system of
plane channel flow, where we show that destabilization is by a viscous mechanism.

Small particles suspended in channel or pipe flow normally do not occur with uniform
probability everywhere (Matas, Morris & Guazzelli 2004). They tend to concentrate in
certain relatively thin regions of the flow. The location of concentration depends on
different flow and loading conditions, and examples are available in the experiments of
Snook, Butler & Guazzelli (2016). The early experiments of Segre & Silberberg (1961,
1962) showed that particles, when homogeneously distributed in a pipe, undergo inertial
cross-stream migration, caused by lift forces and the wall, and tend to accumulate within
an annular region, located at a certain radial distance. Saffman (1965) calculated the lift
force for a small solid particle in unbounded linear shear. Cox & Brenner (1968) included
considerations of the wall, and of shear variation. The review of Cox & Mason (1971)
provides the equilibrium radial variation of particle concentration in a range of conditions
in a pipe. For two-dimensional channel flow, as studied here, Ho & Leal (1974) offered
the first theoretical explanation for non-uniform particle loading, due to the wall-induced
lift force and the shear-gradient lift force. For neutrally buoyant particles, they found two
equilibrium points: an unstable point at the channel centreline and stable points located
±0.6 times the half-channel width from the centre. Their calculations were for creeping
flow in the channel, namely for channel Reynolds numbers R � 1, as well as particle
Reynolds numbers Rep significantly smaller than R. Schonberg & Hinch (1989) and
Asmolov (1999) revealed a wallward shift of the stable equilibrium points for increasing
R. For particles of a finite size relative to the channel width, Anand & Subramanian (2024)
found an additional equilibrium point closer to the centreline.

Thus an inhomogeneous equilibrium particle distribution with a relatively thin
particle-containing layer is natural in channel flow, although its location depends on several
factors. The question is whether this arrangement remains stable to an accumulation of
particles, or whether such accumulation, when sufficiently high, can cause the laminar
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Stability of dusty flow

flow to undergo instability. We adopt a Gaussian particle distribution profile to model
experimental observations and theoretical findings. Following the findings of Klinkenberg
et al. (2011) and the calculations of many, we may take the lift force at the equilibrium
location, on a sufficiently small particle, to be negligibly small compared with the Stokes
drag.

Rudyak & Isakov (1996) and Rudyak, Isakov & Bord (1997) investigated the effects of
inhomogeneous Gaussian particle loading and found low-Reynolds-number instabilities
of the kind we discuss here. A channel loaded with particles where particle concentration
tapers off towards the walls was shown by Boronin (2009) to support instability at zero
Reynolds number. Incidentally, we found the instabilities of Rudyak & Isakov (1996) and
Rudyak et al. (1997) independently, since we only learned about that work recently. They
noticed that the critical layer lies close to the particle-laden layer in these instabilities,
but did not provide the mechanism which generates the new instabilities. The mechanism
is the subject of the present paper. Along the lines of the famous classical derivation of
Lin (1945a,b, 1946) for a clean fluid, we derive the critical-layer and wall-layer equations
for dusty parallel shear flow. The critical-layer equations make it obvious how the
inhomogeneity of particle loading enters the leading-order physics. We derive a minimal
composite equation containing all the leading-order terms and show that it contains the
essential overlap physics. Our energy budget study and the eigenfunctions support our
findings, and directly show how production of perturbation kinetic energy is altered in the
critical layer. Our study demarcates two distinct classes of stability behaviour: one where
the critical layer overlaps the layer where the particle concentration is non-constant, and
another where the two layers lie away from each other. Two modes of overlap instability
occur in the former.

Incidentally, the earlier study on inhomogeneous particle loading only briefly mentions
the numerical method, but provides no details of the discretization, or the level of accuracy
of the solutions. In order to achieve reasonable accuracy, we find that a high grid resolution
is needed within the particle-laden layer.

Introducing particles into the flow exacerbates the complexity of the transition to
turbulence (Mueller, Llewellin & Mader 2010). Matas, Morris & Guazzelli (2003a,b),
in pipe flow experiments, observed that adding particles at a significant volume fraction
can delay or advance the transition to higher or lower Reynolds number, based on
whether the particles are extremely small or somewhat larger, with a minimum in the
transition Reynolds number being attained at a particular volume fraction. Numerical and
experimental studies conducted by Matas et al. (2003b), Yu et al. (2013), Lashgari et al.
(2014) and Wen et al. (2017) demonstrate that transition to turbulence occurs smoothly,
with velocity and pressure fluctuations increasing gradually. This suggests that particles
can alter the nature of the transition and the resulting turbulence state.

Whether or not the transition occurs due to exponentially growing modes, the first step
in understanding the transition to turbulence is to understand the mechanism causing linear
stable and unstable eigenmodes to exist. We conduct this study below.

2. The governing equations and their solution

2.1. Description of the system
We investigate here a dilute suspension of particles in a pressure-driven channel flow, a
schematic of which is shown in figure 1. The impact of this suspension on the flow is
characterized by a two-way coupling, modelled using the formulation of Saffman (1962),
specifically through the application of Stokes drag, with the addition of viscosity variations
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Figure 1. Schematic of the flow under consideration. The walls are situated at y = ±1, with the green curve
and red arrows representing the mean velocity profile, U( y) = 1 − y2. The particles are concentrated around
y = ±ap within a band of size σ . The mean particle mass fraction, f̄ , given by (2.6), is depicted on the right.
Note that the volume fraction that heavy particles occupy will be much smaller.

due to particle concentration. The viscosity variation terms are derived from Govindarajan
(2004). The particulate suspension is treated as a continuous medium whose dynamics is
describable by a field equation. The momentum balance and continuity equations for the
fluid respectively are

ρf

(
∂ud

∂td
+ ud · ∇dud

)
= −∇dpd + ∇d[μtot

d · (∇dud + (∇dud)
T)] + KN(vd − ud),

(2.1)

∇d · ud = 0, (2.2)

while the particle suspension satisfies momentum balance and continuity respectively
given by

mN
(
∂vd

∂td
+ vd · ∇dvd

)
= −KN(vd − ud), (2.3)

∂N
∂td

+ ∇d · (Nvd) = 0. (2.4)

Here, the subscript d represents a dimensional variable and ρf is the dimensional density
of the fluid. The total dimensional viscosity μtot

d = μf + μp, where μf is the dimensional
viscosity of the fluid and μp is the contribution to viscosity due to the particles. Also,
m and τ = m/K are the mass and relaxation time of a spherical dust particle, N is their
number density per unit volume. The quantity K is the drag coefficient given by 6πrμf for
a sphere of radius r. We establish the x-axis to be aligned with the channel centreline,
the y-axis to be oriented in the wall-normal direction and the z-axis to be oriented
perpendicular to the plane of the figure. The fluid velocity is given by u = (ux, uy, uz). The
particles are assumed to be continuously distributed in the flow, and to have a continuous
velocity variation in space and time, and their dynamics may thus be described as a field,
with v = (vx, vy, vz). Our analysis thus precludes situations of diverging number density
and of particle collisions. The mass fraction of particles in the suspension is

f = mN/ρf = 4πNr3

3
ρp

ρf
. (2.5)

The density of the solid making up the particles is ρp. Unless otherwise specified, we work
in the limit of ρp/ρf → ∞, so the volume fraction occupied by the particles is negligible.
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Stability of dusty flow

We non-dimensionalize equations (2.1)–(2.4) using the channel-centreline mean velocity
Um (i.e. the steady-state fluid velocity at the centre of the channel), the half-channel width
H and the viscosity μf of the fluid as scales. In dimensionless coordinates, the channel
walls are positioned at y = ±1, with the suspended particles concentrated around y =
±ap. We prescribe a mean dust mass-fraction profile

f̄ ( y) = fmax

[
exp

{
−( y − ap)

2

2σ 2

}
+ exp

{
−( y + ap)

2

2σ 2

}]
, (2.6)

with particles concentrated in two layers of thickness σ , but our numerical method is
general and suitable for any desired particle concentration profile. The location ap of the
maximum in particle concentration is an important parameter. If the same particles were
to be uniformly distributed across the channel, the loading would be given by

fave =

∫ +1

−1
f̄ ( y; σ, ap)dy

∫ +1

−1
dy

�
√

2πfmaxσ. (2.7)

The Reynolds and Stokes numbers, which will emerge out of the non-dimensionalization,
are given respectively by

R ≡ HUm

μf /ρf
and S ≡ τ

ρf H2/μf
= 2

9
r2

H2
ρp

ρf
. (2.8)

In terms of the average density in the flow, we may also define an effective Reynolds
number Reff = (1 + f̄ave)R. These two quantities, the Reynolds number R and the Stokes
number S, along with the thickness σ of the particle-laden layer, the mass loading for a
given σ as measured by fmax and the location ap of the maximum in particle concentration,
are the parameters which determine this problem.

2.2. Linear stability equations
After non-dimensionalizing, we split all quantities in (2.1)–(2.4) into their basic and
fluctuating parts, as u = U + û, v = U + v̂, p = P + p̂, f = f̄ + f̂ and μtot = μ̄+ μ̂.
Here, a hat represents a perturbation quantity, while an upper case or overbar denotes a
mean quantity. In parallel shear flows, we have U = U( y)ex, where ex is a unit vector in
the streamwise direction, and f̄ = f̄ ( y). For small particulate volume fraction, the local
viscosity is linearly related to the local particle concentration, as

μtot
d = μf

[
1 + f

γ

]
, (2.9)

where γ ∝ ρp/ρf . In accordance with Einstein’s law, we take the proportionality constant
to be 0.4. In the limit of infinite γ , the dimensional viscosity remains at μf everywhere.
The viscosity is non-dimensionalized by the viscosity of the pure fluid, μf . The mean
viscosity is described as μ̄ = 1 + f̄ /γ , and the perturbation viscosity is μ̂ = f̂ /γ , obtained
from (2.9).
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Upon linearization of (2.1)–(2.4) we have(
∂û
∂t

+ û · ∇U + U · ∇û
)

= −∇p̂ + 1
R

[∇μ̄ · (∇û + (∇û)T)+ ∇μ̂ · (∇U + (∇U)T)

+ μ̂∇2U + μ̄∇2û] + f̄
SR
(v̂ − û), (2.10)

∇ · û = 0, (2.11)(
∂ v̂

∂t
+ v̂ · ∇U + U · ∇v̂

)
= − 1

SR
(v̂ − û), (2.12)

∂ f̂
∂t

+ ∇ · ( f̄ v̂)+ ∇ · ( f̂ U) = 0. (2.13)

We start by performing a normal-mode analysis, considering single Fourier modes for
the perturbation quantities (û, v̂, p̂, f̂ , μ̂) in both the x-direction and z-direction, as well as
in time. In other words, the perturbation quantities are written in normal-mode form, with
each mode given by

(û, v̂, f̂ , μ̂) = 1
2 [(u( y), v( y), f ( y), μ( y)) exp{iα(x − ct)+ iβz} + c.c.]. (2.14)

We may now express the particle velocity in terms of the flow velocity using (2.12), to get

(vx, vy, vz) = (Mux − SRM2U′uy,Muy,Muz), (2.15)

where

M = 1
1 + iαSR(U − c)

. (2.16)

Additionally, by taking the divergence of (2.10), we write the pressure Laplacian in terms
of the velocity field as

−∇2p = 2iαU′uy − [2μ̄′∇2uy + 2μ̄′′Duy + 2iαU′Dμ+ 2iαU′′μ]

− 1
SR

[�f ′(M − 1)uy + f̄M′uy − iαSRM2U′ f̄uy]. (2.17)

We apply the operator ∇2 to the y component of the vector equation (2.10), use (2.15)
and (2.17) and divide throughout by −iα2 to express the resulting equation in terms of the
variables uy and μ

−ic∇2 uy

−iα
= i[U′′ − U∇2]

uy

−iα
+ 1
αR

[μ̄′′(−∇2 + 2D2)+ 2μ̄′D∇2 + μ̄∇4]
uy

−iα

+ 1
αR

[U′′′ + 2U′′D − U′∇2 + 2U′D2]μ

+ i[(M2U′ f̄ )′ − (U − c)Mf̄ ′D − (U − c)Mf̄ ∇2]
uy

−iα
. (2.18)

Using (2.15) and the continuity equation (2.11), we can convert equation (2.4) into an
expression that includes the variables uy and μ, leading, after dividing throughout by −iα,
to

(U − c)γμ+
[
−RSM2U′ f̄ ′ + (Mf̄ )′

iα

]
uy = 0. (2.19)

Equations (2.18) and (2.19) represent the linear stability equations for three-dimensional
perturbations. For a clean parallel shear flow without particles, Squire (1933) had shown
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Stability of dusty flow

that, for every three-dimensional perturbation mode satisfying the stability equations, there
exists a corresponding two-dimensional perturbation mode at a lower Reynolds number,
displaying the same growth rate. Saffman (1962) had shown that Squire’s theorem applies
in the case of a dusty channel with uniform particle loading. If we substitute (α2 +
β2) = α2

2D, αR = α2DR2D and uy/α = uy,2D/α2D into the aforementioned equations
(2.18) and (2.19), these equations become equivalent to those of a two-dimensional
system with the wavenumber denoted as α2D, the Reynolds number as R2D and the
velocity eigenfunction uy,2D. We thus show that Squire’s theorem may be extended
to dusty channels with inhomogeneous loading, including viscosity variation as well.
The last, for viscosity stratified shear flow without particles, was shown by Jose (2024,
private communication). Thus, for two-dimensional perturbations, these equations become
(2.20) and (2.21). Therefore, while a non-modal study would require us to study
three-dimensional perturbations, since our purpose is to obtain linear instability at low
Reynolds number, it is sufficient to perform a two-dimensional calculation, by setting
β = 0 in (2.14). In fact, results for any given three-dimensional single mode may be
obtained directly from an equivalent two-dimensional one by simple rescaling.

The two-dimensional equations for linear perturbations, after appropriate elimination
and reduction, can be written in terms of the perturbation streamfunction ψ( y) and the
perturbation viscosity μ( y) as

[(U∗ − c)(D2 − α2)− U′′
∗ ]ψ + D(Jf̄ ′ψ) = 1

iαR
[μ̄(D2 − α2)2 + 2μ̄′D3 + μ̄′′D2

− 2α2μ̄′D + α2μ̄′′]ψ + 1
R

[U′D2 + 2U′′D + U′′′ + α2U′]μ, (2.20)

and

− (U − c)γμ+ [−iαRSM2U′ f̄ ′ + (Mf̄ )′]ψ = 0, (2.21)

where

U∗ ≡ U + Jf̄ , M = 1
1 + iα(U − c)SR

, J = (U − c)M, (2.22)

uy = −iαψ, (2.23a)

ux = Dψ, (2.23b)

vx = Mux − (M2SRU′)uy, (2.23c)

vy = Muy. (2.23d)

The operator D is defined as D = d/dy, and a prime denotes a derivative in y of a mean
quantity. Note that vx and vy in (2.23c) and (2.23d) can be expressed in terms of ψ using
(2.23a) and (2.23b). The boundary conditions are

ψ( y = ±1) = Dψ( y = ±1) = μ( y = ±1) = 0. (2.24)

For given mean flow U( y), streamwise wavenumber α, base particle loading f̄ ( y),
particle to fluid density ratio and fixed Reynolds and Stokes numbers, (2.20)–(2.24) define
an eigenvalue problem, which yields a spectrum of eigenvalues c and corresponding
eigenfunctions, (ψ( y), μ( y)). If even one eigenvalue has a positive imaginary part, i.e.
cim > 0, we have an exponential growing mode.
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In the limit of γ → ∞, we have μ̄ = 1 and μ = 0, so (2.20) becomes

[(U∗ − c)(D2 − α2)− U′′
∗ ]ψ + (Jf̄ ′)′ψ + (Jf̄ ′)Dψ = 1

iαR
(D2 − α2)2ψ, (2.25)

and is now decoupled from (2.21). When there is no particulate suspension, we have f̄ = 0,
and the system (2.25) reduces to the well-known Orr–Sommerfeld equation[

U(D2 − α2)− U′′ + i
αR
(D2 − α2)2

]
ψ = c(D2 − α2)ψ. (2.26)

In the case of a homogeneous suspension ( f̄ = const.) along with γ → ∞, the system
reduces to that of Saffman (1962).

2.3. Balance of perturbation kinetic energy
Whenever the flow is unstable, there is an exponential increase in perturbation kinetic
energy. It is useful to derive the positive and negative contributors to this quantity. To
do this, we multiply the linear equations for the fluid flow (in û) and for the particulate
flow (in v̂), given as (2.10) and (2.12), by the respective complex conjugates û∗ and v̂∗.
Upon averaging over a wavelength in the streamwise direction, we derive the evolution of
perturbation kinetic energy Ê to be described by

∂t

∫
Ê dV = −

∫
∂Ui

∂xj
ûiûj dV − 1

R

∫
μ̄|∂iûj|2 dV

−
∫

f̄
∂Ui

∂xj
v̂iv̂j dV − 1

SR

∫
f̄ |ûi − v̂i|2 dV

− 1
R

∫
∂2μ̄

∂xj∂xi
ûiûj dV − 1

R

∫
∂Uj

∂xi
μ̂(∂jûi + ∂iûj) dV, (2.27)

where
Ê = 1

2 (û
2
i + f̄ v̂2

i ), (2.28)

and V indicates a volume of fluid extending from wall to wall and over one perturbation
wavelength in the streamwise direction. We then introduce the normal-mode forms of the
perturbations, given by (2.14), into (2.27), and average over the streamwise direction x, to
get

2αcim

∫
E dy = −1

4

∫
∂Ui

∂xj
(uiu∗

j + u∗
i uj) dy − 1

2R

∫
μ̄|∂iuj|2 dy

− 1
4

∫
f̄
∂Ui

∂xj
(viv

∗
j + v∗

i vj) dy − 1
2SR

∫
f̄ |ui − vi|2 dy

− 1
4R

∫
∂2μ̄

∂xj∂xi
(u∗

i uj + uiu∗
j )dy

− 1
4R

∫
∂Uj

∂xi
{μ(∂ju∗

i + ∂iu∗
j )+ μ∗(∂jui + ∂iuj)}dy

≡
∫
(W+ − W− + Wp+ − Wp− + Wμ,1 + Wμ,2)dy, (2.29)
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Stability of dusty flow

where
E( y) = 1

4 (ui( y)2 + f̄vi( y)2), (2.30)

and W+( y) and W−( y), respectively, are the production and dissipation of perturbation
kinetic by the fluid, while Wp+( y) and Wp−( y), respectively, give the production and
dissipation of perturbation kinetic energy of the particles. The last two terms Wμ,1 and
Wμ,2 arise due to viscosity stratification.

2.4. Numerical method
We employ the Chebyshev spectral collocation method to discretize the system given by
(2.20)–(2.24) at n discrete points in the domain. The Chebyshev collocation points, defined
as yCheb,j = cos[πj/(n − 1)], j = 0, 1, 2, 3, . . . , n − 1, are naturally clustered close to the
walls. Such a discretization would resolve the near-wall region well, where variations are
large. But, for a small number of collocation points it would leave the particle layer, where
variations are also large, not well resolved. In order to get results insensitive to the number
of collocation points, we employ a stretching function to cluster a sufficient number of grid
points into the particle-laden layer. Such a stretching function was used in Govindarajan
(2004) in a different context, and works well in the present situation as well. It is given by

yj = a
sinh(byb)

[sinh{( yCheb,j − yb)b} + sinh(byb)], (2.31)

where

yb = 1
2b

log
[

1 + (eb − 1)a
1 + (e−b − 1)a

]
, (2.32)

is a constant, a signifies the location around which clustering is desired and b serves to
determine the level of clustering. Once written in discrete form, each boundary condition
may be applied by replacing one row of the discrete system appropriately. To solve (2.25)
after discretization, we utilize the LAPACK FORTRAN package. For our all simulations,
we use n = 81, and verify our answers with n = 121. At this resolution, the results are
insensitive to the number of grid points, as well as to whether stretching is employed or
not. But stretching improves the physical appearance of the eigenfunctions.

Since the chosen mass-fraction profile corresponds to the clustering of particles in the
vicinity of y = ±ap, we select a to be equal to ±ap and set b to the value of 2 or 4 in (2.31).
We obtain eigenvalues correct to five decimal places for the most part, and at least to four
places everywhere. At Stokes numbers of 10−2 or higher, however, the accuracy drops to
three decimal places, and we do not venture into this regime to make our conclusions.

To validate our approach, we first perform computations using a uniform particle profile
across the channel. Figure 2 shows neutral stability boundaries provided by Klinkenberg
et al. (2011), compared with the present computations. The agreement is excellent for two
different particle Stokes numbers as well as for the clean channel. The mode of instability
which appears in all these cases is the traditional Tollmien–Schlichting (hereafter TS)
instability, which is modified by the introduction of particles.

We are now in a position to study the instability mechanism. In the following section we
derive a minimal equation set which allows us to highlight the basic physics.

3. A minimal composite theory for particulate shear flow stability

It is useful to begin this section by defining the critical layer, since the physics therein
dominate this discourse. It is a relatively thin layer centred around the critical point yc in
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5000 20 000 80 000

0.6

0.8

1.0

1.2

α

R

Rcrit

S = 5 × 10–5

S = 5 × 10–5, Klinkenberg et al.
S = 2.5 × 10–4

S = 2.5 × 10–4, Klinkenberg et al.

No particle, Klinkenberg et al.
No particle

Figure 2. Validation for the case of uniform particle loading, in the form of neutral stability curves, with f̄ =
0.05, S = 5 × 10−5 and S = 2.5 × 10−4. Symbols correspond to Klinkenberg et al. (2011), while solid lines are
from present computations. The region within the curves is unstable. The black dotted vertical line marks the
minimum Reynolds number for S = 5 × 10−5 at which instability is seen, termed the critical Reynolds number
Rcrit.

Channel centerline

Upper wall

y = 0

y = ap

y = yc

y = 1 εw

ε δ δ

σ

Channel centerline

Upper wall

y = 0

y = ap

y = yc

y = 1 εw

ε

σ

(a) (b)

Figure 3. Schematic of layers within which there are rapid variations in one or more physical quantities. The
perturbation streamfunction uy and the perturbation suspension velocities vx and vy display critical layers of
thickness ε and δ, respectively, around y = yc. Additionally, the swift transition in the suspension mass-fraction
profile occurring at y = ap within a small region characterized by size σ is seen. This depiction shows only the
top half of the channel; the other half being symmetric. (a) Condition where the layers are distinct, (b) overlap
condition.

the channel, where the mean-flow velocity is the same as the phase speed of the dominant
normal-mode perturbation, i.e. U( yc) = c (Lin 1945a,b, 1946). The particle layer, on the
other hand, as seen from (2.6), is centred around y = ap. If yc and ap are in close proximity,
such that both layers overlap, we term it as the ‘overlap’ condition, and when these
layers are distinct and well separated, we term it a ‘non-overlap’ condition. The channel
comprises the critical layer, the wall layer, the particle laden layer and the inviscid outer
layer, and different physics can appear in each. The first three are shown schematically in
figure 3, under overlap and non-overlap conditions. The need for asymptotic analyses in
the different layers is motivated below.
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Stability of dusty flow

In the dilute particle limit, whether or not the particles are far denser than the fluid, it
can be worked out that the viscosity variation terms will not enter the dominant balance,
so we may work with the single (2.25).

3.1. Motivation
We saw in figure 2 that, in the case of constant particle loading, the TS mode of instability
is modified by particles. Even with non-uniform particle loading, under non-overlap
conditions, the same is observed. On the other hand, under overlap conditions, the picture
is very different, and an example is shown in figure 4. Here, the TS mode is seen as a
minor blip on the right of the figure. Two other modes of instability are now seen, which
occur at much lower Reynolds number. The fact that these modes are distinct from the
TS mode is evident from the separate regions in α–R space they occupy. To distinguish
between them, the two lower-Reynolds-number modes of instability will be termed short
wave and long wave, respectively, while remembering that the so-called short-wave mode
actually has perturbation wavelengths of O(1), i.e. comparable to the channel width (a
wavelength of α = 1 is 2π times the half-width). The long-wave modes extend from O(1)
to far lower wavenumbers. The short-wave mode of overlap instability occurs over the
smallest Reynolds numbers, ranging from a few hundreds to a few thousands, while the
long-wave mode spans decades in the Reynolds number, with the instability Reynolds
number and the typical wavelength increasing together. In the following section we show
that both of these are overlap modes of instability, caused by the variation of particle
concentration within the critical layer. In § 3.3 we perform a similar analysis for the wall
layer.

In explaining the mechanism for the low-Reynolds-number instabilities, we may pursue
one of two approaches. For both of them, we must begin by deriving the dominant balance
in the critical layer. Once we have the lowest-order equations in the critical layer, we
could solve the equations in the inner (critical) layer, and perform a matching with the
outer layer (inviscid) solutions to obtain the full solutions. But this would yield no extra
information, since we can already solve the full solutions. We therefore follow a second
approach: of writing down a minimal composite theory for particulate shear flow. This
theory (Narasimha & Govindarajan 2000; Govindarajan & Narasimha 2001; Bhattacharya
et al. 2006) will obtain a reduced set of equations describing the stability problem. The
reduced equations will contain all terms in the complete stability equations (3.23) which
participate in the dominant balance somewhere in the flow, and none of the terms which
do not participate in this anywhere.

3.2. Dominant balances in the critical layer
We first summarize existing knowledge in the context of a clean fluid, and then derive
dominant balances within the critical layer in particulate shear flow.

In the Orr–Sommerfeld equation (2.26) for a clean fluid, it is seen that the highest, i.e.
fourth-order, derivative term in y is scaled by the inverse of the Reynolds number. Now,
even if the Reynolds number approaches infinity, this term may not be dropped, because
if it is, we will not be able to satisfy all four boundary conditions associated with (2.26).
This is thus a classical singular perturbation problem (Van Dyke 1964), where the highest
derivative term becomes as big as the terms on the left-hand side in some portions of
the flow. There are two layers (Lin 1945a,b, 1946) where viscous effects are important
and gradients are large: the wall layer, of thickness εw ∼ R−1/2, and the critical layer, of
thickness ε ∼ R−1/3 where, as defined above, U ∼ c. It is the latter which is of primary
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R

Shortwave mode

Longwave mode

TS mode

103

10–1

100

104

α

S

L

T

Figure 4. The three distinct modes of instability, shown by the shaded regions. A specific choice of parameters
is made here, where overlap conditions prevail: the peak of the mean particle concentration profile has
an amplitude fmax = 0.70, and is positioned at ap = 0.75. The thickness of the particle layer is σ = 0.1
and the Stokes number is S = 8 × 10−4. This figure is representative of a wide range of parameters under
overlap conditions. The points marked S, L and T are representative of short-wave, long-wave and TS modes,
respectively, and will be elaborated on.

interest to us to explain the mechanism of the overlap instabilities. To perform a similar
analysis for particulate shear flow, we limit ourselves here to the regime where RS ∼ O(1),
which is reasonable for dilute particle suspensions at high Reynolds number. A similar
analysis may be carried out for any order of magnitude of this quantity. There are three
layers we pay attention to on each side of the centreline, and these are shown in figure 3
for one half of the channel. There is also a wall layer shown, which will be discussed
separately in § 3.3. There are now two critical layers: for the fluid and for the particle flow,
of thickness ε and δ, respectively, and the layer where the particles are concentrated, of
thickness σ , which is pre-specified. The scales ε � 1 and δ � 1 are as yet unknown, and
will be determined below. Figure 3(a) is a schematic for conditions where the particle layer
and the critical layer are distinct, which we shall refer to as the non-overlap condition, and
figure 3(b) depicts the overlap condition.

We derive equations within the critical (inner) layer in the inner variables ξ and λ,
defined as

ξ = y − yc

ε
and λ = y − yc

δ
, (3.1a,b)

and will select ε and δ to ensure that the derivatives of the fluid velocity components in ξ
and the particle velocity components in λ are O(1). In addition, it is useful to define

χ = y − ap

σ
. (3.2)

To derive the dominant balances we write the relevant variables in the form of series
expansions within the critical layer as

uy =
∞∑

n=0

εnuy,n(ξ), vy =
∞∑

n=0

δnvy,n(λ) and vx =
∞∑

n=0

δnvx,n(λ). (3.3a–c)

In this layer the mean flow may be written in the following expansion:

U( y)− c = ( y − yc)U
′
c + ( y − yc)

2

2
U

′′
c + · · · . (3.4)
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Stability of dusty flow

The relative magnitudes within the critical layer of the two components of flow can be
established from the continuity equation. We have

∞∑
n=0

εn
[

iαux,n + 1
ε

Dχuy,n

]
= 0. (3.5)

Constructing hierarchies of equations of different powers of ε yields

uy,0 = 0, (3.6)

and shows that the coefficient of a particular power of ε in ux is related to that which is
one order higher in uy. This is in fact a natural consequence of incompressibility. For the
particle field, from (2.23), and using (3.3a–c) and (3.4), we get[

U − c − i
αSR

]
vx = i

U′

α
vy + 1

α2SR
Duy. (3.7)

At the next two orders, using (3.7) as well as the incompressibility condition Dξuy,1 =
−iαux,0 in the critical layer, we get

vx,0 = ux,0, vx,1 = ε

δ

{
i
α

Dξuy,2 − iαSRU
′
cξvx,0

}
− SRU

′
cvy,1. (3.8a,b)

This yields δ ∼ ε, and without loss of generality, we choose δ = ε. The critical-layer
thickness as perceived by the fluid and the particles is thus identical.

Using the third row of the matrix equation (2.25) along with (3.3a–c) and (3.4), and
collecting terms at the lowest order in the expansion, we obtain

vy,0 = uy,0, (3.9)

which we know to be 0 from (3.6). In other words, the expansions for the normal velocity
components for the particles also begin one order higher than the streamwise component.
At the next two orders, from (2.23)[

U − c − i
αSR

]
vy = − i

αSR
uy, (3.10)

we get

vy,1 = uy,1 and vy,2 = uy,2 − iαSRU
′
cξvy,1. (3.11a,b)

From (3.3a–c), (3.8a,b) and (3.11a,b), we can see that the components of v and u differ
from each other only at order ε relative to their largest value in the critical layer. This is
consistent with the expectation that the particle velocity field must closely follow the fluid
velocity field for low Stokes numbers. This analysis yields a measure of the difference
between the two.

Finally, we may derive the dominant balance for fluid velocity in the critical layer from
(2.23), along with (3.3a–c) and (3.4), and the Taylor expansion

f̄ =
⎧⎨
⎩f̄c + ( y − yc)f̄ ′

c + ( y − yc)
2

2
f̄ ′′
c + · · · overlap case

f̄c non-overlap case
, (3.12)

and under overlap conditions we may rewrite this in the relevant variable χ . Now, there
are different choices possible for the small parameters. We therefore a priori retain all
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terms which may participate in the dominant balance, and after some algebra obtain the
following composite lowest-order equation:[

(1 + f̄ )ξU′
cD2

ξ + i
1

αRε3 D4
ξ − ε

σ
U′

c(Dχ f̄ )(I − ξDξ )
]

uy,1 = 0, (3.13)

where I is the identity operator. We will have one of the following four distinct cases
arising. Case 1 includes the non-overlap case, while the others are for overlap conditions.

Case 1: either the particle layer and critical layer are well separated, or they overlap,
but 1 ∼ 1/αRε3 � ε/σ , i.e. the size of the particle layer significantly exceeds that of
the critical layer. The third term in (3.13) now becomes negligible and in both cases this
equation simplifies to

[−iU′
cξD2

ξ + D4
ξ ]uy,1 = 0. (3.14)

The balance, with ε = αR−1/3, is identical to the case with no particles, for the following
reasons. When the particle layer and critical layer are well separated, the mass fraction f̄
and its derivative (Dχ f̄ ) / σ are practically negligible or much less than O(1) in the critical
layer, regardless of how small the particle layer σ is.

Case 2: 1 � 1/αRε3 ∼ ε/σ , i.e. the particle-laden layer is markedly smaller than
the critical layer. The scaling that emerges is ε ∼ (σ/αR)1/4 and, upon replacing ∼ by
equality, (3.13) simplifies to

[D4
ξ + i{(Dχ f̄ )cU′

c}(I − ξDξ )]uy,1 = 0. (3.15)

The variation in particle concentration is as important as the largest viscous effects in the
critical layer.

Case 3: 1 ∼ ε/σ � 1/αRε3. The size of the particle layer is comparable to that of the
critical layer, and the critical layer is much wider than that dictated by the scaling on
the inverse Reynolds number. This case is a mathematical possibility, but is unlikely to
occur physically, since the critical layer at large Reynolds will normally be influenced by
the Reynolds number, and become thinner as Reynolds number increases. Under these
hypothetical conditions, viscous effects appear only at higher order, since (3.13) simplifies
to

[(1 + f̄ )ξU′
cD2

ξ − (Dχ f̄ )U′
c(I − ξDξ )]uy,1 = 0, (3.16)

where we have set ε = σ .
Case 4: 1 ∼ ε/σ ∼ 1/αRε3. The size of the particle layer is comparable to that of the

critical layer, and viscosity plays a significant role as well. Equation (3.13) now becomes

[U′
c(1 + f̄ )ξD2

ξ + iD4
ξ − κ(Dχ f̄ )U′

c(I − ξDξ )]uy,1 = 0. (3.17)

Here, we define ε = (αR)−1/3 and ε/σ ≡ κ .
Equation (3.17) completely describes the critical layer for the thickness σ we consider.

Cases 2 to 4 correspond to overlap conditions, and the variation of the particle
concentration within the critical layer, estimated by Dχ f̄ , is an important player in
the critical-layer balance, altering it fundamentally. We have thus established that the
concentration profile will alter the fundamental nature of shear flow instability only under
overlap conditions. This effect would be absent with uniform particle loading, where only
under case 4 will we have a factor (1 + f̄ ) which merely rescales the Reynolds number.
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Stability of dusty flow

3.3. Dominant balance in the wall layer
In shear flows, the critical and wall layers are often not well separated, and the overlap
mode of instability presents such a case. We conduct the exercise below only to confirm
that wall effects are not bringing in new physics into the instability. As before we define
inner variables

ξ = y − yw

εw
and λ = y − yw

δw
, (3.18a,b)

where yw = ±1 are the wall locations. Also, we have Uw ≡ U( yw) = 0 and U
′
w ≡ U′( yw).

We expand the variables in the form

uy =
∞∑

n=0

εn
wuy,n(ξ), vy =

∞∑
n=0

δn
wvy,n(λ) and vx =

∞∑
n=0

δn
wvx,n(λ). (3.19a–c)

At the lowest order, uy,0 = 0, and vy,0 is proportional to this quantity and thus vanishes.
At the next order, after some algebra, we obtain the scaling δw = εw, and we can use
the incompressibility condition Dξuy,1 = −iαux,0. Additionally, we have the following
equations:

vx,0 = ux,0

1 − iαcSR
, (3.20)

vx,1 = ux,1

1 − iαcSR
−
(

SRU′
w

1 − iαcSR

)
vy,1 and vy,1 = uy,1

1 − iαcSR
. (3.21a,b)

We can express the dominant-balance composite equation for the flow as follows:

[
−c

(
1 + f̄

1 − iαcSR

)
D2
ξ + i

1
αRε2

w
D4
ξ − εw

σ

(
cDχ f̄

1 − iαcSR

)
Dξ

]
uy,1 = 0. (3.22)

The structure of (3.22) in the wall layer is the same as (3.13) in the critical layer. There
are changes in the coefficients, which change the scaling of εw to be (αR)−1/2. Again,
when εw ∼ σ , along with significant overlap of the wall layer and the particle layer, the
first derivative of the particle concentration profile is among the biggest terms at the lowest
order. In our range of study, the wall layer is always very thin and well separated from the
critical layer. All three terms are important when εw ∼ (αR)−1/2. In our investigation,
we always positioned the particle layer at a considerable distance from the wall layer.
Consequently, the mass fraction f̄ and its derivative become negligible in the wall layer,
and the dominant balance (3.22) is unaffected by the presence of particles.

3.4. Construction of the minimal composite theory
In the rest of the channel, a particle-laden counterpart of the Rayleigh equation, where all
viscous effects are neglected in the stability operator, is valid. We now construct a reduced
equation which includes every term in the complete (2.25) from which any of the dominant
terms in the three layers originates, and neglect all other terms.
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The final minimal composite equation is

[(U∗ − c)(D2 − α2)− U′′]ψ − (J′ f̄ ′)ψ + (Jf̄ ′)Dψ = 1
iαR

D4ψ, (3.23)

with, as before,

U∗ ≡ U + Jf̄ J ≡ U − c
1 + iα(U − c)SR

. (3.24)

The terms that are not included in the above equation compared with the full (2.25)
are: −J

′′
f̄ψ − (1/iαR)(−2α2D2 + α4)ψ , apart from all the viscosity stratification effects

which vanish from the minimal physics in a dilute suspension. This is because the
derivative of the mean viscosity is O( fmax/[γ σ ]), which is small for a dilute suspension.
Moreover, since J is a function of y, we see that (3.23) represents a significant reduction
of the complete stability operator. It comprises the inviscid stability operator of Rayleigh
and the highest-order derivative in the viscous operator. For a constant particle loading,
the only effect due to particles would come from the modified effective mean-flow profile
U∗. Besides these, terms appear that are due to variations in the particle concentration
profile which are critical. Note importantly that the minimal equation does not reduce to
the Orr–Sommerfeld equation in any limit.

It remains to be seen whether the essential physics is contained in the minimal composite
equation. The best parameter to make this explicit is the location, ap, of the maximum in
particle concentration. In figure 5 we show how the critical Reynolds number (the lowest
Reynolds number for instability), Rcrit, changes with ap. The purple line with particles
represents the full solution to (2.25), whereas the black line is the solution of the minimal
composite equation (3.23). As ap increases, the particle-laden layer shifts towards the
wall. We see that, below ap ∼ 0.6, there is a continuous increase in the critical Reynolds
number. But beyond this, we see a sudden and large drop in Rcrit, going down to values
less than half of that a clean channel (Rcrit = 5772.2). At large ap, however, i.e. when
the particle-laden layer is very close to the wall, the trend is reversed again and a large
stabilization is seen. The complete trend is captured by the minimal composite equation,
although, as is to be expected, the agreement with the full solution is only qualitative.

The sensitivity of the critical Reynolds number to the location of the particle-laden
layer is now seen to have its root in the dynamics within the critical layer of the dominant
disturbance. The critical layer is shown in the inset of figure 5, as a function of a0. A
notional thickness of R−1/3 is shown in this sketch. Shown in the same figure is the linear
movement of the particle-laden layer with ap. The large changes in stability occur in the
regime of ap when the two layers overlap. A major portion of the disturbance kinetic energy
is known to be produced within the critical layer in clean channel flow. We shall see that
this is true of particulate flow too. Note that the wall layer (also shown in the figure) is
unimportant in the dominant balance.

3.5. Summary of instability features in the overlap and non-overlap contitions
Before we discuss the energy budget, we summarize some additional features of the modes
of instability. The maximum, fmax, in the particle concentration and the thickness, σ , of
the particle-laden layer, have a quantitative, rather than qualitative, effect. We fix σ at 0.1.

Figures 6(a) and 6(b) summarize the variation of the critical Reynolds number (given in
colour with contour lines) with the Stokes number and the particle loading. We examine
two situations: at ap = 0.4, where the overlap mechanism is not in operation, and at
ap = 0.75, where it is. It is evident that both in quality and quantity the two situations
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0.4 0.6 0.8
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Particle-laden layer
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Minimal equation
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Rcrit
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Figure 5. With a specified amplitude of fmax = 0.1, a peak width of σ = 0.1 for the mass-fraction profile and
a Stokes number of S = 2.5 × 10−4, the purple curve and the black curve in (a) illustrate the critical Reynolds
number as a function of the position of the peak, ap of the mass fraction profile for the full (2.25) and the
minimal equation (3.23), respectively. The green, black and red bands in (b) illustrate the notional critical
layer, the wall layer and the particle-laden layer, respectively, as they vary with ap.

are very different. Under non-overlap conditions, i.e. where the particle-laden layer lies
in a different part of the channel from the critical layer (figure 6a), we see stabilization as
particle loading is increased. The stabilization is enormous in some portions of the regime,
with the critical Reynolds number being extremely sensitive to either the particle loading
or the Stokes number or both. The effect is largest at moderate particle Stokes number and
is non-monotonic in the Stokes number. We now turn to figure 6(b), where completely the
opposite trend is seen in response to increase in loading. For small to moderate Stokes
number, with increase in loading, the flow is highly destabilized, with a sharp drop in
critical Reynolds number. At high Stokes number, we see a reduction in the effect of
particle loading, and a stabilization this time. The reason for this non-monotonicity could
be as follows. Holding fixed the mass fraction fmax of particles, as we increase the Stokes
number, we are increasing the size of individual particles (from (2.8) we see that the
particle radius r scales as the square root of the Stokes number) and therefore reducing
the number of particles. Thus, beyond a certain Stokes number, the forcing of the fluid
by the particles comes down, and so does the effect of particle loading. We can check the
consistency of this argument by examining the effect of Stokes number and mass loading
on stability while holding the number density N in (2.5) constant. Representative lines
of constant N are shown in figure 6. Following these lines from low S and fmax upwards,
we again see different trends under overlap and non-overlap conditions. When the critical
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and particle-laden layers are distinct (figure 6a), and the particle number density is low
(the two blue lines to the right of the figure), under non-overlap conditions, the critical
Reynolds number is practically insensitive to changes in Stokes number and loading, i.e.
the lines of constant N appear parallel to lines of constant Rcrit. This indicates that, at
small particle number density, the critical Reynolds number is practically a function of N.
At higher number densities (the two blue lines to the left of the figure) we see a strong
stabilizing effect with increase in S while N is held constant. This is in sharp contrast to
the stability response under overlap conditions, where we see that the effect of increasing
Stokes number (and at the same time, mass loading) and constant N is monotonically and
strongly destabilizing.

Figure 6(c) shows the variation of the critical Reynolds number with ap and fmax. A
sharp contrast between the high critical Reynolds numbers of the TS mode and the far
lower ones of the overlap mode is evident. At higher levels of fmax the critical layer moves
away from the wall, and Rcrit attains values as low as 200 in this range.

Figure 7 shows the dependence of the neutral boundaries on fmax and ap. A similar figure
appears in Rudyak & Isakov (1996) as well. The long-wave mode is absent for smaller
particle loading. The long-wave mode is odd in uy whereas the short-wave and TS modes
are even. The two even modes can go through merging bifurcations, as seen in figure 7(b)
at ap ∼ 0.695. After merger it is not easy to distinguish the boundary between the TS and
the short-wave modes. The entire range of ap shown in this figure is small, underlining
the sensitivity of the stability boundaries to this parameter. The even and odd overlap
modes do not merge, but instead show a region of intersection, while each mode retains
its character. They may always be distinguished by stipulating for the desired centreline
conditions in the numerics. The long-wave instability is particularly interesting because,
in channel flows, the most unstable perturbations are widely believed to be those which are
even, with a maximum at the centreline, in the normal perturbation uy. This assumption
is so widespread that instability computations are often performed in the half-channel by
imposing this symmetry at the centreline. Note that we use the terminology ‘odd’ mode
going by the normal perturbation uy.

The very fact that the long-wave mode is odd and the short-wave even means that
their eigenfunctions are completely different in character, as seen in figures 8–12. The
eigenfunctions have been normalized to set the maximum value of the streamfunction
ψ to unity. The short-wave instability in figure 9 exhibits much stronger streamwise
velocity fluid perturbations compared with the TS mode throughout most of the channel,
except in a narrow region where the TS streamwise velocity perturbations are pronounced.
Also the near-wall structure of the streamwise velocity presents a distinct, wider and
more symmetric reverse arrowhead shape than the TS. The eigenfunctions in the particle
perturbation velocity components are strikingly different in the short-wave and the TS
modes. In the short-wave mode, the particle dynamics is seen to follow the dynamics of
the fluid, especially as seen in the streamwise velocity components. The normal velocity
component is more peaky for the particles and more rounded for the flow. In contrast,
the particles in the TS mode show a thinner region of strong streamwise velocity, but
their wall-normal velocity is everywhere weak. The fact that the relevant portions of the
eigenfunction profiles are thicker for the short-wave than for the TS mode is a consequence
of the lower Reynolds numbers in the former, and we expect this from our critical-layer
analysis above. For the short-wave mode, we compare the eigenfunctions from the full
solution in figure 9 with those from the minimal composite equation in figure 10. Although
the arrowhead shape is now distorted, the overall similarity in the eigenfunction structure
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Figure 6. Phase plot of the critical Reynolds number, shown in colour, in (a) and (b) as a function of the
Stokes number S and the particle loading strength fmax, and in (c) as a function of the particle loading location
ap and fmax. (a) A case where there is no overlap mechanism in operation, with ap = 0.40, and (b) where
it is in operation, with ap = 0.75. Note the difference in the colour bars in the two figures. In both figures
σ = 0.1, and the blue lines represent curves of constant particle number density N. The value of N decreases
from left to right, with the non-dimensional quantity 9

√
2H3N

√
ρf /ρp being [1.00 × 107, 4.42 × 105, 1.40 ×

104, and 1.25 × 103] for plot (a), and [1.00 × 107, 8.94 × 105, 1.12 × 105, and 3.95 × 104] for plot (b). The
other parameters in (c) are the same as in figure (5). The green curve serves as a visual guide for observing
the sharp change in the critical Reynolds number due to a change in the mode of instability. Some jitter in the
colours is visible, and is due to the interpolation of results on a finitely spaced grid.
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Figure 7. (a) Stability boundaries for different amplitude of particle loading, with ap = 0.75 and S = 8 ×
10−4. (b) Sensitive dependence of the stability boundaries on the location ap of the particle concentration
peak. Here, fmax = 0.4, S = 2.5 × 10−4 and σ = 0.1. The short-wave overlap mode undergoes a merger with
the TS mode just past ap = 0.695. Also, there is significant intersection between the long-wave and short-wave
modes.
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Figure 8. Typical eigenfunctions of the TS mode in the x–y plane. This mode depicts point ‘T’ in figure 4
at R = 14 000, α = 1.0. A streamwise extent of two wavelengths is shown here and for all following
eigenfunctions: (a) ûx(x, y), (b) ûy(x, y), (c) v̂x(x, y) and (d) v̂y(x, y).

between the two is striking. This is strong visual evidence that the dominant physics is
contained in the minimal composite theory.

The eigenstructure of the long-wave instability is shown in figure 11 from the full
equation. Again, the eigenfunctions from minimal composite theory, given in figure 12, are
strikingly similar to those of the complete solution. The energy budgets in the following
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Figure 9. Typical eigenfunctions of the short-wave mode shown at point ‘S’ in figure 4, where R = 1000,
α = 1.6: (a) ûx(x, y), (b) ûy(x, y), (c) v̂x(x, y) and (d) v̂y(x, y).
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Figure 10. Characteristic eigenfunctions of the short-wave mode, obtained from the minimal composite
equation (3.23) using identical parameters to those employed for figure 9: (a) ûx(x, y), (b) ûy(x, y), (c) v̂x(x, y)
and (d) v̂y(x, y).
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Figure 11. Typical eigenfunctions of the long-wave mode, at point ‘L’ in figure 4, where R = 3000, α = 0.6:
(a) ûx(x, y), (b) ûy(x, y), (c) v̂x(x, y) and (d) v̂y(x, y).

section will be rendered very surprising, given how different the odd and even modes are
in their eigenstructure.
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Figure 12. Characteristic eigenfunctions of the long-wave mode obtained from the minimal composite
equation (3.23) using identical parameters to those employed for figure 11: (a) ûx(x, y), (b) ûy(x, y), (c) v̂x(x, y)
and (d) v̂y(x, y).

4. Energy production and the critical layer

Figure 13 shows the profiles across the channel of the four quantities that contribute to the
growth of perturbation kinetic energy, written down in (2.29). In the heavy particle limit,
the two quantities Wμ1 and Wμ2 are zero. The parameters are all identical in figures 13(a)
and 13(b), except for ap, which corresponds to non-overlap conditions in (a) and overlap
conditions in (b). The quantities plotted, when combined in the form given in (2.29),
and integrated over y across the channel, in case (a) give a negative number, i.e. the
perturbation is highly damped, whereas this results in a positive number in case (b),
indicating an exponentially growing mode. The dissipation quantities W− and Wp− are
positive definite by definition. The striking difference between the two figures is in the
production of perturbation kinetic energy by the fluid (W+). In the non-overlap case,
the net production is clearly negative, i.e. W+ is feeding back kinetic energy from the
perturbations to the mean flow, and contributing to the decay of the perturbations. Under
overlap conditions, on the other hand, the production is sharply peaked and positive in the
critical layer, leading to the instability. Thus we establish that moving the the particle-laden
layer from non-overlap to overlap conditions has a remarkable effect on the solutions to
the linear stability problem. Also noticeable is that, under non-overlap conditions, there is
effectively no contribution to energy production from the particles, i.e. Wp+ is too small
to matter. But in the overlap case, particles contribute directly to the instability as well as
by triggering the fluid production. In both cases, Wp− is small, and concentrated in the
particle-laden layer, while in both cases the fluid dissipates perturbation kinetic energy
primarily near the walls (see W−), i.e. displays classical behaviour.

Figure 14, comparing the energy budgets of the odd and even mode of overlap
instability, holds a surprise. Note that by (2.29) this plot is constructed entirely from the
eigenfunctions depicted in figures 9 and 11. The eigenfunctions are completely different in
structure, but the energy budgets are very close to each other. Closer observation reveals
that the two eigenfunctions are indeed very similar in the neighbourhood of the critical and
wall layers, which explains the similarity in the production and dissipation. This finding
begs the question of the possibility of different eigenstructures in the bulk in different flows
yielding critical-layer-driven instabilities. We are not aware of any other such situation in
shear flows.
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Figure 13. Contributions to the perturbation kinetic energy balance at a Reynolds number of 1000 and a
streamwise wavenumber of α = 1.56, with fmax = 0.30, σ = 0.1 and S = 2.5 ∗ 10−4. The kinetic energy
production W+ due to the fluid is net negative in (a), where ap = 0.40, but net positive in (b), which is under
overlap conditions, with ap = 0.75. The kinetic energy production has a noticeable contribution within the
critical layer from particles, Wp+, in (b) but not in (a). The dissipation W− in the flow is similar in the two
figures. The location y = yc is shown by the dashed pink lines.
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Figure 14. Comparison of contributions to the energy budget in the odd mode (a) at point ‘L’ in figure 4,
where R = 3000 and α = 0.6, with that of the even mode (b) at point ‘S’ in figure 4, i.e. R = 1000 and α =
1.6. In both, fmax = 0.70, σ = 0.1, S = 8 × 10−4 and ap = 0.75. Both of these modes are unstable, with net
production beating dissipation by a small amount.

5. Viscosity stratification

Thus far we have worked in the heavy particle limit, where the mass fraction is finite and
the volume fraction of the particles is negligible. We now relax this, and impose a finite
particle to fluid density ratio, thereby allowing viscosity to vary in accordance with (2.9).
The stability equation (2.20) is now applicable, and the mean-flow profile U( y) is given
by

(μ̄U′)′′ = 0, (5.1)

with the boundary conditions U(±1) = 0, and U(0) = 1. The effect on the neutral
boundaries of the viscosity variation is seen in figure 15 to be uniformly stabilizing in
this flow, with both stability boundaries shrinking significantly as γ is decreased. The
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Figure 15. Neutral boundaries of the short-wave and long-wave modes of instability for various density ratios
ρp/ρf = 2.5γ . All other parameters are as in figure 4, where we had γ → ∞.
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Figure 16. Energy budget for γ = 15. Profiles of the quantities in (2.29) are shown. (a) R = 1000, α = 1.6,
see point ‘S’ in figure 15, and (b) R = 3000, α = 0.6, i.e. point ‘L’ in that figure. At this γ , both ‘S’ and ‘L’ are
still unstable.

long-wave mode vanishes below γ = 10, while a small region of instability persists in
the short-wave mode up to γ = 3.4. The maximum particle volume fraction we have
considered occurs for this γ , which is 8 % at the maximum in the particle layer and lower
elsewhere. We ask why this large change happens, since the critical-layer analysis told us
that viscosity stratification should not enter the dominant balance at these modest volume
fractions. The energy budget for the two modes S and L, which are unstable, is shown
for γ = 15 in figure 16. We note that the production is very similar to what is seen for
no viscosity stratification in figure 14. But there is practically no contribution from the
viscosity variation terms Wμ1 and Wμ2 . The change in stability is entirely due to the change
in the mean profile U.

6. Summary and outlook

For decades, shear flows have thrown up surprises in their stability behaviour, and the
different mechanisms of instability, although not easy to predict, are crucial to unravel.
This is an important reason why these flows are appealing to study. We have persevered to
show that the inclusion of particles in a Poiseuille flow is such a case, where we present
the mechanism of low-Reynolds-number instability.
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We have shown that the response of the flow to non-uniform particle loading may be
divided into two broad categories that we term overlap and non-overlap conditions. Under
non-overlap conditions, the particle-laden layer lies at some distance from the critical
layer, where perturbation kinetic energy is produced, and particles do not significantly
alter this process. However, when there is an overlap between these layers, there is a
dramatic alteration of stability behaviour, with two modes of instability apart from the TS
mode appearing. The fundamental difference between overlap and non-overlap conditions
is starkly visible in figure 6 and has been discussed above. Although these modes have been
observed in one older study (Rudyak et al. 1997) at constant viscosity, they had not been
explained before, to our knowledge. The short-wave overlap mode occurs at much lower
Reynolds number than the TS mode, and supports wavelengths of the order of the channel
width. The long-wave overlap mode appears over a wide range of Reynolds numbers and
supports wavelengths which could be as small as the channel width but become longer
and longer with increasing Reynolds number. This mode is rather unusual in that it is odd
in the wall-normal component of the perturbation velocity. The three modes of instability
show regimes of distinct existence, and go through interesting intersections and mergers
with changes in parameters.

We derive the lowest-order critical- and wall-layer equations for particulate parallel
shear flow for dilute particle loading, and show how they differ from the classical equations
for clean flow. This is combined with an energy-budget analysis which brings out the
consequences for stability. The reason for the existence of two categories of behaviour
is shown to lie in the dynamics within the critical layer. Variations in the base particle
concentration within the critical layer significantly alter the production of disturbance
kinetic energy. The result is a large destabilization for this loading profile under a range
of conditions. The wall layer is seen not to be a major player. To directly evaluate the
lowest-order physics, we derive a minimal composite equation, which contains all the
terms in the complete stability equations which contribute at the leading order somewhere
in the flow, i.e. in the outer, critical or wall layers. The wall layer contributes no additional
terms not present in the other two. The minimal composite equation is shown to contain
the essential physics of the overlap instabilities, in terms of trends in the critical Reynolds
number and indeed in the eigenfunction behaviour.

In the limit of heavy particles, the volume loading is negligible, so the viscosity is
constant. We then consider finite particle to fluid density ratios, where the volume loading
is finite but small. Now viscosity varies with particle concentration. The change in the
mean flow velocity profile effects a significant stabilization, whereas the explicit viscosity
gradient terms are shown to be non-players in this case. Whether this is a consequence
of the special viscosity profile that our loading produces remains to be studied in the
future. This question is interesting because in the case of viscosity variations produced
by temperature or solute concentration, an overlap mode of instability was predicted by
Ranganathan & Govindarajan (2001) and Govindarajan (2004) and seen in experiments
such as those of Hu & Cubaud (2018). Related overlap physics can change the nature of
turbulence and the transition to turbulence in heated flow (Giamagas et al. 2024).

The important next question therefore is whether the location of particle loading can
affect the transition to turbulence in shear flows. Non-modal linear effects might be
important for certain ranges of parameters in this process, and need further attention,
in the overlap and non-overlap regimes. Interestingly, when the Reynolds number
is approximately two thousand, non-homogeneous loading shows exponential growth
whereas homogeneous loading (Klinkenberg, De Lange & Brandt 2014) shows merely
transient growth, indicating that the route to turbulence in the two can be different. Direct
numerical simulations are needed to determine the route to turbulence and the possibility
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of multiple routes due to the different modes of instability. Finally, any theoretical
treatment of particulate flow is almost always rife with assumptions whose validity needs
to be established by detailed experiments. The effects of geometry are not obvious either,
and need investigation. For example, in pipe flow experiments by Matas et al. (2003a,b), at
small particle volume fraction, an increase in volume fraction has a destabilizing effect in
a pipe, whereas for a channel we see stabilization. It is worth noting that pipe flow differs
from channel flow in many aspects. Notably, Squire’s theorem, which we have shown here
to hold true for channel flow, is not applicable there, so helical modes are often the least
stable.
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